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Oral administration of resveratrol is able to improve glucose
homeostasis in obese individuals. Herein we show that
resveratrol ingestion produces taxonomic and predicted
functional changes in the gut microbiome of obese mice. In
particular, changes in the gut microbiome were character-
ized by a decreased relative abundance of Turicibacter-
aceae, Moryella, Lachnospiraceae, and Akkermansia and
an increased relative abundance of Bacteroides and Para-
bacteroides. Moreover, fecal transplantation from healthy
resveratrol-fed donor mice is sufficient to improve glucose
homeostasis in obesemice, suggesting that the resveratrol-
mediated changes in the gut microbiome may play an im-
portant role in the mechanism of action of resveratrol.

The polyphenol, resveratrol, has shown promising results in
the management of clinical symptoms associated with early
type 2 diabetes (T2D) (1,2). To date, resveratrol has been
shown to exert antidiabetic effects via multiple mechanisms,
including anti-inflammation and antioxidant effects (3), as
well as by increasing incretin secretion (4). In addition, it is
debated whether resveratrol has direct insulin-sensitizing
effects on peripheral tissues (5) or whether intraorgan sig-
naling is the primary mechanism of action (6). However,
given the fact that resveratrol has low bioavailability when
administered orally and largely arrives unmetabolized in the
colon, it is likely that resveratrol can interact with the gut

microbiota (7), and this may contribute to the antidiabetic
effects of resveratrol.

Here we confirm that resveratrol administration leads
to marked changes in the composition of the gut micro-
biota in obese mice (8,9), which is associated with im-
proved insulin sensitivity. We also expand these findings
to include a more detailed analysis of the involvement of
the gut microbiota in the observed improvement in glucose
homeostasis. To do this, we transplanted fecal matter from
chow-fed or resveratrol-fed donor mice to conventional
mice fed an obesogenic high-fat/high-sugar (HFHS) diet.
Transplantation of the fecal matter from resveratrol-fed
mice, but not chow-fed mice, was sufficient to recapitulate
the improvement in glucose homeostasis observed with
oral resveratrol treatment. Together, these findings indi-
cate that alterations in the gut microbiota may play a piv-
otal role in mediating the beneficial metabolic effects of
resveratrol. Thus, our findings have significant clinical im-
plications because dysbiosis may help to explain the mixed
results seen in human resveratrol trials with some studies
showing a metabolic benefit although others do not (10).

RESEARCH DESIGN AND METHODS

Mouse Model of Diet-Induced Obesity
This investigation conforms with the guidelines of the
Canadian Council on Animal Care and the University
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of Alberta Animal Policy and Welfare Committee. Male
C57BL/6N mice (8 weeks of age, n = 40) were obtained from
Charles River Laboratories and single housed on a 12-h light/
dark cycle (0600 to 1800 h light) with ad libitum access to
food and water. In brief, mice were randomly assigned into
four groups and fed 1) chow, 2) chow plus 0.4% resveratrol,
3) HFHS (45 kcal% fat, 17 kcal% sucrose), or 4) HFHS plus
0.4% resveratrol (n = 10/group). Mice were fed their respec-
tive diets ad libitum for 8 weeks and single housed to elim-
inate the confounding effect of cohousing on the microbiota.

Glucose Tolerance Tests
Mice were fasted for 5–6 h and then injected intraperito-
neally with 2 g/kg body wt glucose dissolved in sterile
0.9% saline. Glucose levels were detected in blood col-
lected from the tail tip prior to and at 10, 20, 30, 60,
90, and 120 min after the injection using an ACCU-CHEK
Advantage Glucometer (Roche Diagnostics, Laval, QC,
Canada) as described previously (11).

Fecal Microbiota Transplantation
Fresh fecal matter from chow and resveratrol-fed donor mice
that were fed their respective diets for 8 weeks were
collected as described previously (12), and aliquots of pooled
fecal slurry from 10 mice were frozen and stored at 280°C
until used for fecal microbiota transplantations (FMTs). A
separate cohort of single-housed, non–germ-free C57BL/6N
(n = 20) mice were fed an HFHS diet for 5 weeks, fasted
overnight prior to receiving their first FMT of fecal slurry
(200 mL; each FMT dose was prepared from an average
weight of 40 mg of fecal matter, equivalent to two fresh
fecal pellets from the donor) from chow-fed or resveratrol-
fed donor mice via oral gavage. Mice then received two
additional FMTs (in the absence of fasting), which were
administered every second day for a total of three FMTs.
During this time, all mice continued to be fed their original
HFHS diet. Glucose tolerance tests (GTTs) were then per-
formed to assess glucose clearance, as described above. In a
separate experiment, fresh fecal matter from HFHS-fed and
HFHS plus resveratrol–fed donor mice that were fed their re-
spective diets for 8 weeks were collected as described previously
(12), and aliquots of pooled fecal slurry from 10 mice were
frozen and stored at 280°C until used for FMT. The remain-
der of the experiment remained the same as described above.

Gut Microbial Profiling
Cecal samples from mice fed chow, resveratrol, HFHS, and
HFHS plus resveratrol diets were collected after a fast for 5–
6 h in sterile autoclaved DNAse- and RNAse-free Eppendorf
tubes. Genomic DNA was extracted from cecum samples
followed by Illumina-compatible multiplex PCR amplification
of the variable 3 region of the 16S rRNA gene and sequenc-
ing using the MiSeq platform. A custom in-house pipeline
was used to process the FASTQ files (McMaster Genome
Facility, McMaster University, Hamilton, ON, Canada), as
described previously (13). Sequences were trimmed and
aligned with Cutadapt and PANDAseq (14,15) and then
grouped into operational taxonomic units (OTUs) that were

based on 97% similarity with AbundantOTU+ (15,16).
QIIME (Quantitative Insights Into Microbial Ecology) (17)
was used to assign OTUs against the 2011 version of the
Greengenes reference database (18) and to calculate a- and
b-diversity, as previously described (13,17). OTUs were
assigned to the closest root of the phylogenic tree, which
can result in different OTUs being assigned to the same
classification. The prediction of metagenome functional
content from 16S recombinant DNA library was developed
using Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt) software, and
PICRUSt predictions were categorized as levels 1–3 into
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways
(19). To identify pathways with differentiating abundance in
the different groups, the linear discriminant analysis (LDA)
effect size (LEfSe) algorithm was used with the online inter-
face Galaxy (http://huttenhower.sph.harvard.edu/galaxy/root).

Combined Direct Flow Injection and Liquid
Chromatography–Tandem Mass Spectrometry
Compound Identification and Quantification
We applied a targeted quantitative metabolomic ap-
proach to analyze the serum samples using a commercially
available metabolomics system (AbsoluteIDQ p180 Kit;
BIOCRATES Life Sciences, Innsbruck, Austria) as described
previously (20). This kit, in combination with an ABI
4000 QTRAP System (Applied Biosystems/MDS Sciex) mass
spectrometer equipped with a reverse-phase high-performance
liquid chromatography column, can be used for the tar-
geted identification and quantification of up to 181 dif-
ferent endogenous metabolites, including amino acids,
acylcarnitines, biogenic amines, glycerophospholipids, sphin-
golipids, and sugars. Isotope-labeled internal standards and
other internal standards are integrated in the kit plate filter
to permit absolute metabolite quantification. Fecal slurries
from chow- and resveratrol-fed mice that were used for
FMTs of obese mice were also analyzed for levels of short-
chain fatty acid (SCFA) acylcarnitines as described above.

Statistical Analysis
Results are expressed as the mean 6 SEM or box-and-
whisker plots. Blinding was not possible for these experi-
ments. The variance was similar between all groups being
tested, and the Shapiro-Wilk normality test was applied to
test for normality. Statistical methods were not used to
predetermine sample size. Statistical analyses were per-
formed using GraphPad Prism software. Pairwise compari-
sons were performed using an unpaired two-tailed Student
t test. Multiple groups were compared by one-way ANOVA
or two-way ANOVA and Tukey post hoc test when appro-
priate because of the small sample size. P values ,0.05
were considered to be significant. The Benjamini-Hochberg
multiple-testing adjustment procedure was conducted in R
in order to account for the false discovery rate (FDR), where
FDR-corrected P values were estimated for all taxonomic
data. Results from PICRUSt analysis were evaluated for
significance using the LEfSe tool with P values set at 0.05
and an LDA cutoff score of 3.0 (21). The most significant
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subset of metabolites was identified by using univariate
analysis for P , 0.1 for principal component analysis and
partial least squares discriminant analysis. Data normaliza-
tion consisted of log transformation and Pareto scaling.
Univariate analysis of serum metabolites was performed
by unpaired two-tailed Student t test and Wilcoxon
Mann-Whitney test (P value with W value). FDR q values
were calculated to consider the corrections needed for mul-
tiple comparisons. Heat-map and clustering analyses were
performed using MetaboAnalyst. Clusters were formed
based on the Euclidian distance metric, and the associated
analysis was performed using a correlation test.

RESULTS

To investigate the mechanisms underlying resveratrol’s
effects on glucose homeostasis, we fed 8 week old male
C57BL/6N mice either a chow, a chow plus 0.4% resvera-
trol, an HFHS (45 kcal% fat, 17 kcal% sucrose) or a HFHS
plus 0.4% resveratrol diet. This dose of resveratrol was in-
tentionally chosen so as to align with previous studies that
showed improved glucose homeostasis in obese mice
(22,23). Compared to chow-fed mice, consuming an HFHS
diet for 8 weeks impaired glucose clearance during a GTT
(Fig. 1A and B). Consistent with previous reports (8,24),
obese mice administered resveratrol had significantly im-
proved glucose tolerance (Fig. 1A and B). Resveratrol did
not alter body mass in HFHS-fed mice (Fig. 1C), despite a
significant decrease in fat mass in resveratrol-fed obese
mice (Fig. 1D). In addition, resveratrol significantly altered
acylcarnitine and phosphatidylcholine metabolism, as evi-
denced by a significant separation in serum metabolomic
profiles of HFHS-fed and HFHS plus resveratrol–fed mice
(Fig. 1E, Supplementary Table 1, and Supplementary Fig. 1).

Since changes in the composition and function of the gut
microbiome are strongly implicated in the development of
obesity and T2D (25), we performed 16S RNA–based bacte-
rial profiling of cecum samples. Confirming some recent
reports (3,9,26), we show that resveratrol administration
altered the commensal gut microbial community in the ce-
cum of obese mice (Fig. 1F and G). Phylum-level changes
showed a higher ratio of Bacteroidetes to Firmicutes in
resveratrol-fed obese mice compared with vehicle-treated
obese mice (Fig. 1Fand G), and the cecal contents of
resveratrol-fed obese mice were characterized by a de-
creased relative abundance of Turicibacteraceae, Moryella,
Lachnospiraceae, and Akkermansia and an increased rela-
tive abundance of Bacteroides and Parabacteroides (Fig. 1H).
These findings were also confirmed by LEfSe analysis of the
bacterial taxons (Fig. 1I). Linear regression using a Spear-
man correlation analysis between bacterial taxons and the
area under the curve (AUC) from the GTT indicated that no
significant correlations exist between any single bacterial
group shown in Fig. 1H and the GTT AUC (data not
shown). Metagenomic predictions using PICRUSt (19) and
LEfSe analysis of the cecal microbiota showed distinct mi-
crobial functional profiles of the resveratrol- and vehicle-fed
obese mice (Fig. 1J and Supplementary Tables 2 and 3). The

top discriminative microbial pathways in resveratrol-fed
obese mice included several metabolic pathways, including
carbohydrate, amino acid, and energy metabolism, along
with replication and repair pathways (Fig. 1J). In contrast,
the top discriminative microbial pathways in obese mice
included pathways related to bacterial chemotaxis, flagella
assembly, motility pathways, and environmental information
processing (Fig. 1J). Overall, these data suggest that the
glucose-lowering effects of orally administered resveratrol
were associated with significant modification of gut microbial
composition and predicted functional pathways in obese
mice (27), although shotgun metagenomics would be re-
quired to directly measure the functional pathways involved.

In order to ascertain whether resveratrol-induced
changes in the gut microbiota may be involved in the
improvement in glucose homeostasis, we fed a separate
cohort of 8-week-old mice an HFHS diet for 5 weeks and
then by oral gavage administered three FMTs collected from
donor mice fed either a chow diet or a resveratrol diet (Fig.
2A). Interestingly, 1 week after the final FMT dose, obese
mice that had received a resveratrol-FMT displayed robust
improvements in glucose clearance, whereas control-FMTs
had no effect in obese mice (Fig. 2B and C). An improve-
ment in glucose clearance was also observed in obese mice
receiving FMT from donor mice maintained on an HFHS
plus resveratrol diet (Supplementary Fig. 2). Importantly,
this improvement in glucose homeostasis occurred in the
absence of a reduction in body weight (Fig. 2D). For these
FMT experiments, we also performed bacterial sequencing
of cecum samples and show, using the Bray-Curtis similarity
index, that the bacterial community in the cecum from
obese mice receiving control-FMT was different from obese
mice receiving resveratrol-FMT (Fig. 2E). Obese mice receiv-
ing resveratrol-FMT had higher levels of Parabacteroides and
lower relative abundance of Moryella and Akkermansia (Fig.
2F), which is similar to our results obtained with oral
resveratrol feeding. Metagenomic predictions using PICRUSt
and LEfSe analysis (19) of the cecal microbiota again showed
distinct microbial functional profiles between the pre-FMT
obese mice and mice that received either a control-FMT
or resveratrol-FMT (Fig. 2G and Supplementary Table 4).
As was seen in the resveratrol-fed obese mice, the top
discriminative microbial pathways in the pre-FMT obese
mice included several metabolic pathways related to bacterial
motility, membrane transport, and environmental informa-
tion processing, whereas mice receiving a control-FMT had
higher carbohydrate, energy, and amino acid metabolism
levels, and mice receiving a resveratrol-FMT had higher
levels of glycan biosynthesis, genetic information pro-
cessing, and replication and repair pathways.

Four clusters of metabolites were identified that were
associated with changes in gut bacterial composition of
obese mice after resveratrol-FMT or chow-FMT. These were
identified using a Spearman correlation test (Supplementary
Table 5). A significant correlation was found between Pro-
teobacteria and four of the five metabolites in cluster 2 [PC
ae C40:1, PC ae C42:1, PC ae C42:2, and SM (OH) C24:1],
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Figure 1—Resveratrol feeding improves glucose homeostasis, serum metabolomic profiles, and composition and predicted function of the
gut microbiome in obese mice. A: Glucose tolerance tests of mice maintained on a chow diet (Chow), a chow diet supplemented with
resveratrol (Resv), an HFHS diet, or an HFHS diet supplemented with resveratrol (HFHS+Resv) (n = 7/group) for 8 weeks. B: Glucose
clearance represented by the AUC of the glucose tolerance tests in either chow-fed mice (Chow) or HFHS-fed mice (HFHS) supplemented
without resveratrol (C) or with resveratrol (R). Body weight (n = 9–10/group) (C) and fat mass (D) in all groups of mice (n = 5/group). E: Serum
metabolic profiles of mice fed HFHS or HFHS+Resv diets (n = 10/group). F: Ratio of Bacteroidetes to Firmicutes in the cecum of mice from
all four groups (Chow, n = 5, and other groups, n = 6). G: Representative commensal gut microbial community in HFHS-fed mice without
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consisting of phosphatidylcholines and a sphingomyelin.
Our analyses show a decrease in Proteobacteria in obese
mice after resveratrol-FMT compared with a chow-FMT.
Furthermore, the presence of these metabolites was also
decreased in mice maintained on a diet supplemented with
resveratrol. Cluster 4, consisting of acylcarnitines, was asso-
ciated with changes in Actinobacteria and Verrucomicrobia
(Supplementary Table 5). In particular, our findings indicate
that butyrylcarnitine (C4) was decreased in mice maintained
on a diet supplemented with resveratrol.

Previous evidence (28) has shown that changes in the
gut microbiota can strongly impact energy harvesting from
the diet. Further, gut fermentation produces metabolites,
including SCFAs, that have been proposed to have critical
roles in the maintenance of energy homeostasis (i.e., en-
ergy expenditure and adiposity) and insulin sensitivity of
the host (29). Therefore, we used metabolomics to screen
fecal samples used for FMT for all SCFA acylcarnitines, and
we observed either no differences between groups or that
several SCFA acylcarnitines were below the limit of detec-
tion (Supplementary Table 6). These data confirm that im-
proved glucose homeostasis in these obese mice receiving
FMT from resveratrol-fed donor mice is independent of a
direct supplementation of SCFAs produced in donor mice.
However, the effect observed in the mice receiving resver-
atrol-FMT could have involved an increased production of
luminal SCFA by transplanted microbes.

DISCUSSION

Our data suggest that resveratrol-induced alterations in the
gut microbiota are associated with improved glucose ho-
meostasis in obese mice and that these changes may be an
important mechanism by which resveratrol mediates its ben-
eficial metabolic effects. Although this association is consis-
tent with previous studies (3,9), we did not test whether
altered microbiota is essential for the ability of resveratrol
to improve glucose homeostasis in obese mice and, thus,
cannot definitively state that this is the case. Indeed, antibi-
otics could be tested in this model in order to confirm that
antibiotics can prevent the effects of resveratrol (13,30,31).
However, despite the limitations of the current study, pre-
vious studies (3,32) have shown that resveratrol is able to
reduce tissue inflammation and endotoxemia, suggesting
that correcting obesity-related alterations in gut microbiota,
low-grade inflammation, and metabolic endotoxemia (33)
may be involved in this effect. In this context, our findings
show that decreases in Proteobacteria with resveratrol-FMT
are associated with changes in phosphatidylcholines and

sphingomyelins. Proteobacteria are associated with in-
flammation and can be indicative of imbalances in the
microbiome (34). Indeed, the inability to control levels of
Proteobacteria has been shown to underlie cecal inflamma-
tion (35), which can lead to local and systemic inflamma-
tion, ultimately contributing to metabolic dysfunction (34).
Similarly, phosphatidylcholines and sphingomyelins have
been implicated in inflammation and the inflammatory
pathway (36). Thus, it is possible that resveratrol-FMT
lowers the inflammatory state of obese mice, contributing
to the improvement in their glucose homeostasis.

Earlier reports emphasized the antimicrobial effects of
resveratrol (3), which showed a decrease in the relative
abundance of the following three species of bacteria:
Parabacteroides johnsonii, Alistipes putredinis, and Bacteroides
vulgatus. In agreement with that study, we show that the
relative abundance of certain microbial families (Lachnospir-
aceae and Turicibacteraceae) and genera (Moryella and Akker-
mansia) were also decreased with resveratrol treatment.
However, we show that the relative abundance of certain
genera and families of bacteria are also increased as a result
of resveratrol supplementation (Bacteroides and Parabac-
teroides) or after FMT from donor mice fed a resveratrol-
supplemented diet (Lactococcus, Parabacteroides, and
Lachnospiraceae) (2). Furthermore, our findings were
in agreement with those of previous studies showing
that resveratrol increases the ratio of Bacteroidetes to
Firmicutes (9). Thus, although our findings are in general
agreement with those of previous studies demonstrating
that resveratrol can alter the gut microbiota, there are
some differences in specific microbial changes. It is pos-
sible that these observed differences could be attributed
to housing environments (isolated vs. conventional), diets
(high-fat vs. HFHS diet), and/or model species (mouse vs. rat)
used in the different studies.

Previous findings also showed that C4 is increased in the
plasma of patients with T2D (37). Thus, increases in C4
may be associated with an insulin-resistant/diabetic pheno-
type that may be decreased by resveratrol supplementation
and resveratrol-FMT through the alteration of a specific
bacterial phylum. In addition, since resveratrol supplemen-
tation improves glucose homeostasis in obese mice via in-
creased portal vein concentrations and intestinal content of
glucagon-like peptide-1 (3), the effects we observed herein
may also involve this mechanism. Moreover, we report re-
duced abundance of Akkermansia in the resveratrol-treated
obese mice, which corresponds with improved glucose tol-
erance. Although it is tempting to speculate that a reduced

resveratrol (C) or with resveratrol (R). H: Relative abundance of Lachnospiraceae, Turicibacteraceae, Moryella, Akkermansia, Bacteroides,
and Parabacteroides in the cecum of mice fed HFHS or HFHS+Resv diets (n = 6/group). LEfSe analysis of bacterial taxons (I) and met-
agenomic predictions (J) using PICRUSt and LEfSe analysis of the cecal microbial functional profiles between mice fed HFHS (n = 6) or
HFHS+Resv diets (Log LDA >3.0; n = 6). Values in A–D and F are shown as the mean 6 SEM, and those in H are box-and-whisker plots.
*P< 0.05; analyzed by two-way ANOVA with Tukey post hoc test in A, and analyzed by one-way ANOVA with Tukey post hoc test in C and
F. Data in B, D, and H were analyzed vs. HFHS-resveratrol determined by unpaired two-tailed Student t test, and results in H were corrected
for FDR. Only functional categories meeting a log LDA significant threshold value of >3 are shown in I and J.
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Figure 2—FMTs from donor mice fed a resveratrol diet are sufficient to improve glucose homeostasis and alter the gut microbiota in obese
mice. A: Male C57BL/6N mice (8 weeks old) were fed an HFHS diet for 5 weeks. Fecal samples were collected (FC) and baseline GTTs were
completed during the week before receiving FMTs. Following an overnight fast on day 0 (F), mice received FMTs (FMT) every other day for a
total of three FMT doses on days 1, 3, and 5 (1d, 3d, and 5d). Mice were fasted overnight only prior to the first FMT dose and subsequently
were fed their original HFHS diet ad libitum during the last two FMT doses and throughout the remainder of the study. Fecal samples were
collected (FC) again on day 7 (7d), and post-FMT GTTs (GTT) were completed on day 11 (11d). Tissues were collected (TC) after a 5–6 h fast
on day 14 (14d). B: GTTs of HFHS-fed mice at baseline prior to receiving FMTs (Pre-FMT; n = 20) and after randomization to receiving an
FMT from chow-fed mice (Control Post-FMT; n = 9) or from chow plus resveratrol-fed donor mice (Resv Post-FMT; n = 11). C: Glucose
clearance represented by the AUC of the glucose tolerance tests from HFHS-fed mice prior to FMT (P) and after FMT from control-FMT (C)
and Resv-FMT (R). D: Body weight in all groups of mice (P, n = 20; R, n = 11; and C, n = 9). E: Bray-Curtis similarity index comparing the
bacterial community in the cecum from obese mice receiving either control-FMT (C, n = 8) and Resv-FMT (R, n = 9). F: Relative abundance
of Moryella, Akkermansia, Bacteroides, F Clostridium, Lactococcus, Parabacteroides, and Lachnospiraceae in the ceca of HFHS-fed mice
following control-FMT (n = 8) or Resv-FMT (n = 9). G: Metagenomic predictions using PICRUSt and LEfSe analysis of the cecal microbial
functional profiles between the pre-FMT, control-FMT (n = 9/group), and Resv-FMT mice (n = 11/group). Values in B–E are shown as the
mean6 SEM, and those in F are box-and-whisker plots. *P< 0.05; analyzed by two-way ANOVA with Tukey post hoc test in B and by one-
way ANOVA with Tukey’s post hoc test in C and D. Data in F were analyzed by unpaired two-tailed Student t test corrected for FDR. Only
functional categories meeting a log LDA significant threshold value of >3 are shown in G.
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level of Akkermansia contributes to the beneficial effects of
resveratrol, this is in contrast to other findings showing that
Akkermansia muciniphila abundance inversely correlates with
body weight and glucose tolerance (38,39), so additional work
in this area is necessary before any conclusions can be drawn.

On the basis of the rapid and dramatic improvement in
glucose homeostasis in obese mice receiving FMTs from
resveratrol-fed donor mice, our data appear to rule out direct
effects of circulating resveratrol on peripheral target tissues.
However, it is possible that changes in the gut microbial
community work in conjunction with resveratrol to induce
these beneficial effects. In fact, on the basis of the FMT
studies, it is quite possible that a metabolite of resveratrol
and/or bacterial-derived metabolites induced by resveratrol
in donor mice is responsible for producing the beneficial
effects observed in obese mice receiving FMTs. In addition,
future studies using heat-inactivated FMT from resveratrol-
fed donor mice could help address whether or not live gut
microbiota transplanted during the FMT are necessary for
improving glucose homeostasis in obese mice. Thus, although
a better understanding of the contents of the FMT that may
influence glucose homeostasis in obesity is clearly warranted,
our findings not only highlight a previously underappreciated
site of action for resveratrol in the gut but may also assist in
the eventual identification of the resveratrol-mediated mech-
anisms responsible for improved glucose homeostasis in
obesity and aid in the discovery of new treatment modalities.
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