
Association and Interaction of Genetics and Area-Level
Socioeconomic Factors on the Prevalence of Type 2 Diabetes
and Obesity

Sara J. Cromer, Chirag M. Lakhani, Josep M. Mercader, Timothy D. Majarian, Philip Schroeder, Joanne B. Cole,
Jose C. Florez, Chirag J. Patel, Alisa K. Manning, Sherri-Ann M. Burnett-Bowie, Jordi Merino, and Miriam S. Udler

Diabetes Care 2023;46(5):944–952 | https://doi.org/10.2337/dc22-1954

ARTICLE HIGHLIGHTS

• We examined the association of genetic (global extended polygenic scores) and socioeconomic risk with type 2
diabetes and obesity prevalence in two biobanks and in individuals of different genetically defined ancestry.

• Both genetic and socioeconomic risk factors were associated with metabolic disease prevalence.
• The absolute increase in disease prevalence with increasing socioeconomic risk was greatest for those at high

genetic risk, with 13.2% and 16.7% of type 2 diabetes and obesity prevalence, respectively, explained by the
additive effects of both genetic and socioeconomic risk.

• Findings were similar in people of European, African, (admixed) American (predominantly self-identified as His-
panic or other race/ethnicity), and Central or South Asian genetic ancestry.
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OBJECTIVE

Quantify the impact of genetic and socioeconomic factors on risk of type 2 diabetes
(T2D) and obesity.

RESEARCH DESIGN AND METHODS

Among participants in the Mass General Brigham Biobank (MGBB) and UK Biobank
(UKB), we used logistic regression models to calculate cross-sectional odds of T2D and
obesity using 1) polygenic risk scores for T2D and BMI and 2) area-level socioeconomic
risk (educational attainment) measures. The primary analysis included 26,737 partici-
pants of European genetic ancestry in MGBB with replication in UKB (N = 223,843),
as well as in participants of non-European ancestry (MGBB N = 3,468; UKBN = 7,459).

RESULTS

The area-level socioeconomic measure most strongly associated with both T2D
and obesity was percent without a college degree, and associations with disease
prevalence were independent of genetic risk (P < 0.001 for each). Moving from
lowest to highest quintiles of combined genetic and socioeconomic burden more
than tripled T2D (3.1% to 22.2%) and obesity (20.9% to 69.0%) prevalence. Favor-
able socioeconomic risk was associated with lower disease prevalence, even in
those with highest genetic risk (T2D 13.0% vs. 22.2%, obesity 53.6% vs. 69.0% in
lowest vs. highest socioeconomic risk quintiles). Additive effects of genetic and
socioeconomic factors accounted for 13.2% and 16.7% of T2D and obesity preva-
lence, respectively, explained by these models. Findings were replicated in inde-
pendent European and non-European ancestral populations.

CONCLUSIONS

Genetic and socioeconomic factors significantly interact to increase risk of T2D
and obesity. Favorable area-level socioeconomic status was associated with an
almost 50% lower T2D prevalence in those with high genetic risk.

Genetic and socioeconomic factors have both been shown to increase the risk of
metabolic diseases, including type 2 diabetes (T2D) and obesity (1–4). However,
the relative contributions of these two factors—one intrinsic and unmodifiable and
one extrinsic and potentially modifiable—and the degree to which they may
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interact to impact an individual’s risk are
poorly understood, especially in popu-
lations historically underrepresented in
research.
Several studies have examined gene-

environment interactions in the UK Bio-
bank (UKB); however, in many cases, these
studies test a broad list of environmental
factors, ranging from diet to smoking to
socioeconomic status, without an in-depth
examination of specific factors (5–7). Be-
cause of this, a rigorous understanding of
the association between socioeconomic
factors and disease is often lacking. Ad-
ditionally, the extent to which under-
standing gene-socioeconomic interactions
is useful for identifying individuals or com-
munities at increased disease susceptibil-
ity, or whether this information could
guide more efficient public health policies
to reduce the burden of metabolic dis-
eases at a population level, is unknown.
Here, we hypothesize that genetic

and socioeconomic factors interact in
their association with T2D and obesity
prevalence. We present a detailed and
quantitative examination of the inde-
pendent and additive effects of genetic
and socioeconomic risk in two unrelated
biobanks, using comprehensive “global
extended polygenic scores” (gePS) and
area-level measures of socioeconomic
status tested within these data sets. First,
we examine the association of multiple
area-level socioeconomic risk measures
with the prevalence of T2D and obesity.
We then quantify the effects of genetic
and socioeconomic risk on the prevalence
of these metabolic diseases, including the
degree to which living in high-deprivation
areas interacts with individual genetic
risk. To understand the relationship of
these risk factors across populations,
we first focus on individuals of European
genetic ancestry in the Mass General
Brigham Biobank (MGBB), a hospital-based
biobank in Boston, MA, with replication
in a European ancestry subset of the
UKB, a population-based biobank in the
U.K. Lastly, we extend these analyses to
participants of other ancestries in both
biobanks.

RESEARCH DESIGN AND METHODS

Data Source and Participants
The MGBB is a health care system–based
biobank in New England (8) including
demographic and clinical information from
electronic health records for approximately

115,000 individuals. We included all en-
rolled individuals whose genotyping had
been completed by March 2020 (N =
33,745; Supplementary Table 1 and Supple-
mentary Fig. 1) and excluded related indi-
viduals, those without a full address listed
(as required for geocoding to a census
tract), and those with fewer than five
clinical encounters (as likely to have in-
complete phenotypic data). We restricted
to individuals who fell into one of the
three largest genetic ancestry groups (Eu-
ropean, African, and [admixed] American
subsets) based on the Pan-UKB method
of assigning genetic ancestry, based on
mapping to reference genome data sets
and excluding outliers that do not map
closely with a single genetic ancestry (9).
Population admixture occurs when two or
more previously isolated ancestral popu-
lations converge, resulting in new popu-
lations with genetic ancestry reflecting
multiple origins (10); individuals in the
(admixed) American subset include those
with indigenous American genetic ances-
try; the majority of these individuals self-
identified as either Hispanic or other
race/ethnicity.

A replication analysis was performed
using the UKB, a population-based bio-
bank including approximately 500,000 in-
dividuals in the U.K. (11,12). We included
all enrolled individuals with complete ge-
netic and area-level socioeconomic infor-
mation, excluding related individuals (12),
those living outside of England (as the
socioeconomic measures used in different
countries within the U.K. were distinct),
those with missing phenotype designa-
tion, and those not of European, African,
or Central or South Asian ancestry accord-
ing to the Pan-UKB method (9).

We analyzed each genetic ancestry
group separately in stratified analyses,
with European ancestry acting as the
primary analysis in both data sets, and
analyses in other ancestry groups con-
sidered exploratory.

Socioeconomic Risk Factors
As socioeconomic risk is composed of
many related elements and is variably
defined in the literature, we assessed
multiple area-level socioeconomic risk
variables in each data set to determine
which factors most strongly associated
with disease prevalence. Area-level socio-
economic measures were used in the
primary analysis in order to maximize

sample size and avoid selection bias;
sensitivity analyses using individual-level,
self-reported socioeconomic measures were
performed on subsamples in which these
data were available.

In MGBB, we geocoded each individ-
ual’s address to their respective census
tract, using the DeGAUSS (Decentralized
Geomarker Assessment for Multi-Site
Studies) geocoder (13), assigning census
tract–level measures of educational at-
tainment (percent with less than a col-
lege degree and percent with less than
a high school degree living in the tract),
income/poverty (inverse of median house-
hold income and percent living below
100%, 150%, or 200% of the federal pov-
erty limit in the tract), and employment
(percent aged 18–65 years who are unem-
ployed in the tract), and deprivation indi-
ces (Social Deprivation Index [14], Social
Vulnerability Index [15]) based on data
from the American Community Survey
2014–2018.

In UKB, each individual was assigned
lower layer super output area–level meas-
ures of socioeconomic deprivation, includ-
ing deprivation indices (Index of Multiple
Deprivation [16], Townsend Deprivation
Index [17]), and subscores of the Index of
Multiple Deprivation capturing educational
deprivation, income deprivation, and em-
ployment deprivation (field IDs: 26410.0.0,
189.0.0, 26414.0.0, 26411.0.0, 26412.0.0),
by the UKB team.

For each population subset, we created
age, sex, and self-reported race/ethnicity-
adjusted logistic regression models pre-
dicting T2D and obesity prevalence for
each socioeconomic variable; the variable
with the greatest association size (odds
ratio [OR]) was chosen as the main socio-
economic variable for subsequent analyses.

Genetic Risk Factors
In both MGBB and UKB, we defined ge-
netic risk using gePS (1) for T2D, based
on a genome-wide association study per-
formed in the FinnGen and DIAGRAM
(Diabetes Genetics Replication and Meta-
analysis) cohorts (18,19), and for BMI,
based on published summary statistics
(20). gePS were calculated based on
the weighted contributions of hundreds
of thousands of genetic loci, rather than
being restricted only to loci that meet
strict genome-wide significance thresh-
olds as in restricted-to-significant poly-
genic scores. These gePS may better
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capture overall genetic risk by allowing
contributions from variants with real but
small effects that may not achieve strict
significance thresholds because of limited
sample sizes in available genetic data sets;
for most conditions, gePS have better predic-
tive value than restricted-to-significant poly-
genic scores (1). We generated the gePS
weights using PRS-CS (21), using the UKB
European Linkage Disequilibrium reference
panel and the summary statistics of the
meta-analysis, which was performed with
METAL (22) using a fixed-effects model with
an inverse-variance weighting of log ORs.

Outcomes
The primary outcomes of this analysis
were cross-sectional/prevalent T2D and
obesity.

In MGBB, we defined T2D using two
algorithms relying on clinical data in the
electronic health record: a machine learn-
ing algorithm developed and validated
within the biobank with a 90% positive
predictive value (8) and an application
of the eMERGE (electronic medical re-
cords and genomics) algorithm (23); us-
ing these algorithms, all individuals in
MGBB were assigned a phenotype (pres-
ence or absence of T2D). We defined
obesity by the presence of likely obesity
based on a machine learning algorithm
validated within the biobank with a 90%
positive predictive value (8) or based on a
maximum BMI of $30 kg/m2.

In UKB, we defined T2D based on a
validated algorithm for the identification
of T2D in the UKB (24); using this algo-
rithm, approximately one-third of partici-
pants were not assigned a phenotype
(low confidence of either the presence
or absence of T2D) and were excluded
from the analysis. We defined obesity
by enrollment BMI of $30 kg/m2.

Statistical Analysis
We performed the primary analysis among
individuals of European genetic ancestry
because of relatively small sample sizes of
non-European populations and the rela-
tively poor performance of polygenic scores
generated in populations of European ge-
netic ancestry when applied to other popu-
lations (25). We repeated all analyses in
exploratory subsets of African or Ameri-
can ancestry in MGBB and of African or
Central/South Asian Ancestry in UKB.

We used multivariable logistic regres-
sion models to examine the association

and interaction of genetic and socioeco-
nomic risk with T2D and obesity preva-
lence, adjusting for age, sex, self-reported
race/ethnicity, and the first 10 principal
components of genetic variation. We
presented ORs and 95% CI per SD change
in genetic or socioeconomic risk measures
and examined for multiplicative interac-
tions between risk factors. Demographic
characteristics, including age, sex, and
race/ethnicity, were recorded based on
self-report by the participant. Although all
analyses were stratified by genetic ances-
try, we adjusted analyses for self-reported
race/ethnicity to account for the unique
lived experience of the limited number of
individuals who identified as a different
race/ethnicity than predicted by their
genetic ancestry. Race/ethnicity categories
in MGBB included non-Hispanic White,
non-Hispanic Black, Hispanic, non-Hispanic
Asian, other, or missing; race/ethnicity
categories in UKB included White, African,
Caribbean, East Asian, South Asian, other,
multiethnic (including self-reported “mixed”
White and Black, White and Asian, and
White and other categories), or missing/
prefer not to answer (UKB field ID 21000).
Genetic principal components capture the
distribution of common genetic varia-
tion across a population (e.g., related to
local ethnic background or artifacts of
genotyping such as batch effects), and
adjustment for principal components is
recommended to control for these sources
of variability (26). We generated genetic
principal components using flashpca (27).

We evaluated additive interactions by
calculating the relative excess risk due
to interaction (28) and the attributable
proportions due to genetics, socioeco-
nomics, and the additive interactions of
both risk factors (29,30). We performed
mediation analysis using structural equa-
tion models (31) to examine the degree
to which the association between socio-
economic risk and T2D was mediated
through BMI (as socioeconomic risk is as-
sociated with higher BMI, which is asso-
ciated with higher T2D prevalence).

We performed several sensitivity analy-
ses, including 1) examining multivariable
models using individual-level, rather than
area-level, socioeconomic measures among
a limited sample who self-reported educa-
tional attainment; 2) using an ethnicity-
specific cutoff of enrollment BMI of
$27.5 kg/m2 (32) to define obesity among
individuals of Central/South Asian ancestry
in the UKB; and 3) examining continuous

BMI rather than binary obesity preva-
lence as an outcome.

All analyses were performed using R
version 4.0.0, including the forestplot (33),
ggplot2 (34), and epiR (35) packages.

RESULTS

Primary Analysis: MGBB-European
Ancestry Subset

Baseline Characteristics

Of the 33,745 individuals enrolled in the
MGBB for whom genotype data were avail-
able, 26,737 were of European ancestry
with complete socioeconomic informa-
tion (the MGBB-European ancestry sub-
set) (Supplementary Table 1 and Supple-
mentary Fig. 1). Mean age was 61.4 years,
14,123 (52.8%) were women, and 2,731
(10.2%) and 12,272 (45.9%) had T2D and
obesity, respectively (Table 1).

Associations of Genetic and Socioeconomic

RiskWith T2D and Obesity

Of the nine census tract–level socioeco-
nomic risk variables examined, the per-
cent of individuals in the census tract
without a college degree had the stron-
gest association with T2D and obesity
and was used as the primary census
tract–level socioeconomic measure subse-
quently (Fig. 1A and Supplementary Fig. 2A).

In multivariable models, genetic and
socioeconomic risk contributed indepen-
dently to the odds of both T2D (gePS OR
1.86, 95% CI 1.78–1.95; socioeconomic
risk OR 1.29, 95% CI 1.23–1.35) and obe-
sity (gePS OR 1.77, 95% CI 1.72–1.82;
socioeconomic risk OR 1.29, 95% CI
1.25–1.32) (Table 2 and Supplementary
Table 2).

People in the highest quintile of both
genetic and socioeconomic risk had a
more than eightfold increased preva-
lence of T2D (prevalence 3.1% [95% CI
2.8–3.5%] vs. 22.2% [95% CI 21.4–23.0%])
and a more than threefold increased prev-
alence of obesity (prevalence 20.9%
[95% CI 20.1–21.7%] vs. 69.0% [95% CI
68.1–69.9%]) compared with those in
the lowest risk quintiles (Supplementary
Tables 3 and 4). Increasing socioeconomic
risk was associated with higher disease
prevalence within each stratum of genetic
risk; for example, for individuals within the
highest quintile of genetic risk, T2D preva-
lence was �60% higher (22.2% [95% CI
21.4–23.0%] vs. 13.0% [95% CI 12.3–
13.7%]) and obesity prevalence was

e

29%
higher (69.0% [95% CI 68.1–69.9%] vs.
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53.6% [95% CI 52.6–54.6%]) in the high-
est vs. lowest socioeconomic risk quintiles
(Supplementary Tables 3 and 4 and
Fig. 2A).
We observed a significant positive in-

teraction between genetic and socio-
economic risk on the additive scale. For
example, moving from the lowest to
highest quintile of socioeconomic risk
was associated with an absolute in-
crease in T2D prevalence of 1.7%
among those in the lowest quintile of
genetic risk but 9.2% in the highest
quintile of genetic risk. In adjusted mod-
els, the proportions of excess T2D and
obesity prevalence attributable to this
interaction were 13.2% (95% CI 7.2–
19.2%; P = 5.8 × 10�4) and 16.7% (95%
CI 12.3–20.9%; P = 4.5 × 10�11), respec-
tively (Supplementary Table 5). There
was no evidence of multiplicative inter-
actions between genetic and socioeco-
nomic risk (P interaction = 0.77 for T2D,
0.76 for obesity).
Findings were consistent in sensitivity

analyses using self-reported (rather than
census tract–level) educational attainment
in a subset of participants who com-
pleted a biobank survey (n = 13,576,
50%) (Supplementary Table 6).
Lastly, in mediation analyses, BMI me-

diated 47.6% of the association between
socioeconomic risk and T2D (Supple-
mentary Table 7).

Replication Analysis: UKB-European Genetic

Ancestry Subset

The UKB-European ancestry subset
included 216,384 individuals (Supple-
mentary Table 1 and Supplementary
Fig. 1). Compared with the MGBB-Euro-
pean subset, the UKB-European subset
were younger and less likely to have ei-
ther diabetes or obesity (Table 1). Similar
to the MGBB analysis, an education-
related metric of socioeconomic risk, the
Education Deprivation Score, had the
strongest association with T2D and obe-
sity of the five area-level socioeconomic
variables examined and was used as the
primary socioeconomic risk measure (Fig.
1B and Supplementary Fig. 2B).

We again observed independent ef-
fects of the genetic and socioeconomic
risk as well as marked stratification of
T2D and obesity prevalence when com-
bining these factors, with approximately
20-fold differences in disease prevalence
between the lowest and highest combined
genetic and socioeconomic risk quintiles
(Fig. 2 and Supplementary Tables 8 and 9).

We also again observed significant
positive interactions on the additive
scale. In adjusted models, the propor-
tions of excess T2D and obesity preva-
lence attributable to this interaction
were 21.2% (95% CI 19.7–22.7%; P <
1.0 × 10�8) and 15.9% (95% CI 14.7–
17.2%; P < 1.0 × 10�8), respectively
(Supplementary Table 10). Additionally,

we observed weak negative multiplica-
tive interactions between genetic and
socioeconomic risk (T2D: OR 0.98, 95%
CI 0.97–1.00, P = 0.014; obesity: OR
0.98, 95% CI 0.96–0.98, P = 2.6 × 10�5)
(Table 2 and Supplementary Tables 5, 8,
and 9). These results indicate that in-
creasing socioeconomic risk among those
at high genetic risk compared with those
with low genetic risk is associated with
a greater absolute change in disease prev-
alence (positive additive interaction) but
diminished relative change in disease prev-
alence (negative multiplicative interaction).

Findings were consistent in sensitivity
analyses using self-reported (rather than
area-level) educational attainment in a
subset of participants who completed a bi-
obank survey (n = 181,253, 84%), although
multiplicative interactions were no longer
significant (Supplementary Table 11).

We again found that BMI mediated
approximately 40% of the association
between socioeconomic risk and T2D
(Supplementary Table 12).

Replication Analyses: Non-European

Genetic Ancestry Populations

Compared with the European ancestry
MGBB population, the MGBB partici-
pants of African (n = 1,614) and Ameri-
can (n = 1,854) ancestry were younger
and more likely to be women, had
higher rates of T2D and obesity, and
lived in areas of higher socioeconomic

Table 1—Population characteristics

MGBB: European
ancestry

(n = 27,164)

MGBB: African
ancestry

(n = 1,614)

MGBB: American
ancestry

(n = 1,854)

UKB: European
ancestry

(n = 216,384)

UKB: African
ancestry

(n = 3,204)

UKB: Central or
South Asian
ancestry

(n = 4,255)

Age, mean (SD) 61.4 (16.6) 54.2 (16.7) 48.4 (16.1) Age, mean (SD) 56.5 (8.1) 52.1 (8.2) 53.9 (8.6)

Female, n (%) 14,123 (52.8) 1,002 (62.1) 1,265 (68.2) Female, n (%) 114,750 (53.0) 1,829 (57.1) 1,894 (44.5)

Race/ethnicity, n (%) Race/ethnicity, n (%)

Non-Hispanic White 26,108 (97.6) 3 (0.2) 303 (16.3) White 214,967 (99.3) 10 (0.3) 112 (2.6)
Non-Hispanic Black 0 (0) 1,488 (92.2) 2 (0.1) Black 3 (<0.1) 1,182 (36.9) 9 (0.2)
Hispanic 1 (0) 0 (0) 816 (44.0) Caribbean 0 (0) 1,287 (40.2) 29 (0.7)
Asian 0 (0) 1 (0.1) 4 (0.2) East Asian 54 (<0.1) 0 (0) 522 (12.3)
Native American 22 (0.1) 4 (0.2) 14 (0.8) South Asian 4 (<0.1) 0 (0) 2,854 (67.1)
Other 80 (0.3) 67 (4.2) 632 (34.1) Other 461 (0.2) 290 (9.1) 336 (7.9)
Missing 526 (2.0) 51 (3.2) 83 (4.5) Mixed White-Black 21 (<0.1) 315 (9.8) 12 (0.3)

Mixed White-Asian 83 (<0.1) 0 (0) 216 (5.1)
Mixed White-other 175 (0.1) 52 (1.6) 82 (1.9)
Missing 616 (0.3) 68 (2.1) 83 (1.9)

T2D, n (%) 2,731 (10.2) 418 (25.9) 335 (18.1) T2D, n (%) 16,558 (7.7) 965 (30.1) 1,712 (40.2)

Obesity, n (%) 12,272 (45.9) 1,053 (65.3) 1,128 (60.8) Obesity, n (%) 46,355 (21.4) 1,198 (37.4) 952 (22.4)

Obesity (BMI $27.5%), n (%) 1,761 (41.4)
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deprivation (Supplementary Table 13 and
Supplementary Fig. 3).

As in the MGBB-European subset, dis-
ease prevalence increased with increasing
genetic and socioeconomic risk for T2D
and obesity among the MGBB-American
subset but only with increasing genetic
risk among the MGBB-African subset
(Supplementary Fig. 4). In multivariable
analyses, genetic and census tract–level
socioeconomic risk contributed indepen-
dently to metabolic disease risk among
those of American ancestry, whereas only
genetic risk was independently associated
with metabolic disease among those of

African ancestry (Supplementary Table 14).
There was no evidence of either multipli-
cative or additive interactions between ge-
netic and socioeconomic risk for either
disease in either subset (Supplementary
Tables 14 and 15).

In the UKB, participants of African an-
cestry (n = 3,204) and Central/South Asian
ancestry (n = 4,255) had higher rates
of T2D and obesity compared with people
of European ancestry and lived in areas of
higher socioeconomic deprivation (Supple-
mentary Table 16 and Supplementary Fig. 5).

As in the UKB-European subset, among
the UKB-African and UKB-Central/South

Asian subsets, disease prevalence in-
creased with increasing genetic and socio-
economic risk for both T2D and obesity
(Supplementary Fig. 6). Similarly, in multi-
variable analyses, genetic and socioeco-
nomic risk contributed independently to
the odds of metabolic disease (Supple-
mentary Table 17). We again observed a
significant, positive additive interaction
between genetic and socioeconomic risk
in relation to T2D in the UKB-Central/South
Asian subset (Supplementary Table 18),
but no significant multiplicative interac-
tions between genetic and socioeconomic
risk were observed for either subset. In

Figure 1—ORs of age, sex, and self-reported race/ethnicity-adjusted association between census tract–level socioeconomic measures in MGBB en-
rollees of European ancestry (A) and area-level socioeconomic measures in UKB enrollees of European ancestry (B). All ORs are reported per 1-SD
change of the variable. Educ, education; Eng, England; Employ, employment; FPL, federal poverty level; IMD, index of multiple deprivation; Inc, in-
come; SDI, social deprivation index; SVI, social vulnerability index; TDI, Townsend deprivation index.
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analyses examining an ancestry-specific
BMI cutoff (27.5 kg/m2) for the definition
of obesity in the UKB-Central/South Asian
subset (Supplementary Table 16 and
Supplementary Fig. 6), both genetic and
socioeconomic risk continued to be asso-
ciated with metabolic disease prevalence
(Supplementary Table 17).

CONCLUSIONS

In this study investigating the interplay
between genetic and socioeconomic risk
factors in relation to T2D and obesity, we
have quantified genetic and socioeco-
nomic risk associated with these condi-
tions as well as the combined effect of
these risk factors at a population level.

We found that the prevalence of T2D and
obesity more than tripled, from 3.1 to
22.2% and from 20.9 to 69.0%, respec-
tively, among individuals from the lowest
to the highest quintiles of combined ge-
netic and socioeconomic risk. When
holding genetic risk constant, favorable
socioeconomic risk was associated with up

Table 2—Multivariable models examining the association of genetic and area-level socioeconomic risk with T2D or obesity
among MGBB and UKB enrollees of European ancestry

Subset: MGBB-European
Genetic risk (respective gePS

[T2D, BMI], per SD)
Socioeconomic risk

(% < college, per SD) Genetic * socioeconomic risk

Outcome: T2D 1.863 (1.779, 1.952), P = 7.0 × 10�152 1.285 (1.227, 1.346), P = 4.0 × 10�26 1.007 (0.964, 1.051), P = 0.77
Outcome: Obesity 1.766 (1.718, 1.815), P = 2.0 × 10�16 1.285 (1.252, 1.32), P = 8.5 × 10�79 0.996 (0.969, 1.024), P = 0.76

Subset: UKB-European
Genetic risk (respective gePS

[T2D, BMI], per SD)
Socioeconomic risk

(education score, per SD) Genetic * socioeconomic risk

Outcome: T2D 2.318 (2.276, 2.361), P < 1 × 10�300 1.394 (1.372, 1.416), P < 1 × 10�300 0.981 (0.967, 0.996), P = 0.01
Outcome: Obesity 2.789 (2.752, 2.826), P < 1 × 10�300 1.267 (1.253, 1.282), P < 1 × 10�300 0.975 (0.963, 0.986), P = 2.6 × 10�5

Models were adjusted for age, sex, self-reported race/ethnicity, and first 10 principal components of genetic variation, including both genetic
and socioeconomic risk and a multiplicative interaction between genetic and socioeconomic risk in the model.

Figure 2—T2D and obesity prevalence by quintiles of genetic and socioeconomic risk in MGBB enrollees of European ancestry (A and B) and
UKB enrollees of European ancestry (C and D).
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to 50% lower disease prevalence, even
among those with the highest genetic
risk. We also demonstrated additive in-
teractions suggesting greater absolute
increases in disease prevalence with in-
creasing socioeconomic risk among those
who also have high genetic risk. These
findings were replicated in multiple in-
dependent populations, including indi-
viduals of different genetic ancestry,
suggesting that these associations may
be generalizable to other developed
nations, with implications for both pre-
cision medicine and public health.

Our primary analysis found that a
1-SD change in genetic or socioeconomic
risk is associated with approximately 80%
and 30% increased odds, respectively, of
both T2D and obesity. The strong contri-
bution of polygenic risk seen in our
results supports a growing role for incor-
porating genetic information into predictive
algorithms to identify high-risk individuals
(1,36). Further, an individual’s environment
and social determinants of health should
be considered when assessing their risk,
in addition to their clinical presentation.
The use of area-level measures of socio-
economic risk, which is a potentially mod-
ifiable factor, albeit requiring extensive
policy interventions and impacting health
slowly over generations in most contexts
(37), may allow for the identification of
high-risk communities that may benefit
from targeted interventions to improve dis-
ease identification and management (38).

Socioeconomic risk impacted the odds
of disease across the spectrum of genetic
risk, suggesting that efforts to improve so-
cioeconomic deprivation may benefit all
recipients, and public policy interventions
should not be neglected in any genetic
risk group. However, our results also dem-
onstrated positive interactions on the addi-
tive scale in both European ancestry
subsets. Among those with the highest
genetic risk, favorable socioeconomic risk
was associated with 9.2–12.6% and 15.5–
19.2% absolute reductions in T2D and
obesity prevalence, respectively. This sug-
gests that the absolute change in disease
prevalence, and thus the public health
impact, of socioeconomic deprivation may
be more marked in those at greater
genetic risk.

Prior studies have examined the rela-
tionship between genetic and socioeco-
nomic risk of metabolic disease, looking
at risk for increased BMI and T2D, in-
cluding within the UKB (5–7,39,40). Our

study moves this field forward by using
gePS to better capture polygenic risk
across the genome, evaluating multiple
socioeconomic risk factors, quantifying
the effects of genetic and socioeco-
nomic factors on T2D and obesity at
both the individual and population level,
and validating the relationship in two
data sets from populations in developed
nations and in non-European subsets,
which have been excluded from most
research in this field.

Regarding BMI, two prior studies ex-
amined the combined impact of genetic
and environmental factors (including both
socioeconomic and lifestyle factors) in
subsets of the UKB of European ances-
try. Each found positive multiplicative
interactions between polygenic scores
and Townsend Deprivation Index (5,39).
We observed a weakly significant nega-
tive multiplicative interaction between
genetic and socioeconomic risk on binary
obesity in our UKB-European subset repli-
cation analysis; however, we found a
positive interaction, consistent with prior
studies, in a sensitivity analysis using con-
tinuous BMI rather than binary obesity as
the outcome (Supplementary Table 19).
We believe the reversal of this interaction
may arise from dichotomization of BMI,
as interactions between genetic and so-
cioeconomic risk became progressively
more negative at higher BMI thresholds
(Supplementary Table 20). In other words,
the relative impact of socioeconomic risk
on BMI diminishes as genetic risk for high
BMI increases, so differences related to
socioeconomic status are seen mainly
among people who have normal or only
slightly elevated BMI; for example, exam-
ining a BMI cutoff of 30 will fail to detect
the impact of socioeconomic risk that
might be associated with a BMI increase
from 24 to 26 kg/m2 in an individual with
low genetic risk for obesity.

Regarding T2D, two prior studies evalu-
ated the effects of genetic and socioeco-
nomic factors in UKB. Both factors were
shown to improve the predictive value of
clinical scores for diabetes (6) and to in-
teract with one another, leading to decan-
alization, or more severe phenotypes, in
people at extreme socioeconomic risk (7).
Another recent study quantified the inter-
actions between polysocial, lifestyle, and
genetic risk scores on the incidence of
T2D in UKB participants (40); although
this study examined incident T2D and ex-
cluded participants with prevalent T2D, it

found results very similar to our study,
with 15% of new-onset cases attributable
to additive interactions between genetic and
socioeconomic risk factors. Each of these
studies examined interactions only in those
of European ancestry.

The strengths of our analysis include
large sample size and replication of re-
sults in a second data set in a country
with distinct socioeconomic strata and in
populations routinely underrepresented
in biomedical research. Limitations in-
clude an observational, cross-sectional
framework such that we are unable to
prove causality and attributable risk. Sec-
ond, both data sets have well-appreciated
selection bias, with the MGBB represent-
ing an older, more female, and less ra-
cially/ethnically diverse population with
higher health care utilization compared
with the general population served by
the hospital (8) and with the UKB repre-
senting an older, more female, less so-
cioeconomically deprived, and healthier
population compared with the general
population of the U.K. (41). Third, the
gePS for BMI used in this analysis was
derived from data in the UKB, which
may lead to an overestimation of the
effect of genetic risk of obesity in analy-
ses within this data set; this is not a con-
cern for MGBB subsets. Fourth, the use
of distinct definitions of socioeconomic
risk and disease phenotype in the two
data sets limits comparability, although
it increases external validity. Fifth, the
use of area-level proxies of socioeconomic
risk, rather than self-reported measures,
has limitations; however, validation anal-
yses in a subsample with self-reported
measures of socioeconomic risk demon-
strated a concordance between self-
reported and area-level measures of
socioeconomic risk and replicated the
results of our primary analysis (Supple-
mentary Tables 5 and 15 and Supple-
mentary Fig. 7). Finally, analyses in popu-
lations of non-European ancestry are
limited in several ways, including small
sample size and the limited predictive
value of gePS derived in European sub-
sets when applied to non-European sub-
sets (25); these analyses should be viewed
as exploratory.

In conclusion, this study demonstrates
that combined high genetic and area-level
socioeconomic risk is associated with
more than triple the prevalence of
T2D and obesity, with evidence of posi-
tive additive interactions between these
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factors in some populations. Further stud-
ies are needed to understand whether
interventions to improve socioeconomic
deprivation can decrease metabolic dis-
ease at the individual and community
levels, especially among those with con-
comitant high genetic risk.
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