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OBJECTIVE

To identify novel biomarkers of cardiovascular disease (CVD) risk in type 2 diabetes
(T2D) via a hypothesis-free global metabolomics study, while taking into account re-
nal function, an important confounder often overlooked in previous metabolomics
studies of CVD.

RESEARCH DESIGN AND METHODS

We conducted a global serummetabolomics analysis using theMetabolon platform in
a discovery set from the Joslin Kidney Study having a nested case-control design com-
prising 409 individuals with T2D. Logistic regression was applied to evaluate the associ-
ation between incident CVD events and each of the 671 metabolites detected by the
Metabolon platform, before and after adjustment for renal function and other CVD
risk factors. Significant metabolites were followed up with absolute quantification as-
says in a validation set from the Joslin Heart Study including 599 individuals with T2D
with andwithout clinical evidence of significant coronary heart disease (CHD).

RESULTS

In the discovery set, serum orotidine and 2-piperidinone were significantly associ-
ated with increased odds of incident CVD after adjustment for glomerular filtration
rate (GFR) (odds ratio [OR] per SD increment 1.94 [95% CI 1.39–2.72], P 5 0.0001,
and 1.62 [1.26–2.08], P5 0.0001, respectively). Orotidine was also associated with
increased odds of CHD in the validation set (OR 1.39 [1.11–1.75]), while 2-piperidi-
none did not replicate. Furthermore, orotidine, being inversely associated with
GFR, mediated 60% of the effects of declining renal function on CVD risk. Addition
of orotidine to established clinical predictors improved (P < 0.05) C statistics and
discrimination indices for CVD risk (DAUC 0.053, rIDI 0.48, NRI 0.42) compared
with the clinical predictors alone.

CONCLUSIONS

Through a robust metabolomics approach, with independent validation, we have
discovered serum orotidine as a novel biomarker of increased odds of CVD in
T2D, independent of renal function. Additionally, orotidine may be a biological
mediator of the increased CVD risk associated with poor kidney function and
may help improve CVD risk prediction in T2D.

Individuals with type 2 diabetes (T2D) have two- to four-fold higher risk of CVD
than the general population. Such increased cardiovascular (CV) risk is a major
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contributor to the high morbidity, mor-
tality, and socioeconomic burdens of
T2D (1–3). Currently known risk factors
such as age, sex, BMI, HbA1c, diabetes
duration, blood pressure, and lipids do
not fully explain the mechanism of in-
creased CV risk in T2D (4). Global me-
tabolomics studies, which examine
molecules that are more proximal to
the disease phenotypes than those in-
vestigated by other -omics, may poten-
tially enrich our systemic understanding
of the underlying etiopathogenesis of
CVD in patients with T2D and guide clin-
ical interventions for better prevention
and management of this complication
of diabetes (5).
Several studies have investigated the

association between metabolomics pro-
files and CV outcomes in the general pop-
ulation. However, few such studies have
been conducted in people with T2D, in
whom the glycemic milieu could present
with further altered metabolic profiles.
Furthermore, for the metabolites thus far
identified to be associated with CV in the
general population, including acetylcarni-
tines (6,7), amino acids (8,9), mono-
saccharides (10), biogenic amines (8),
glycerophospholipids (10), and sphin-
golipids (11), few studies have explored
how these effects may be confounded
by, or the expression of, reduced glomer-
ular filtration rate (GFR)—a well-known
powerful CV risk factor (12,13) increas-
ingly shown to have a potentially large
impact on the small molecules compris-
ing the metabolome, even within normal
ranges (14). T2D-specific studies (15,16)
have also overlooked this essential CV
risk factor. Additionally, many of the stud-
ies conducted to date have been limited
by small sample sizes; cross-sectional
study designs; targeted or narrow-cover-
age metabolomics panels; older, less sen-
sitive and specific assay technologies;
and lack of validation or replication of
findings.
We aimed to identify novel metabolic

pathways of CVD risk in T2D, taking into
account their relationship with kidney
function, through global serum metabo-
lomics in a well-powered discovery set
consisting of a nested case-control study
of individuals with T2D with and without
incident CVD events selected from a co-
hort with sufficient follow-up. Top find-
ings in the discovery set were evaluated
in a validation set using targeted absolute
quantification assays.

RESEARCH DESIGN AND METHODS

Study Populations

Discovery Set: The Joslin Kidney Study

The Joslin Kidney Study (JKS) is a longi-
tudinal observational study of the natu-
ral history of declining renal function in
type 1 diabetes and T2D. Participants in
the T2D portion of the JKS (n = 1,476)
were recruited between 2003 and 2009
from among patients attending the Joslin
Clinic aged 35–64 years old, with T2D di-
agnosed after 30 years of age according
to standard clinical criteria (17,18). By
design, 50% of participants recruited into
the study had normoalbuminuria and
50% had albuminuria. Study protocol and
informed consent procedures were ap-
proved by the Joslin Diabetes Center
Committee on Human Studies (JDC-CHS).

Outcome Assessment and Study Design.

Between 2012 and 2013, 1,178 partici-
pants were interviewed for assessment of
CV history at enrollment and nonfatal CV
events that occurred during follow-up,
which were verified through careful review
of each individual’s medical record. Self-
reported CV outcomes have previously
been shown to have strong agreement
with actual events reported in medical
data (19–21). Additionally, the National
Death Index database (22) was queried to
identify individuals who had died as of the
end of 2015. CV deaths were defined on
the basis of ICD-9 codes 401–448.9 or
ICD-10 codes I10–I74.9 or if CVD was listed
as the secondary cause of death and dia-
betes or renal failure listed as the primary
cause. Those participants who had base-
line Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) serum creatinine–
derived estimated GFR (SCre-eGFR) values
between 30 and 120 mL/min/1.73 m2

served as the discovery set for the current
nested case-control study (n = 409). Case
subjects (n = 115) included participants
who experienced fatal or nonfatal CV
events during follow-up, including CV
death, myocardial infarction (MI), percuta-
neous transluminal coronary angioplasty
(PTCA), coronary artery bypass grafting
(CABG), or stroke. Control subjects (n =
294) were a random sample of those par-
ticipants who did not experience CV
events during follow-up, group matched to
case subjects by sex, baseline SCre-eGFR
(>60 vs. #60 mL/min/1.73 m2), length of
blood sample storage (<10 vs.$10 years),
and HbA1c (<8 vs. $8%). Baseline CVD

was defined based on history of any nonfa-
tal CV events (MI, PTCA, CABG, or stroke)
before study entry.

Validation Set: The Joslin Heart Study

The Joslin Heart Study (JHS) comprises
non-Hispanic Whites who attended the
Joslin Clinic and/or the Beth Israel Dea-
coness Medical Center (BIDMC) between
2001 and 2014. All participants had T2D,
defined as diabetes diagnosed after age
30 years according to ADA criteria and
not requiring insulin treatment for at
least 2 years after diagnosis (23,24). The
JDC-CHS and the BIDMC Committee on
Clinical Investigations approved the study
protocol, and all subjects gave written in-
formed consent. Detailed inclusion crite-
ria and the clinical characteristics of
participants recruited up to 2006 have
previously been described (23,24).

Outcomes Assessment and Study Design.

The JHS was a cross-sectional, unmatched
case-control study. Case subjects were a
random sample of individuals with T2D
and coronary heart disease, defined as
angiographically documented stenosis
>50% in a major coronary artery that
was documented by cardiac catheteriza-
tion at BIDMC between 2001 and 2014.
Control subjects were randomly selected
from among Joslin patients between
2001 and 2014 as fulfilling the following
additional criteria: 1) age between 55 and
74 years, 2) T2D for $5 years, 3) negative
CVD history (i.e., normal resting electro-
cardiogram, absence of cardiac symp-
toms, and no hospitalization for CV
events), and 4) normal response to an ex-
ercise treadmill screening test performed
within 6 months prior to study enroll-
ment. A total of 740 case and 766 control
subjects are currently included in the JHS;
among these, 300 CHD case and 299 con-
trol subjects were randomly selected as
the validation set for the current study.

Biochemical Analyses
Serum and urine samples were obtained
at baseline during the participants’ clinic
visits, without the requirement of being
in a fasting state, and were subsequently
stored at �80�C.

Assessment of Renal Function

Serum Creatinine and Cystatin C. For the
discovery set, baseline serum creatinine
concentrations were measured at the Ad-
vanced Research and Diagnostic Laboratory,
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University of Minnesota, MN, with Roche
assays, and for the validation set, they
were assayed at the Joslin Diabetes Center
clinical laboratory with use of modified Jaffe
picrate methods (Supplementary Material).
Baseline serum cystatin C concentrations
were measured in the discovery and vali-
dation sets at the Advanced Research and
Diagnostic Laboratory in 2017–2018 and
2019–2020, respectively, with Gentian cys-
tatin C immunoassay (Gentian AS, Moss,
Norway) on the Roche analyzer (Roche
Diagnostics, Indianapolis, IN) (25). The
CKD-EPI formulas (26) were used to esti-
mate SCre-eGFR and serum cystatin C–
derived estimated GFR (SCys-eGFR) for
both study populations.

accuGFR. In a randomly selected subset
of 225 individuals (112 control and 113
case subjects) of the discovery set, ac-
cuGFR (Metabolon, Durham, NC) was esti-
mated from an equation based on a panel
of four novel metabolites, including pseu-
douridine, acetylthreonine, phenylacethyl-
glutamine, and tryptophan, which were
quantitatively measured in baseline serum
samples with ultrahigh-performance liquid
chromatography–tandem mass spectrome-
try methods as previously described (27).
This accuGFR algorithm does not include
creatinine, cystatin C, or demographic vari-
ables and has been shown to have a great
degree of accuracy in assessing glomerular
filtration as demonstrated by a high con-
cordance with measured GFR (27).

Urinary Albumin-to-Creatinine Ratio. In
both the discovery and validation sets,
baseline albumin-to-creatinine ratios (ACRs)
were assessed in urine as previously de-
scribed (28,29). Albumin concentrations
were measured via immunonephelometry
at the Joslin clinical laboratory, and creati-
nine was measured with the modified
Jaffe picrate method (Supplementary
Material). Normoalbuminuria (ACR<30
mg/g), microalbuminuria (ACR 30–300
mg/g), and macroalbuminuria (ACR >300
mg/g) were determined with the geomet-
ric mean ACR for the preceding 2-year in-
terval of the baseline exam for each
patient.

Global Metabolomics Profiling

Global biochemical profiles were deter-
mined by Metabolon in 409 human se-
rum samples of the discovery set with
use of their proprietary platform, which
uses gas and liquid chromatography–

mass spectrometry in positive and nega-
tive modes (30). Briefly, samples were
maintained at �80�C until processed
and then run with quality control sam-
ples as per Metabolon standards. Instru-
ment (4%) and process (8%) variability
met Metabolon’s acceptance criteria.
Raw data extraction, peak identification,
and quality control processing then took
place. A total of 903 metabolic com-
pounds were identified. Values were
normalized in terms of raw area counts
and then volume normalized. Each bio-
chemical was then rescaled to set the
median equal to 1, and missing values
were imputed with the minimum.

Targeted Assays

For validation of methods and replica-
tion of findings from the global metabo-
lomics study of the discovery set (JKS),
targeted quantitative assays for the top
metabolites, orotidine and 2-piperidi-
none, were developed at the Molecular
Phenotyping Core at the University of
Michigan. Serum samples from the vali-
dation set (JHS) (n = 599) as well as 20
replicates from the discovery set (JKS)
were assayed for these two metabolites
via UHPLC-MS/MS experiments performed
on an Agilent system (Agilent Technolo-
gies, Santa Clara, CA) (Supplementary
Material).

Statistical Methods
All statistical analyses were performed in
SAS, version 9.4 (SAS Institute, Cary, NC),
or R, version 3.6.1 (R Foundation, Vienna,
Austria). Clinical characteristics of case
and control subjects in both the discovery
(n = 409) and validation (n = 599) sets are
presented with means ± SD or median
(interquartile range) for continuous varia-
bles and frequencies (%) for categorical
variables, and differences were tested
with two-sample independent t tests or
x2 tests as appropriate. Nonparametric
variables were assessed with Kruskal-Wal-
lis tests. Correlations between accuGFR
and SCre-eGFR/SCys-eGFR in case and
control subjects were examined by gener-
alized linear regression models.

Global Metabolomics Analysis

In the discovery set (n = 409), 903 serum
metabolites were measured in the Metab-
olon platform panel. For the 232 of these
metabolites with >20% sample missing-
ness, differences in nondetectability rates

between case and control subjects were
examined with x2 tests. The remaining
671 that were detectable in at least 80%
of the samples were used for subsequent
metabolomics analyses. Volume-normal-
ized median-scaled metabolites were
transformed into ranked z scores. In a
global metabolomics analysis, these stan-
dardized metabolites were independent-
ly evaluated as predictors of CVD
outcomes in multivariable conditional lo-
gistic regression models, initially only ac-
counting for the matching strata (sex,
baseline SCre-eGFR (>60 vs #60 mL/
min/1.73 m2), length of blood sample
storage (<10 vs. $10 years), and HbA1c
(<8 vs. $8%)) only (model 1) and then
with further adjustments by baseline
SCre-eGFR (model 2), followed by re-
peating the analysis with inclusion of
baseline SCys-eGFR instead of SCre-eGFR
as a confounder (model 3). The associa-
tion of each metabolite with CVD was
expressed as the odds ratio (OR) per 1
SD difference. Benjamin-Hochberg false
discovery rate (31) corrections for multi-
ple testing were applied and q values <
0.05 considered significant.

Metabolites with q values <0.05 in the
SCys-eGFR–adjusted analysis were further
tested in models with adjustment for
metabolic parameters (BMI, triglycerides,
HDL cholesterol [HDL-C], HbA1c, and ACR),
medication use (diuretics, b-blockers, calci-
um channel antagonists, renin-angiotensin
system blockers [RASBs], statins, nitrates),
history of prior CVD, race, and smoking
status (model 4). For model 4, a Bonferro-
ni cutoff of P < 0.01 was used to deter-
mine significance, accounting for the four
analytes for which the full adjustments
were applied. While q value cutoff points
were used for metabolite selection from
models 1–3, and Bonferroni corrections
used for model 4, statistical significance in
other analyses was interpreted according
to a common cutoff point of 0.05 for P
values.

A flowchart for the metabolomics anal-
ysis is provided in Supplementary Fig. 1.

Power

Given our sample size of 409 individuals,
with 28% CVD events, we had 80% pow-
er to detect ORs of 1.39, 1.64, and 1.76
for the effects on CVD per SD increase in
metabolite, at a-errors of 0.05, 0.001,
and 0.0001, respectively.
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Validation Analyses of Orotidine and 2-

Piperidinone

Orotidine and 2-piperidinone levels quanti-
fied via targeted assays (developed at the
University of Michigan) were transformed
into ranked z scores, and these standard-
ized metabolites were used for further
analyses. In the discovery set replicates
(n = 20), correlations of measurements ob-
tained from these assays were examined
with their counterparts in the Metabolon
platform panel. In the validation set (n =
599), these assayed metabolites were ex-
amined for associations with CHD using
multivariable logistic regression models
with the analytical approach described
above.

Mediation Analysis

A mediation analysis was performed to
evaluate the potential of orotidine as a
mediator of the effects of low GFR on
increased odds of CVD in the discovery
set or CHD in the validation set. The
first step in this analysis was to obtain
the effect estimate (observed b [bobs])
from the conditional logistic regression
model testing baseline SCys-eGFR as a
predictor of incident CVD events in the
discovery set, accounting for matching
strata (sex, sample storage time, SCre-
eGFR, HbA1c) and with adjustment for
the full model covariates including met-
abolic markers (BMI, lipids, ACR), race,
smoking status, and medications. The
second step was to obtain the effect es-
timate (b1) of SCys-eGFR as a predictor
of orotidine in a linear regression model
with adjustment for sex, storage time,
full model covariates, and case-control
status. In the third step, the effect (b2)
of orotidine on CVD (or CHD) was ob-
tained from a conditional logistic regres-
sion model, accounting for strata derived
from group matching as mentioned
above, as well as with adjustment for full
model covariates and SCys-eGFR. The ex-
pected b (bexp) was derived from the
product of b1 and b2. Finally, % media-
tion was calculated by dividing the ex-
pected b by the observed (bexp / bobs).

Prediction of Incident CVD

Improvement in risk prediction of incident
CVD in the discovery set was assessed by
logistic regression models with methods
developed by Kennedy and Pencina (32).
The performance of the following three
models were compared: model A, includ-
ing orotidine alone; model B, of standard

clinical predictors of CVD, including the
American College of Cardiology/American
Heart Association atherosclerotic CVD
(ASCVD) risk estimator, prior history of
CVD, BMI, and SCys-eGFR; and model C,
comprising orotidine plus clinical predic-
tors in model B. By plotting of sensitivity
against (1 � specificity) for all possible
thresholds, receiver operating characteris-
tic (ROC) curves were formed for the
three models, and area under the ROC
curve (AUC), or C statistic, was computed.
The relative integrated discrimination im-
provement (rIDI) (33) and the category-
free net reclassification index (NRI) (33)
were also estimated.

RESULTS

Clinical Characteristics of the
Discovery Cohort
We conducted a nested case-control study
from a cohort of Joslin Diabetes Center pa-
tients with T2D who were followed for a
median of 7.4 years (range 4.9–9.0). In-
cluded were 115 incident case subjects
with a major CV event during follow-up
and 294 control subjects without such an
event. Clinical characteristics at baseline
are shown in Table 1. Mean ± SD age was
57.7 ± 5.4 years for case and 58.0 ± 5.6
years for control subjects, with durations
of diabetes of 15.2 ± 8.2 and 14.4 ± 7.8
years, respectively. Women comprised
30% of case and 35% of control subjects.
Case subjects had significantly higher BMI
and triglycerides and lower HDL-C and
more frequently had a history of CVD
compared with control subjects, whereas
HbA1c, systolic and diastolic blood pres-
sures, and smoking history were similar in
the two groups. SCre-eGFR did not signifi-
cantly differ between case and control
subjects (71.0 ± 21.4 vs. 74.5 ± 20.0
mL/min/1.73 m2, respectively), consistent
with the matching of the two study groups
by this variable. However, SCys-eGFR was
significantly lower in case than in control
subjects (65.8 ± 28.3 vs. 77.4 ± 25.4 mL/
min/1.73 m2, P < 0.0001). A similar dif-
ference in baseline GFR was also ob-
served with GFR estimates obtained
with a third method (accuGFR) in a sub-
set of study subjects (Supplementary
Table 1 and Supplementary Fig. 2). Case
subjects also had a significantly higher
prevalence of microalbuminuria (48.7
vs. 34.7%) and macroalbuminuria
(19.1 vs. 7.5%) and higher baseline
use of antihypertensive medications,

including RASBs, calcium channel block-
ers, b-blockers, and diuretics, as well as
aspirin, allopurinol, nitrates, and statins
(Table 1).

Global Metabolomics Analysis of CVD
in T2D
Of the 903 metabolites detected in at
least one sample in the discovery cohort,
232 were undetectable in >20% of sam-
ples. Of these, 28 had significantly differ-
ent (P < 0.05) nondetectability rates
between case and control subjects, with
the majority more frequently undetect-
able in control subjects (Supplementary
Table 2). These were mostly metabolites
related to drugs such as atorvastatin,
metoprolol, and diuretics. Only five me-
tabolites were more frequently unde-
tectable in case than in control subjects,
including a-CEHC (carboxyethylhydroxy-
chroman) sulfate (tocopherol metabo-
lism), guanosine (purine metabolism),
paroxetine (selective serotonin reup-
take inhibitor antidepressant), glyco-
hyocholate, and tauro-b-muricholate
(bile acid metabolism) (Supplementary
Table 2).

The 671 metabolites that were de-
tectable in $80% of samples were in-
cluded in the global metabolomics
analysis. Of these, 50% were lipid analy-
tes, 23% were amino acids, and 11%
were xenobiotics; the remaining were
peptides, nucleotides, energy metabo-
lites, carbohydrates, and cofactors and
vitamins (Supplementary Fig. 3A). In an
initial conditional logistic regression
analysis accounting only for the match-
ing strata (model 1), 72 metabolites at-
tained a q value <0.05 for association
with CV events (Fig. 1A). Of these, 25%
were lipids, 39% amino acids and their
modified derivatives, 14% nucleotides,
and 11% xenobiotics (Supplementary Fig.
3B). Many of these metabolites exhibited
a high degree of mutual correlation
(Supplementary Fig. 4). A majority of the
modified derivatives of amino acids asso-
ciated with CVD were uremic solutes
(34,35), suggesting a possible confound-
ing effect of differences in kidney func-
tion between case and control subjects
(Supplementary Table 3). After further
adjustment of the primary model for
baseline SCre-eGFR (model 2), 48 metab-
olites remained significant (q value
<0.05) (Fig. 1B). When this analysis was
repeated with adjustment for SCys-eGFR
rather than SCre-eGFR (model 3), four
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Table 1—Baseline clinical characteristics of case and control subjects in the discovery set

Control subjects (N = 294) Case subjects (N = 115) P

Female* 104 (35.4) 35 (30.4) 0.34

Age (years) 58.0 ± 5.6 57.7 ± 5.4 0.64

Age at diagnosis (years) 43.6 ± 8.5 42.4 ± 8.8 0.20

Diabetes duration (years) 14.4 ± 7.8 15.2 ± 8.2 0.38

Sample storage time (years) 10.7 ± 2.2 11.2 ± 2.2 0.05

BMI (kg/m2) 31.2 ± 6.8 34.0 ± 7.4 0.0003

HbA1c (%) 8.1 ± 1.4 8.2 ± 1.8 0.48

HbA1c (mmol/mol) 65 ± 15 66 ± 20 0.48

Systolic BP (mmHg) 133.6 ± 17.3 135.1 ± 19.9 0.47

Diastolic BP (mmHg) 75.8 ± 10.8 74.9 ± 10.1 0.46

Cholesterol (mg/dL) 175.7 ± 38.9 180.0 ± 42.2 0.33

Triglycerides (mg/dL)# 127.5 (82.5–210.5) 160.0 (105.0–253.0) 0.007

HDL-C (mg/dL) 48.1 ± 16.9 42.4 ± 11.8 0.001

SCre-eGFR (mL/min/1.73 m2) 74.5 ± 20.0 71.0 ± 21.4 0.12

SCys-eGFR (mL/min/1.73 m2) 77.4 ± 25.4 65.8 ± 28.3 <0.0001

Prior CVD* 46 (16.1) 30 (38.5) <0.0001

Urinary ACR (mg/g)# 14.6 (7.9–48.6) 60.0 (14.7–165.0) <0.0001

Urinary ACR category <0.0001

Normoalbuminuria 170 (57.8) 37 (32.2)
Microalbuminuria 102 (34.7) 56 (48.7)
Macroalbuminuria 22 (7.5) 22 (19.1)

Diabetes treatment* 0.39

Diet alone 10 (3.5) 1 (0.9)
Oral medication 78 (27.5) 34 (31.2)
Oral medication 1 insulin 74 (26.1) 32 (29.4)
Insulin 122 (42.9) 42 (38.5)

Smoking* 0.43

Present 23 (8.2) 10 (9.3)
Former 134 (47.5) 58 (53.7)
Never 125 (44.3) 40 (37.0)

RASB* 195 (69.2) 90 (82.6) 0.007

Calcium channel blockers 40 (13.6) 34 (29.6) 0.0002

b-Blockers 78 (26.5) 48 (41.7) 0.003

a-Blockers* 11 (3.7) 6 (5.2) 0.50

Diuretics* 18 (6.4) 18 (16.5) 0.002

Statins* 180 (61.2) 82 (71.3) 0.06

Thiazolidinediones* 44 (15.0) 19 (16.5) 0.70

Nitrates* 13 (4.4) 12 (10.4) 0.03

Aspirin* 183 (62.2) 82 (71.3) 0.08

Allopurinol* 3 (1.0) 9 (7.8) 0.0002

Race* 0.71

White 235 (83.3) 86 (79.6)
Black 24 (8.5) 13 (12.0)
Asian 10 (3.5) 3 (2.8)
Native American 1 (0.4) 1 (0.9)
Latino 10 (3.6) 3 (2.8)
Other 2 (0.7) 2 (1.9)

Data are means ± SD or median (interquartile range) for continuous variables and n (%) for categorical variables (*). Two-sample independent
t test P values for difference in means between case and control subjects are presented for continuous variables and x2 probabilities for cate-
gorical variables. BP, blood pressure. #Kruskal-Wallis P values for nonparametric variables.
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metabolites reached a q value of 0.05.
(Fig. 1C). For two of these (orotidine and
2-piperidinone), the odds of having CVD
events increased for each 1-SD increment
by 1.94-fold (95% CI 1.39–2.72, P =
0.0001) and 1.62-fold (1.26–2.08, P =
0.0001), respectively (Fig. 1D). The other
two metabolites that attained a q value
<0.05 in the SCys-eGFR–adjusted analysis
(glycerophosphoinositol and tartronate)
were both associated with 38% decreased
odds of CVD (Fig. 1D). Orotidine and 2-pi-
peridinone remained significant (P < 0.01,
with Bonferroni threshold for four tests)
after further adjustments for baseline
metabolic parameters (BMI, triglycerides,
HDL-C, HbA1c, and ACR), medication use
(diuretics, b-blockers, calcium channel an-
tagonists, RASBs, statins, nitrates), history

of prior CVD, race, and smoking status
(model 4) (Fig. 1D). By contrast, the
P values for glycerophosphoinositol and
tartronate in the fully adjusted model
(model 4) were >0.01. In the subset
(n = 225) having accuGFR measurements,
all four metabolites remained robust to
adjustments with accuGFR (data not
shown). Orotidine was also further ex-
amined for association with compo-
nents of the composite CVD end point.
It was significantly (P < 0.05) associated
with CV death, nonfatal MI, and PTCA but
not with CABG (P = 0.1) or stroke (P = 0.2)
after SCys-eGFR adjustment (Supplementary
Table 4). Additionally, in a sensitivity analyses
with exclusion of patients with CVD at base-
line, orotidine was still significantly associat-
ed with CVD events (Supplementary Table

5). The association seemed to be weak-
er among participants with CVD at
baseline. However, the P value for CVD
history × orotidine interaction was not
significant for models 1–3 and only
marginally significant for model 4 (Sup-
plementary Table 5).

Included in the 671 metabolites that
were detectable in 80% of the samples
were 38 metabolites that had previously
been found to be associated with CV risk
in the general population (6–11,15,16).
Five of these were associated with in-
creased CV odds in our discovery set at
q < 0.05. However, none attained q <
0.05 after adjustment for SCys-eGFR and
only three—stearoylcarnitine acetylcarnitine
and palmitoylcarnitine—remained nominally
significant (P < 0.05) (Supplementary
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Figure 1—Global metabolomics screen for CVD risk in T2D in the discovery set. Volcano plots showing results of global metabolomics study using
conditional logistic regression models to test effects of 1-SD increases in each metabolite on incident CVD risk. A: Model conditioned on the match-
ing strata (sex, baseline SCre-eGFR, sample storage time, and HbA1c) (model 1). B: Model 1 plus SCre-eGFR adjustments (model 2). C: Model 1 plus
SCys-eGFR adjustments (model 3). D: Forest plot showing effects of top four metabolites on CVD. ORs and 95% CIs presented for effects of each of
the four metabolites on CVD risk in various models. In model 4, the metabolic markers include baseline BMI, HbA1c, ACR, HDL-c, and triglycerides.
Medications include diuretics, nitrates, b-blockers, calcium channel antagonists, statins, ACE inhibitors, and angiotensin receptor blockers. Other
covariates include baseline CVD, race, and smoking status. A Bonferroni cutoff of P < 0.01 for four tests was used to determine significance for
model 4. meds, medications.
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Table 6). In this latter analysis, for each
1-SD increase in stearoylcarnitine, acetyl-
carnitine, and palmitoylcarnitine levels,
the odds of having CVD events increased
by 1.44-fold (95% CI 1.13–1.84, P =
0.003), 1.35-fold (1.03–1.75, P = 0.03),
and 1.38-fold (1.08–1.76, P = 0.01),
respectively.

Validation of Top Metabolites in the
JHS
Quantitative measurements of orotidine
and 2-piperidinone developed specifically
for this study were highly correlated with
those from the Metabolon platform (R2 =
0.84 for orotidine and R2 = 0.72 for 2-pi-
peridinone in 20 replicates from the dis-
covery cohort [Supplementary Fig. 5]).
These assays were used to evaluate the
association between these two metabo-
lites and CHD in a validation set from the
JHS, including 300 CHD-positive case sub-
jects (defined on the basis of angiographic
evidence of significant coronary stenosis)
and 299 CHD-negative control subjects
(defined on the basis of a negative CVD
history and a normal exercise treadmill
test), all with T2D (Supplementary Table
7). Among these subjects, orotidine
showed a significant association with
CHD, with OR of 1.54 (95% CI 1.28–
1.86, P < 0.0001) for model 1 and ORs
of 1.53 (1.23–1.89, P = 0.0001) and 1.39
(1.11–1.75, P = 0.005) in the SCre-eGFR–
adjusted (model 2) and SCys-eGFR–adjust-
ed (model 3) analyses, respectively
(Supplementary Table 8). Orotidine was
still associated with a 1.32-fold increase
(1.02–1.71) in the odds of CHD (P =
0.036) on adjustment for blood pressure,
age, triglycerides, HDL-C, smoking status,
and diabetes treatment history on top of

sex, SCys-eGFR, and storage time. By con-
trast, 2-piperidinone was not significantly
associated with CHD in the validation set
regardless of adjustment for estimated
GFR (Supplementary Table 8). However,
there was a significant trend observed
(P = 0.027) per quartile increase in 2-pi-
peridinone levels in sex- and storage
time–adjusted models and nominally sig-
nificant trends (P = 0.054) observed after
SCys-eGFR adjustments.

Orotidine as a Mediator of the
Increased CVD Associated With
Lower GFR
Consistent with the well-known inverse
association between kidney function and
CV risk (12,13), in full model–adjusted
conditional logistic regression analyses,
lower baseline SCys-eGFR values were
associated with higher incident CVD in
the discovery set (bobs = �0.0194 ±
0.008, P = 0.01, equivalent to a 1.9% in-
crease [95% CI 0.4–3.5] in CVD odds
per 1 mL/min/1.73 m2 decrease in SCys-
GFR). At the same time, lower SCys-
eGFR levels were associated with in-
creased orotidine levels (b1 = �0.0208 ±
0.0017, P < 0.0001 [Fig. 2A]), and, as de-
scribed above, for any given value of
GFR, increased orotidine levels were as-
sociated with increased CVD odds in the
fully adjusted model (b2 = 0.5603 ± 0.20,
P = 0.05). Thus, a mediation analysis was
performed to examine whether and to
what extent the increase in serum oroti-
dine levels associated with reduced kid-
ney function mediated the association
between low SCys-GFR and increased
CVD odds (Fig. 2B). The expected b (b1 ×
b2) for the association between SCys-
GFR and CVD, if this was entirely

mediated through orotidine, was estimat-
ed as �0.0116. Thus, as shown in Fig. 2,
orotidine could be estimated to mediate
59.95% (�0.0116/�0.0194 × 100) of the
effect of SCys-eGFR on CVD odds. The
corresponding calculation in the vali-
dation set using fully adjusted models
yielded an estimate of 66.7% of the
effect of SCys-eGFR on CHD odds
(bexp/bobs 5 [(�0.0241 × 0.2727)/
�0.0099 × 100]) being mediated by
the increase in orotidine associated with
reduced kidney function. Consistent with
these results, in both the discovery and
validation sets, the bobs effects of SCys-
GFR on CVD/CHD odds became nonsignif-
icant with adjustment for orotidine levels.

Orotidine Improves Risk Prediction
of Incident CVD
In prediction models of incident CVD in
the discovery set, the AUC for model A
(orotidine only) was 0.71, as compared
with 0.70 for model B (traditional clini-
cal predictors). In model C, addition of
orotidine to the clinical predictors (mod-
el B) significantly improved the AUC
(DAUC 10.053 [SE 0.026], P = 0.04)
(Fig. 3). There was also a significant
improvement in the rIDI (10.481 [SE
0.016], P = 0.03) and NRI (0.424 [SE
0.136], P = 0.02), with 15% of events
and 27% of nonevents correctly reclassi-
fied with model C compared with model
B. All models were adequately calibrat-
ed as per the Hosmer-Lemeshow good-
ness-of-fit test.

CONCLUSIONS

As the T2D epidemic expands globally,
and its associated CVD complications
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Figure 2—A: Correlation between orotidine and SCys-eGFR in the discovery set. Scatter plots and R2 coefficient of variation presented for orotidine
and SCys-eGFR correlations among CVD case (red) and control (blue) subjects. B: Mediation analysis for estimating how much of the effect of
SCys-eGFR on CVD is mediated by orotidine in the discovery set.

1888 Orotidine Increases CVD Risk in T2D Diabetes Care Volume 45, August 2022

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/45/8/1882/686502/dc211789.pdf by guest on 10 April 2024

https://doi.org/10.2337/figshare.19747399
https://doi.org/10.2337/figshare.19747399
https://doi.org/10.2337/figshare.19747399
https://doi.org/10.2337/figshare.19747399
https://doi.org/10.2337/figshare.19747399
https://doi.org/10.2337/figshare.19747399


contribute to its large health care and
socioeconomic burdens, there is an ur-
gent need to gain deeper insights into
the pathophysiology of CVD in T2D to
better predict and prevent these com-
plications. To this end, we conducted a
global metabolomics analysis of incident
CVD risk in 409 individuals with T2D, us-
ing a nested case-control study design,
and validated top signals in an indepen-
dent data set using absolute quantifica-
tion methods. Through this approach,
we have identified serum orotidine as a
novel, validated biomarker of increased
CV risk in T2D.
One striking finding of our study was

the profound confounding effect of kidney
function. Indeed, the majority of the 72
significant metabolites in the primary
eGFR-unadjusted metabolomics analysis in
the discovery set were uremic solutes
(34,35) (Supplementary Table 3), and
most of these remained significant even
after adjustment for SCre-eGFR, suggest-
ing existence of residual confounding of
renal function. Most of these associations
disappeared after adjustment for SCys-
eGFR—a more precise estimate of GFR in
this data set as demonstrated by its stron-
ger correlations with accuGFR in a subset
of participants. As seen in Table 1 for the
discovery set there was no significant dif-
ference in SCre-eGFR levels among case
and control subjects, due to matching of
control subjects to case subjects by this

variable, while SCys-eGFR was significantly
lower in case than in control subjects, as
one would expect given the known associ-
ation between decreased kidney function
and CV risk. Nonetheless, after SCys-eGFR
adjustment, four metabolites—orotidine,
2-piperidinone, glycerophosphoinositol, and
tartronate—remained associated with in-
creased CVD odds in the discovery me-
tabolomics analysis (Fig. 1C). Of these,
orotidine and 2-piperidinone remained
significantly associated with CVD in a
fully adjusted model (Fig. 1D), and of
these two, orotidine was further asso-
ciated with CHD in an independent
validation set with use of absolute
quantification assays.

Orotidine—a nucleoside consisting of
orotic acid attached to a ribose ring—is
derived from the dephosphorylation of
orotidine-5-phosphate (OMP), an inter-
mediate in the synthesis of pyrimidine
nucleotides (36). Serum and urine levels
of orotidine are increased in hereditary
orotic aciduria (37,38), a rare autosomal
recessive disorder resulting from loss
of activity of uridine monophosphate
(UMP) synthase (the enzyme catalyzing
the last two steps of the pyrimidine nu-
cleotide de novo synthetic pathway)
and characterized by failure to thrive,
developmental delay, and megaloblastic
anemia. More commonly, increased se-
rum levels of orotidine are found in
people with reduced kidney function

(39,40), orotidine being one of the ure-
mic solutes that are retained in the cir-
culation when glomerular filtration is
impaired. Several studies have implicat-
ed uremic solutes in the link between
chronic kidney disease and increased
CVD risk (41). However, whether these
metabolites play a causal role in this
link or are just an epiphenomenon of
impaired kidney function has been chal-
lenging to address in epidemiological
studies due to the high collinearity be-
tween their serum concentrations and
GFR. Our finding of serum orotidine be-
ing the only uremic solute that re-
mained associated with CVD after
adjustment for GFR points to this mole-
cule as a prime candidate for being a
causal mediator of the link between
CKD and CVD/CHD among people with
T2D. Indeed, mediation analyses indicat-
ed that orotidine mediated almost 60%
of the effect of SCys-eGFR on incident
CVD events in the discovery set and
67% of the association between SCys-
eGFR and prevalent CHD in the valida-
tion set.

The biological mechanisms linking oro-
tidine to CV risk are unclear at this time.
A study on the impact of uremic toxins
on spermatozoa mobility included oroti-
dine, but this was not among the mole-
cules having the strongest impact (42).
Studies have shown that accumulation of
orotate (orotic acid) may induce intracel-
lular lipid accumulation by impairing he-
patic mitochondrial respiration via inhibition
of DHODH activity (43,44). However, wheth-
er orotidine has the same effect is unknown.
Another possibility is that increased serum
orotidine is a marker of increased orotic acid
and that the association between orotidine
and CVD is due to its correlation with this
other molecule. In the Metabolon platform,
orotate significantly correlated with orotidine
(b = 0.42, SE = 0.05, P < 0.0001) and was
associated with CVD in the eGFR-unadjusted
analysis (OR 1.30 [95% CI 1.04–1.62], P =
0.02) but not in the SCys-eGFR–adjusted
model (1.20 [0.96–1.52], P = 0.1). However,
this could still be a mechanism underlying
the association between orotidine and CVD
if orotidine is a better marker of intracellular
orotate levels than serum orotate.

In addition to the novel findings with
orotidine, we found evidence of associa-
tion with CVD (q < 0.05) in the discov-
ery set for five metabolites that had
previously been found to be associated
with CV risk in the general population
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Figure 3—ROC curves for prediction of incident CVD risk in discovery set. Models tested include
orotidine only, clinical predictors only, and both combined (red). Clinical predictors include the
American College of Cardiology/American Heart Association atherosclerotic CVD risk score,
BMI, SCys-eGFR, and prior CVD history. The AUC (C statistics) are presented.
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(6–11,15,16). Interestingly, a confound-
ing effect of GFR was also observed for
most of these metabolites, suggesting
that many of these previous findings
may have been related to the lack of
adjustment for differences in kidney
function between CVD case and control
subjects. The only exceptions were the
three long-chain acylcarnitines stearoyl-
carnitine, acetylcarnitine, and palmitoyl-
carnitine, for which the association with
CVD remained nominally significant af-
ter adjustment for SCys-eGFR. These
findings confirm the importance of al-
terations of energy and fatty acid me-
tabolism in the etiology of CVD in
general (45) and in the specific case of
T2D (46). Branched-chain amino acids
that were in our panel, including leucine
and isoleucine, though shown to be as-
sociated previously with incident CVD
(47), and with T2D risk in the general
population, were not associated with
CVD in our data set. In a previous study
in the PREvenci�on con DIeta MEDi-
terr�anea (PREDIMED) cohort, an associa-
tion was found between ceramides and
incident CVD (48), but these were not
detected in our Metabolon platform pan-
el, and the four other ceramides on our
panel were not significant (Supplementary
Table 9). In another PREDIMED lipidomic
study, investigators reported a group of
polyunsaturated phosphatidylcholine (PC),
lysoPC, PC plasmalogens, and cholesterol
esters to be associated with CVD protec-
tion and a group of monoacylglycerols/
diacylglycerols and short triacylglycerols
associated with CVD risk (49). The CV-pro-
tective metabolites were not in our panel.
Of the risk metabolites, while there were
no triacylglycerols, 7 of the 15 monoacyl-
glycerols and 4 of the 16 diacylglycerols
in our panel remained nominally signifi-
cant (P < 0.05) in the SCys-eGFR–adjust-
ed analysis (Supplementary Table 9). A
possible explanation for these discrepant
results aside from the different methodol-
ogy is that confounding by T2D or renal
function was not examined in the
PREDIMED study.

Aside from the potential biological
significance of this novel biomarker, or-
otidine also significantly improved the
performance of risk prediction models
containing conventional clinical risk fac-
tors of CVD (model C compared with
model B in Fig. 3), suggesting its poten-
tial as a tool for better identification of

individuals with T2D at high risk of CVD
events. This may in turn enhance cost-
effectiveness via improved targeted pre-
vention strategies against CVD in T2D.

Our study had several strengths in-
cluding the specific focus on individuals
with T2D, the prospective design of the
discovery set, use of a well-validated
metabolomics platform, attention to the
confounding effects of kidney function
and other variables, and external valida-
tion of findings in another data set with
a different design. Also, that discovery
cases were defined on the basis of self-
reported CV events, whereas for the
validation cases there was angiographic
evidence of coronary artery disease,
and that, despite these differences, oro-
tidine was associated with the CV end
points in both sets, adds to the strength
of our findings. Nonetheless, some po-
tential limitations should be acknowl-
edged. First, while our study was larger
than many of the previous ones, its
power was constrained by the number
of events in the cohort under investiga-
tion. Thus, weaker but still biologically
relevant associations between other me-
tabolites and CVD might have gone un-
detected. Second, while we used two
different methods to estimate kidney
function in case and control subjects, re-
sidual confounding by differences in GFR
between the two study groups is still
possible. This concern, however, is allevi-
ated by the fact that the association be-
tween orotidine and CVD remained
significant after adjustment with a third
GFR estimation method (accuGFR) in a
subset of the discovery set for which this
measure was available. Third, the CVD
outcome in the discovery set was heter-
ogenous, comprising not only hard end
points (MI, stroke, and CV mortality) but
also PTCA and CABG. However, in a sen-
sitivity analysis, we observed that the as-
sociations with orotidine remained when
considering each of the end points sepa-
rately (Supplementary Table 4). Fourth,
our analysis included all individuals with
or without baseline CVD, since a metab-
olite could be a risk factor for new-onset
CVD events as well, and in a sensitivity
analysis (Supplementary Table 5), while
there was no significant interaction be-
tween orotidine and CVD history, we
could not entirely rule out a possible neg-
ative interaction (i.e., orotidine may be a
stronger risk factor for CVD in people

who have negative CVD history) due to
the small sample size of the group with
positive CVD history. Fifth, the cross-sec-
tional nature of the association between
estimated GFR and orotidine cannot ex-
clude reverse causation and should be
addressed in future prospective studies.
Sixth, we were unable to assess the im-
pact of race/ethnic heterogeneity on our
findings, as 83% of subjects in the discov-
ery set and all subjects in the validation
set were non-Hispanic White. In the dis-
covery set, adjusting for race did not im-
pact the results. Furthermore, this study
did not address multivariate analysis in-
corporating mutual correlations between
metabolites, as it was focused on individ-
ual metabolites as predictors of CVD in di-
abetes. Additionally, aside from smoking,
we could not address confounding by
other lifestyle factors such as diet or
physical activity as these data were not
obtained in either study set. Lastly, serum
samples for the metabolomics study were
obtained without regard to participants’
fasting status.While this could have added
noise to our findings and possibly result in
some false negatives, it is highly unlikely
that our positive results were confounded
by variability in fasting status, since for this
to happen the fasting status of participants
at the time of baseline sampling would
have had to be associated with future
caseness. If anything, the noise added by
fasting variability might have biased results
toward the null, making our positive find-
ings even more remarkable.

In summary, through an untargeted
metabolomics analysis, we have discov-
ered orotidine as a novel biomarker of in-
creased CVD risk in T2D, having robust
effects independent of estimated GFR.
Importantly, we have validated this bio-
marker via absolute quantification meth-
ods in an independent data set. In future
studies investigators should explore the
causal pathways of the CV effects of oro-
tidine, for example, through Mendelian
randomization methods and/or cellular
and animal studies, to understand wheth-
er this is a viable target for novel inter-
ventions aimed at decreasing the burden
of CVD among patients with T2D.
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