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OBJECTIVE

To investigate the association of potential cardiovascular disease (CVD) bio-
markers in patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS:

We enrolled 120 participants (aged 61.5–69.5 years) with type 2 diabetes and 60
(aged 62.5–73.5 years) with normal glucose tolerance in the discovery group from
the original Da Qing Diabetes Study. Their diabetes status was confirmed in 1986;
then, the participants were followed over 23 years to collect CVD outcome data.
Untargeted and targeted metabolomics analyses based on ultra-high-performance
liquid chromatography–tandem mass spectrometry were used to identify potential
markers. Multivariable regression analysis was used to evaluate the association
between metabolites and CVD outcomes. An independent group of 335 patients
(aged 67.0–77.0 years) with diabetes was used for biomarker validation.

RESULTS

In the discovery group, untargeted metabolomics analysis found 16 lipids and
fatty acids metabolites associated with CVD risk in patients with diabetes, with
palmitoyl sphingomyelin (PSM) having the strongest association. Plasma PSM
concentrations were significantly higher in cases of diabetes with CVD than with-
out (41.68 ± 10.47 vs. 9.69 ± 1.47 lg/mL; P < 0.0001). The odds ratio (OR) of CVD
for 1 mg/mL PSM change was 1.19 (95% CI 1.13–1.25) after adjustment of clinical
confounders. The validation study confirmed that PSM was significantly associ-
ated with increased CVD risk in diabetes (OR 1.22 [95% CI 1.16–1.30]).

CONCLUSIONS

Changes in lipid and fatty acid content were significantly associated with CVD risk
in the Chinese population with diabetes. PSM is a potential biomarker of
increased CVD risk in diabetes.

Metabolomics can be used to identify and quantify metabolic profile changes
caused by exposure to toxins and drugs, environmental effects, or disease onset
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(1–3). Studies have reported that changes
in circulating branched-chain and aro-
matic amino acids are associated with
obesity, insulin resistance, and diabetes
(4–6). In a large, prospective cohort study,
phenylalanine, monounsaturated fatty
acids, and polyunsaturated fatty acids
were found to be associated with car-
diovascular disease (CVD) (7). These data
indicate that some metabolites affect dia-
betes and CVD pathogenesis beyond tra-
ditional risk factors. However, studies on
potential markers of diabetes-related to
CVD are lacking, except for a small cross-
sectional study of 30 male patients with
type 2 diabetes (8). To date, it remains
unclear why some patients with diabetes
develop CVD, while others do not, and
the potential markers of diabetes-related
CVD are not known. Hence, we aimed to
discover metabolic biomarkers to identify
individuals with a high risk of developing
CVD among adults of Chinese ethnicity
who had diabetes.

RESEARCH DESIGN AND METHODS

Study Participants
Participants in the current study were
selected from the original Da Qing Dia-
betes Study. In detail, in 1985, a diabetes
survey was conducted among 110,660
residents of Da Qing, China (9,10); and
630 cases of type 2 diabetes, 576 of
impaired glucose tolerance, and 519 of
normal glucose tolerance (NGT) were
diagnosed by standard 75-g oral glucose
tolerance test. In 2009, a 23-year follow-
up of this study was performed to esti-
mate the CVD outcome rates. For the
present metabolomics study, 120 out of
the 630 participants with type 2 diabetes
mellitus (DM) who were diagnosed in
1985 were selected. Of these individuals,
half experienced CVD (DM_CVD group)
over the 23-year follow-up period, and
the other half did not (DM_non-CVD
group). In addition, 60 individuals out of
the original 519 people with NGT who
had not experienced CVD over the 23-
year follow-up period were selected as a
normal control group (NGT_non-CVD
group). Thus, 180 people were designated
as the discovery group (Supplementary
Fig. 1). CVD events were defined as fatal
and nonfatal myocardial infarction and
stroke, as confirmed by medical records
(10). The blood pressure, BMI, 12-lead
electrocardiogram, and serum lipids at
baseline were measured for all partici-

pants during the 23-year follow-up. The
participants of this study did not have
other serious complications related to
phospholipid metabolism, such as sepsis,
neuropsychiatric disorders, and acute
respiratory distress syndrome. All partici-
pants gave written informed consent.
Institutional review boards at the World
Health Organization and Fuwai Hospital
approved this study.

We enrolled a second group for the
validation data set, which consisted of
335 adults of Chinese ethnicity (mean
age, 71.7 ± 6.7 years) who had type 2
diabetes from the local clinics of Da
Qing. In this group, 123 patients had a
diagnosis of CVD, and 212 patients did
not have a diagnosis of CVD. Informed
consent was obtained from the partici-
pants, and the research was approved by
the Ethics Committee of Fuwai Hospital.

Plasma Sample Collection and
Measurement
After overnight fast, blood samples of
the 180 participants were obtained
through venipuncture and collected in
tubes containing EDTA. The samples
were centrifuged within 30 min of col-
lection at 1,200g for 10 min at 4�C,
after which plasma was collected and
stored at �80�C. Untargeted measure-
ments were completed in 2018, and
palmitoyl sphingomyelin (PSM) quanti-
fication measurements were performed
in 2020.

Metabolomics Analysis

Metabolite Extraction

Plasma samples were thawed on ice
before extraction. A mixture of metha-
nol/acetonitrile (4:1, v/v, 800 mL) was
added to the plasma (200 mL) and vor-
tex-mixed for 30 s. After centrifugation at
12,000g for 20 min to precipitate the
proteins at 4�C, the supernatant was col-
lected, and an aliquot of 5 mL superna-
tant was used for ultra-high-performance
liquid chromatography–tandem mass
spectrometry (UPLC-MS/MS) analysis.

UPLC-MS/MS Analysis of Plasma Samples

UPLC-MS/MS analysis was performed on
the Waters ACQUITY Ultra Performance
LC System (Waters Corporation, Milford,
MA) equipped with a BEH C18 column
(100 mm × 2.1 mm, 1.7 mm). The mobile
phase was composed of water (A) and
acetonitrile (B), each containing 0.1%

formic acid and 2 mmol/L ammonium
formate. The following solvent gradient
system was used: 0–2 min, 1.0% B–45%
B; 2–10 min, 45% B–70% B; 10–13 min,
70% B–99% B; 13–22 min, 99% B; and
22–24 min, equilibration with 1.0% B.
The flow rate was 0.45 mL/min. All sam-
ples were kept at 4�C during the analysis.

The Waters SYNAPT G2 HDMS (Waters
Corp., Manchester, U.K.) was used to per-
form mass spectrometry with an elec-
trospray ionization source operating
in positive and negative ion modes. The
capillary voltage was set at 3.0 kV and
2.5 kV in positive and negative modes,
respectively; sample cone voltage was
40 V, and extraction cone voltage was 4
V. Using the drying gas nitrogen, the des-
olvation gas rate was set at 800 L/h at
450�C, the cone gas rate at 30 L/h, and
the source temperature at 100�C. The
scan time was set at 0.1 s and the inter-
scan delay at 0.02 s; leucine enkephalin
was used as the lock mass in both posi-
tive and negative ion modes. Data were
collected in centroid mode from charge/
mass ratio (m/z) 100–1,200 Da.

To ensure the stability of sequence
analysis, a quality control (QC) sample
was prepared by pooling the same
volume (10 mL) from each prepared
plasma sample from the three groups.
Five pooled QC samples were run
before analysis, and other QC samples
were interspersed between every five
participant’s samples during the anayt-
ical run. Method validation and results
(Supplementary Tables 1 and 2) are lis-
ted in the Supplementary Material.

Quantification of PSM

Quantification was performed through
an external standard method through
the construction of a calibration curve
using a pure standard chromatographic
reference compound. PSM (Y0852; CAS
6254-89-3; A.V.T. Pharmaceutical Co.,
Ltd.) was dissolved in methanol–aceto-
nitrile (4:1, v/v) to prepare a 200 mg/
mL stock solution. The calibration stand-
ards were prepared from this stock
solution by diluting with methanol/ace-
tonitrile (4:1, v/v) at 2.5, 5, 10, 20, 25,
40, 60, and 80 mg/mL. The equation of
the calibration curve was y = 1817.2x �
4743.6; r2 = 0.9992; and it showed
good linearity. The limit of detection
and limit of quantitation were calcu-
lated based on the signal-to-noise ratio
of 3:1 and 10:1, respectively. The linear
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range was 2.5–80 mg/mL; values for limit
of detection and limit of quantitation
were 1.0 and 2.5 mg/mL, respectively.
After establishing the quantification met-
hod for PSM in plasma using UPLC-MS/
MS, the plasma PSM concentrations
were measured in the participants from
the discovery and validation groups.

Data Analysis

Metabolomics Data Preprocess

Raw spectral data were first analyzed with
MassLynx Applications Manager Version
4.1 (Waters Corp.). Deconvolution, align-
ment, and data reduction were performed
to provide a list of retention times and
mass pairs with peak areas corresponding
to all detected peaks from each file in the
data set. The main parameters are listed
in the Supplementary Material.

Multivariate Statistical Analysis of Metabolo-

mics Data

The UPLC-MS/MS data were transferred
to the SIMCA-P software package (version
13.0; Umetric, Umeå, Sweden). Principal
component analysis (PCA), which maps
samples based on their spectral profile,
was used to explore the inherent group-
ing between groups by visual inspection
of score plots. Supervised models were
subsequently constructed through orthog-
onal partial least squares discriminant
analysis (OPLS-DA) to maximize the sepa-
ration between classes and identify the
biomarkers associated with the disease.
Permutation cross-validation (N = 200)
and the coefficient of variation-ANOVA
test were first used to assess the reliabil-
ity of all OPLS-DA models (Supplementary
Fig. 2 and Supplementary Table 3). Then,
results from the OPLS-DA were visualized
as score plots. Potential biomarkers were
selected based on variable importance
for projection values and S-plots.

Statistical Analysis for Clinical Data and CVD

Outcomes

The clinical characteristics between the
groups (DM_CVD vs. NGT_non-CVD and
DM_CVD vs. DM_non-CVD in both discov-
ery and validation groups) were compared
using the t test for continuous variables
(the normality of data was checked using
the Shapiro-Wilk test) and the x2 test for
categorical variables. Spearman correla-
tion analysis was used to test correlations
among different metabolites determined
by untargeted measurements. The area
under receiver operating characteristic

curve with 95% CIs for CVD in relation to
each metabolite was also computed using
multivariate logistic regressions. The vari-
ance inflation factor test was used to
diagnose multicollinearity among variables
(11). In an exploratory analysis, after elimi-
nating variables with severe multicol-
linearity, stepwise logistic regression
controlling the influence of some tra-
ditional CVD risk factors (including
age, sex, smoking, BMI, blood pres-
sure, fasting plasma glucose [FPG],
and total cholesterol [TC]) was used
to find the metabolites most closely
associated with CVD events. Further-
more, directed acyclic graphs (DAGs)
(12,13) for estimating effects of PSM
and sphingomyelin (SM) on the risk of
CVD was developed for independent
variable selection. The association bet-
ween the quantitative PSM concentra-
tion and CVD risk was further tested in
the discovery group as well as in the vali-
dation group.

Differences were considered statisti-
cally significant if two-sided P values
were <0.05. Given the multiplicity of
comparisons when assessing the associ-
ation between different metabolites and
CVD events after adjustment of CVD risk
factors, the significance levels were adj-
usted using the Bonferroni method. A
two-sided P value <0.003 was considered
statistically significant (0.05/16). Data were
managed and analyzed using SAS version
9.4 (SAS Institute, Inc., Cary, NC).

RESULTS

Clinical Characteristics of Discovery
and Validation Groups
Table 1 shows the clinical characteristics
of the discovery and validation groups.
Within the discovery group, systolic
blood pressure (SBP), FPG, hemoglobin
A1c (HbA1c), serum total triglycerides, TC,
and LDL cholesterol (LDL-c) were higher
in the DM_CVD group than in the NGT_
non-CVD group; TC and LDL-c were also
higher in the DM_CVD group than in the
DM_non-CVD group (P < 0.05). In the
validation cohort, the participants with
CVD had significantly older ages, higher
FPG, and higher HbA1c levels than those
without CVD (P < 0.05).

Almost all of the participants with
diabetes took hypoglycemic drugs, such
as metformin, sulfonylureas, and a-
glucosidase inhibitors, but not glucagon-
like peptide 1 receptor agonists or

sodium–glucose cotransporter 2 inhibi-
tors because the latter two drugs did
not enter the Chinese market until 2009.
About half of the patients took antihyper-
tensive drugs, but fewer patients took
lipid-lowering agents because such drugs
were introduced to China very late and
were not covered by the free medical sys-
tem in China at that time (Supplementary
Table 4).

Changes in Lipid and Fatty Acid
Content Associated With CVD in the
Discovery Group
Base peak intensity chromatograms of
the plasma from all groups are shown in
Supplementary Fig. 3A. The score plot of
PCA revealed that the plasma meta-
bolic profiles of the participants in the
DM_CVD, DM_non-CVD, and NGT_non-
CVD groups were clearly separated into
three clusters (Fig. 1A). Among these
clusters, the metabolic profiles of
DM_CVD and NGT_non-CVD groups
were clearly distinguishable along the
direction of the coordinate axis t2, indi-
cating that significant metabolic changes
were related to both hyperglycemia and
CVD. Furthermore, the metabolic profile
of the DM_CVD group was clearly distin-
guishable from that of the DM_non-CVD
group along the direction of the coordi-
nate axis t1, indicating that significant
metabolic changes were related to CVD
in the group with diabetes.

Supervised modeling was subsequently
carried out using OPLS-DA to maximize
the separation between different classes
and identify the biomarkers associated
with CVD events. The results of the per-
mutation cross-validation (Supplementary
Fig. 2) and coefficient of variation-ANOVA
test (P < 0.0001) (Supplementary Table 3)
showed that the original OPLS-DA
models were statistically acceptable. As
shown in Supplementary Fig. 3B and C,
the plasma metabolic profiles of DM_CVD
and NGT-non-CVD groups and those of
DM_non-CVD and NGT_non-CVD groups
were clearly separated through OPLS-DA.
Variables with variable importance for
projection >1, intensity threshold (count)
in plasma (>1,000), and bigger fold-
changes (>5) between the DM_CVD and
NGT_non-CVD groups were used as selec-
tion criteria for differential metabolites. A
total of 16 metabolites were identified as
potential biomarkers for hyperglycemia-
induced CVD (Table 2). Supplementary
Figure 4 shows the normalized peak
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intensities of the 16 metabolites, and the
difference in their respective peak intensi-
ties among the DM_CVD, DM_non-CVD,
and NGT_non-CVD groups.
The metabolites were identified by their

molecular weights and MS spectra
through databases, including the Human
Metabolome Database (https://www.hmdb.
ca/), METLIN (https://metlin.scripps.edu/),
and LIPID MAPS-Nature Lipidomics Gate-
way (https://www.lipidmaps.org/). Of the
16 characterized metabolites, 13 were
identified. They were dihydroxyacetone
phosphate, taurocyamine, lactosylceramide
(d18:1/12:0), three glycerophosphocholines
(18:1/18:1, 20:0/18:2, and 24:1/14:0),
PSM, two diacylglycerols (22:1n9/0:0/22:
6n3 and 18:4/24:1/0:0), glucosylceramide
(d18:1/18:0), SM (d18:1/24:1), 1-stearoyl-
glycerophosphoinositol, stearoylcarnitine,
and unidentified metabolites 1–3 with the
retention time_m/z being 0.52_458.8547,
16.64_812.6166, and 17.67_788.6167,
respectively (Table 2). Among them, PSM
was further confirmed by comparison of
retention time and mass spectra with the
standard (Supplementary Fig. 5).
Supplementary Table 5 and Fig. 1B

show the odds ratio (OR) for CVD risk in
patients with diabetes associated with
each metabolite. Of the 16 metabolites,
15 were significantly positively associated
with CVD; only taurocyamine was nega-
tively associated with CVD. All meta-

bolites could predict diabetic CVD with an
area under receiver operating characteris-
tic curve >0.6 (P < 0.05 for all) (Sup-
plementary Fig. 6). Heat map analysis
revealed that all 16 metabolites were cor-
related with each other (P < 0.001) (Sup-
plementary Fig. 7). The variance inflation
factor test was performed to eliminate
the effect of multicollinearity among 16
metabolites. The stepwise regression anal-
yses showed that only PSM (OR 1.81
[95% CI 1.29–2.53]; P = 0.0006) and
unidentified metabolite 2 (OR 1.24 [95%
CI 1.12–1.37]; P < 0.0001) were signifi-
cantly associated with diabetic CVD after
controlling for age, sex, smoking, SBP, TC,
and FPG (Supplementary Table 6). Based
on these results, we decided to confirm
the association between quantitative PSM
and CVD event in the discovery group and
the independent validation group with
the adjustment of confounders selected
by DAG.

According to DAGs (Supplementary
Fig. 8), age, sex, smoking, BMI, SBP, TC,
and FPG were selected as confounders.
Diacylglycerols are identified as a medi-
ator on the causal path from PSM to
CVD and also a collider. Exclusion of this
collider will close backdoor effect from
1-stearoylglycerophosphoinositol. Other
metabolites were also not being identi-
fied as confounders. Therefore, they were
excluded in the analysis. Controlling these

confounders in logistic regression was
assumed to block the backdoor path.

Quantification of PSM and its
Association With CVD in the
Discovery Group
Quantification analysis showed that the
concentration of PSM was higher in the
DM_CVD group than in the DM_non-
CVD group (41.68 ± 10.47 vs. 9.69 ±
1.47 mg/mL; P < 0.0001) in the discov-
ery group. As per partial correlation
analysis, PSM level was positively asso-
ciated with CVD (r = 0.9007; P < 0.0001)
and inversely correlated with CVD-free
years (r = �0.8229; P < 0.0001; data not
shown). Multivariate regression analysis
revealed that the concentration of PSM
(1 mg/mL change) was associated with
CVD events (OR 1.19 [95% CI 1.13–1.25];
P < 0.0001) (Fig. 2B) after adjustment of
age, sex, smoking, BMI, SBP, FPG, and TC.
The results did not change (OR 1.17 [95%
CI 1.11–1.23]; P < 0.0001) after further
adjustment of hypoglycemic, antihyper-
tensive, and lipid-lowering medications
used in the participants.

Quantification of PSM and its
Association With CVD in the
Validation Group
The same quantification method as that
used for PSM in the discovery group
was used to detect its plasma level in

Table 1—Clinical characteristics of participants from the Da Qing Diabetes Study and the validation data set

Discovery group Validation group

NGT_non-CVD
group (N = 60)

DM_non-CVD
group (N = 60)

DM_CVD
group (N = 60)

DM_non-CVD
group (N = 212)

DM_CVD
group (n = 123)

Age, years 61.6 ± 9.0† 65.5 ± 6.8 67.6 ± 7.0 71.7 ± 6.7 73.5 ± 6.4*

Male, N (%) 36 (60.0) 28 (46.7) 33 (55.0) 80 (36.2) 55 (44.7)

Smoking, N (%) 20 (33.3) 17 (28.3) 19 (31.7) 61 (28.8) 47 (38.2)

BMI, kg/m2 25.4 ± 3.5 25.0 ± 3.6 25.5 ± 3.2 25.4 ± 3.7 25.1 ± 3.5

SBP, mmHg 132.8 ± 16.6† 150.7 ± 20.6 152.2 ± 24.8 148.6 ± 21.0 151.5 ± 22.8

DBP, mmHg 82.5 ± 9.5 78.3 ± 10.1 80.2 ± 10.5 75.5 ± 10.4 77.6 ± 10.0

HbA1c, mmol/mol (%) 43.2 ± 11.5
(6.2 ± 1.1)†

63.9 ± 3.8
(8.0 ± 1.8)

66.1 ± 6.0
(8.2 ± 1.6)

62.4 ± 17.8
(7.9 ± 1.6)

67.1 ± 18.3
(8.3 ± 1.7)*

FPG, mmol/L 5.9 ± 1.4† 8.7 ± 2.9 9.4 ± 3.7 7.4 ± 2.7 8.5 ± 3.3*

TG, mmol/L 1.6 ± 1.0* 1.8 ± 1.2 2.1 ± 1.5 2.0 ± 2.1 1.8 ± 1.5

TC, mmol/L 4.8 ± 0.8† 4.9 ± 1.0* 5.6 ± 1.5 4.9 ± 1.0 4.9 ± 1.3

HDL-c, mmol/L 1.3 ± 0.3 1.3 ± 0.4 1.3 ± 0.3 1.3 ± 0.4 1.3 ± 0.4

LDL-c, mmol/L 2.9 ± 0.7* 2.8 ± 0.8* 3.3 ± 1.2 3.0 ± 0.9 3.1 ± 1.1

Data are shown as mean ± SD unless otherwise indicated. P values are for the comparison between the DM_CVD and NGT_non-CVD groups
and DM_CVD and DM_non-CVD groups. DBP, diastolic blood pressure; HDL-c, HDL cholesterol; TG, triglyceride. *P < 0.05. †P < 0.001.
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an independent group. In the diabetes
validation data set, the plasma level of
PSM was higher in participants with
CVD than in those without CVD (13.1 ±
6.2 vs. 8.2 ± 5.1 mg/mL; P < 0.001).
Logistic regression analyses revealed that
the 1 mg/mL increase of PSM concentra-
tion was associated with CVD risk (OR
1.22 [95% CI 1.16–1.30]; P < 0.0001)
after adjusting for age, sex, smoking,
BMI, SBP, FPG, and TC (Fig. 2C). Further-
more, the 1-SD increase of PSM was
associated with a higher risk of CVD (OR
2.90 [95% CI 2.11–3.98]) (Supplementary
Table 7). Of interest, the OR of CVD risk
for the 1-SD (6.7 years) increase in age
was 1.29 (95% CI 0.96–1.73) and for the
1-SD (3.0 mmol/L) increase in FPG was
1.44 (95% CI 1.10–1.89).

CONCLUSIONS

Type 2 diabetes is a major cause of inc-
reased morbidity and mortality in CVD.
According to data from a 2013 survey,
the overall prevalence of diabetes in
adults of Chinese ethnicity was 10.9%
and that of prediabetes was 35.7% (14).
The China Da Qing Diabetes Study was a
longitudinal study that investigated CVD
events and death rates in patients newly
diagnosed with type 2 diabetes in 1986
and who were followed up for 23 years
(9,15). Results from the follow-up study
revealed that patients with diabetes had
increased all-cause mortality compared
with control subjects with normal glu-
cose, and the mortality rate due to CVD
was 48.5% (10). However, the mechanism
of hyperglycemia-induced CVD remains

unclear. Therefore, identifying individuals
with type 2 diabetes who are at high risk
of CVD is a challenge.

The current study found that the
plasma metabolic profiles were signifi-
cantly different between the participants
with and without diabetes and were also
different between the subjects with dia-
betes with and without CVD. There were
16 metabolites significantly correlated
with an increased risk of CVD in the
group with diabetes. Notably, the step-
wise logistic analysis revealed that PSM
and an unidentified metabolite 2 in liter-
ature were significantly correlated with
the increased risk of CVD in people with
diabetes, whereas other metabolites not
highly correlated to PSM were not associ-
ated with the CVD risk after accounting

A 

B 
Dihydroxyacetone phosphate‡

Unidentified metabolite 1‡

Taurocyamine‡

Lactosylceramide (d18:1/12:0)

PC(18:1/18:1)‡

Palmitoyl sphingomyelin

PC(20:0/18:2)§

Diacylglycerol(22:1n9/0:0/22:6n3)||

Unidentified metabolite 2||

PC(24:1/14:0)

Glucosylceramide (d18:1/18:0)

Unidentified metabolite 3

Diacylglycerol(18:4/24:1/0:0)

SM(d18:1/24:1)

1-stearoylglycerophosphoinositol

Stearoylcarnitine

0 1 2 3 4 8 12

OR (95% CI) P value

1.04 (1.02, 1.08) 0.0010

1.097 (1.05, 1.18) 0.0005

0.88 (0.83, 0.92) < 0.0001

1.04 (1.03, 1.06) < 0.0001

1.04 (1.02, 1.07) 0.0002

4.80 (2.36, 11.08) < 0.0001

1.005 (1.003, 1.007) < 0.0001

1.04 (1.03, 1.06) < 0.0001

1.19 (1.12, 1.32) < 0.0001

1.33 (1.19, 1.55) < 0.0001

1.04 (1.02, 1.06) < 0.0001

1.02 (1.01, 1.03) < 0.0001

1.66 (1.38, 2.12) < 0.0001

4.12 (2.48, 8.21) < 0.0001

1.21 (1.11, 1.34) < 0.0001

1.24 (1.11, 1.40) 0.0003

Figure 1—Plasma metabolic profiles among patients with DM with and without CVD and the control group using PCA and each metabolite related
with the risk of CVD in patients with diabetes. A: The score plots show a statistically significant difference in data between the DM and NGT groups,
indicating significant biochemical changes caused by hyperglycemia. Furthermore, there was a clear separation between DM_CVD and DM_non-
CVD, indicating that metabolites can differentiate diabetes with and without CVD. B: Association between each metabolite and CVD in diabetes
after adjustment for age, sex, smoking, BMI, SBP, FPG, and TC. PC, glycerophosphocholine. ‡Per 0.01-unit increase; §per 0.1-unit increase; jjper 10-
unit increase.
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for the influence of other traditional CVD
risk factors. We also tried to confirm the
association between the PSM and CVD
by using DAGs selected confounders. The
results from the quantification analysis
were consistent with those of untargeted
analysis in the discovery group. More
importantly, this correlation was further
confirmed by the analysis in the validation
data set. This indicates that the PSM level
is strongly associated with an increased
risk of CVD in the population with diabe-
tes and may be useful to identify diabetes
people with high risk of CVD.
The association between SM and chro-

nic diseases has been reported in the lit-
erature (16–19), but PSM has rarely been
reported. Inhibition of de novo synthesis
of SM in mice markedly increased insulin
sensitivity (16–18). SMs are altered not
only in individuals with type 2 diabetes,
but also in individuals with prediabetes
(19). Human plasma SM levels are posi-
tively and independently related to
coronary artery disease in the general
population (20). Higher median SM
levels are associated with a higher risk
of coronary heart disease and lower
left ventricular ejection fraction (21).
PSM is a metabolite of SM containing

palmitate (16:0) at the variable acyla-
tion position, but this form of SM is
rarely involved in the risk of CVD in the

literature. In the current study, both
SMs and PSM were significantly associ-
ated with CVD risk in diabetes in a uni-
variate correlation analysis. However, a
stepwise analysis to determine the asso-
ciation between these metabolites and
CVD risk in the group with diabetes
showed that PSM was significantly asso-
ciated with the CVD risk, whereas the
SMs did not enter the model at a P <
0.05 level. Furthermore, to evaluate the
contribution of individual potential risk
factors on the risk of CVD, we analyzed
the association between the 1-SD inc-
rease in independent variables and CVD
risk in the validation population. Sur-
prisingly, our data showed that a 1-SD
increase in PSM was associated with a
much higher risk of CVD in the group
with diabetes compared with a 1-SD
(equal to 3.0 mmol/L) increase in FPG
(PSM vs. FPG: OR 2.90 vs. 1.44). These
results suggested that PSM was strongly
associated with CVD risk in people with
diabetes. Thus, PSM could be a poten-
tially useful and easily detectable bio-
marker of CVD risk in the population
with diabetes.

Our study has several strengths. First,
participants were accurately classified
as having DM or NGT with oral glucose
tolerance test screening, and all had no
previous CVD history at baseline. Second,

the 23-year follow-up allowed time for
CVD events to develop. Third, this is the
first population-based longitudinal study to
examine CVD-related metabolites in adults
of Chinese ethnicity who had diabetes.
The association between PSM and CVD
risk was found by using untargeted metab-
olomics analysis and confirmed using a
quantification method in the discovery
group and an independent validation
group. Fourth, fasting plasma samples
were used for metabolomics analysis,
which avoided the interference of food
intake on the results. This study also has
some limitations. Baseline metabolic pro-
files from 1986 were not available because
plasma samples were not stored for >20
years. Thus, we were unable to investigate
changes in metabolites over the 23-year
follow-up period. We also did not collect
the information regarding metabolic dys-
function–associated fatty liver disease in
the participants, which could impact the
metabolite levels. Furthermore, the sample
size was relatively small. Only 180 partici-
pants in the discovery group and 335 par-
ticipants in the validation group could be
subjected to the metabolomics analysis.
Moreover, three metabolites associ-
ated with the increased risk of CVD
were unidentified in the literature.

In conclusion, changes in 16 lipids and
fatty acid metabolites were significantly

Table 2—Sixteen characteristic metabolites associated with the pathogenesis of type 2 diabetes and CVD

Metabolites Retention time (min) Adduct m/z Adduct ion Change in trend

Dihydroxyacetone phosphate 0.52 214.9183 [M12Na-H]1 "
Unidentified metabolite 1 0.52 458.8547 — "
Taurocyamine 1.18 168.0597 [M1H]1 #
Lactosylceramide (d18:1/12:0) 14.38 807.5691 [M1H]1 "
PC (18:1/18:1) 14.61 830.5654 [M12Na-H]1 "
PSM 14.91 704.5742 [M1H]1 "
PC (20:0/18:2) 15.88 836.6159 [M1Na]1 "
Diacylglycerol (22:1n9/0:0/22:6n3) 16.28 786.6003 [M1ACN1Na]1 "
Unidentified metabolite 2 16.64 812.6166 — "
PC (24:1/14:0) 16.87 838.6313 [M1Na]1 "
Glucosylceramide (d18:1/18:0) 16.95 811.6683 [M1IsoProp1Na1H]1 "
Unidentified metabolite 3 17.67 788.6167 — "
Diacylglycerol (18:4/24:1/0:0) 17.68 762.6001 [M1ACN1Na]1 "
SM (d18:1/24:1) 18.82 814.684 [M1H]1 "
1-stearoylglycerophosphoinositol 7.66 599.3193 [M-H]� "
Stearoylcarnitine 10.45 464.3140 [M1K-2H]� "
Change trend is from the DM_CVD group compared with the NGT_non-CVD group. PC, glycerophosphocholine.
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associated with CVD in adults of Chinese
ethnicity who had diabetes, with PSM
being the most strongly associated inde-
pendent factor. These results suggest
that PSM is a potentially useful bio-
marker of increased risk of CVD in
patients with diabetes.
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Figure 2—Plasma concentration level of PSM in participants and the association with CVD events in the discovery and validation groups of diabe-
tes. A: Plasma concentration level of PSM of participants in the NGT_non-CVD, DM_non-CVD, and DM_CVD groups. B: Association between
plasma concentration of PSM and CVD in patients with diabetes unadjusted and adjusted for conventional cardiovascular risk factors in the discov-
ery group. C: Association between plasma concentration of PSM and CVD in patients with diabetes unadjusted and adjusted for conventional car-
diovascular risk factors in the validation data set.

672 Palmitoyl Sphingomyelin in Diabetes-Related CVD Diabetes Care Volume 45, March 2022

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/45/3/666/715828/dc211520.pdf by guest on 17 April 2024



References
1. Park S, Sadanala KC, Kim EK. A metabolomic
approach to understanding the metabolic link
between obesity and diabetes. Mol Cells 2015;
38:587–596
2. Sas KM, Karnovsky A, Michailidis G, Pen-
nathur S. Metabolomics and diabetes: analytical
and computational approaches. Diabetes 2015;
64:718–732
3. Shah NJ, Sureshkumar S, Shewade DG.
Metabolomics: a tool ahead for understanding
molecular mechanisms of drugs and diseases.
Indian J Clin Biochem 2015;30:247–254
4. McCormack SE, Shaham O, McCarthy MA,
et al. Circulating branched-chain amino acid
concentrations are associated with obesity
and future insulin resistance in children and
adolescents. Pediatr Obes 2013;8:52–61
5. Walford GA, Davis J,Warner AS, et al. Branched
chain and aromatic amino acids change acutely
following two medical therapies for type 2
diabetesmellitus. Metabolism 2013;62:1772–1778
6. Suhre K. Metabolic profiling in diabetes. J
Endocrinol 2014;221:R75–R85
7. W€urtz P, Havulinna AS, Soininen P, et al.
Metabolite profiling and cardiovascular event
risk: a prospective study of 3 population-based
cohorts. Circulation 2015;131:774–785

8. Garc�ıa-Fontana B, Morales-Santana S, D�ıaz
Navarro C, et al. Metabolomic profile related to
cardiovascular disease in patients with type 2
diabetes mellitus: a pilot study. Talanta 2016;
148:135–143
9. Li G, Zhang P, Wang J, et al. The long-term
effect of lifestyle interventions to prevent
diabetes in the China Da Qing Diabetes
Prevention Study: a 20-year follow-up study.
Lancet 2008;371:1783–1789
10. An Y, Zhang P, Wang J, et al. Cardio-
vascular and all-cause mortality over a 23-
year period among Chinese with newly
diagnosed diabetes in the Da Qing IGT and
Diabetes Study. Diabetes Care 2015;38:
1365–1371
11. O’brien RM. A caution regarding rules of
thumb for variance inflation factors. Qual Quant
2007;41:673–690
12. Tennant PWG, Murray EJ, Arnold KF, et al.
Use of directed acyclic graphs (DAGs) to identify
confounders in applied health research: review
and recommendations. Int J Epidemiol 2021;
50:620–632
13. Piccininni M, Konigorski S, Rohmann JL,
Kurth T. Directed acyclic graphs and causal
thinking in clinical risk prediction modeling. BMC
Med ResMethodol 2020;20:179

14. Wang L, Gao P, Zhang M, et al. Prevalence
and ethnic pattern of dabetes and prediabetes in
China in 2013. JAMA 2017;317:2515–2523
15. An C, Zhang Y, Yu L, et al. Long-term impact
of earthquake stress on fasting glucose control
and diabetes prevalence among Chinese adults
of Tangshan. Int J Clin ExpMed 2014;7:4441–4447
16. Hannun YA, Obeid LM. Principles of bioactive
lipid signalling: lessons from sphingolipids. Nat
RevMol Cell Biol 2008;9:139–150
17. Slotte JP. Biological functions of sphingo-
myelins. Prog Lipid Res 2013;52:424–437
18. Bienias K, Fiedorowicz A, Sadowska A,
Prokopiuk S, Car H. Regulation of sphingomyelin
metabolism. Pharmacol Rep 2016;68:570–581
19. Guasch-Ferr�e M, Hruby A, Toledo E, et al.
Metabolomics in prediabetes and diabetes: a
systematic review and meta-analysis. Diabetes
Care 2016;39:833–846
20. Jiang XC, Paultre F, Pearson TA, et al. Plasma
sphingomyelin level as a risk factor for coronary
artery disease. Arterioscler Thromb Vasc Biol
2000;20:2614–2618
21. Chen X, Sun A, Zou Y, Ge J, Lazar JM, Jiang
XC. Impact of sphingomyelin levels on coro-
nary heart disease and left ventricular systolic
function in humans. Nutr Metab (Lond) 2011;
8:25

diabetesjournals.org/care Chen and Associates 673

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/45/3/666/715828/dc211520.pdf by guest on 17 April 2024


