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OBJECTIVE

Sodium–glucose cotransporter 2 inhibitors (SGLT2i) improve albuminuria in
patients with high cardiorenal risk. We report albuminuria change in the Dapagli-
flozin Effect on Cardiovascular Events (DECLARE-TIMI 58) cardiovascular outcome
trial, which included populations with lower cardiorenal risk.

RESEARCH DESIGN AND METHODS

DECLARE-TIMI 58 randomized 17,160 patients with type 2 diabetes, creatinine
clearance >60 mL/min, and either atherosclerotic cardiovascular disease (CVD;
40.6%) or risk-factors for CVD (59.4%) to dapagliflozin or placebo. Urinary albu-
min-to-creatinine ratio (UACR) was tested at baseline, 6 months, 12 months, and
yearly thereafter. The change in UACR over time was measured as a continuous
and categorical variable (#15, >15 to <30, $30 to #300, and >300 mg/g) by
treatment arm. The composite cardiorenal outcome was a $40% sustained
decline in the estimated glomerular filtration rate (eGFR) to <60 mL/min/1.73
m2, end-stage kidney disease, and cardiovascular or renal death; specific renal
outcome included all except cardiovascular death.

RESULTS

Baseline UACR was available for 16,843 (98.15%) participants: 9,067 (53.83%)
with #15 mg/g, 2,577 (15.30%) with >15 to <30 mg/g, 4,030 (23.93%) with
30–300 mg/g, and 1,169 (6.94%) with>300 mg/g. Measured as a continuous vari-
able, UACR improved from baseline to 4.0 years with dapagliflozin, compared
with placebo, across all UACR and eGFR categories (all P < 0.0001). Sustained
confirmed$1 category improvement in UACR was more common in dapagliflozin
versus placebo (hazard ratio 1.45 [95% CI 1.35–1.56], P < 0.0001). Cardiorenal
outcome was reduced with dapagliflozin for subgroups of UACR $30 mg/g (P <

0.0125, Pinteraction = 0.033), and the renal-specific outcome was reduced for all
UACR subgroups (P< 0.05, Pinteraction = 0.480).

CONCLUSIONS

In DECLARE-TIMI 58, dapagliflozin demonstrated a favorable effect on UACR and
renal-specific outcome across baseline UACR categories, including patients with
normal albumin excretion. The results suggest a role for SGLT2i also in the pri-
mary prevention of diabetic kidney disease.

Sodium–glucose cotransporter 2 inhibitors (SGLT2i) reduce the risk for adverse renal
outcomes in people with type 2 diabetes, including a reduction in deterioration of the
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estimated glomerular filtration rate
(eGFR) and progression to end-stage kid-
ney disease (ESKD) (1–7). This has been
demonstrated as secondary/exploratory
outcomes in cardiovascular (CV) out-
comes trials (CVOTs) (1–4,7) and con-
firmed as a primary outcome in patients
with proteinuric chronic kidney disease
(CKD), with or without type 2 diabetes
(5,6).

Albuminuria is frequently a compo-
nent of diabetic kidney disease (8,9). The
presence of albuminuria in patients with
or without diabetes has been associated
with an increased risk for adverse renal
and CV outcomes (10,11), while a reduc-
tion in albuminuria has been associated
with lower rates of adverse renal and CV
outcomes, both in observational studies
(12) and clinical trials (13,14). The Ameri-
can Diabetes Association Standards of
Medical Care in Diabetes recommends
testing urinary albumin excretion annu-
ally (15) as part of the laboratory screen-
ing in patients with type 2 diabetes.

The Dapagliflozin Effect on Cardio-
vascular Events trial (DECLARE-TIMI
58) was a CVOT with dapagliflozin in
17,160 patients with type 2 diab-
etes and either multiple risk factors
(MRFs) for atherosclerotic CV disease
(ASCVD) (59.4%) or established ASCVD
(eASCVD) (40.6%) that demonstrated a
significant 17% reduction in one of its
two dual primary efficacy outcomes of
CV death and hospitalization for heart
failure (3). The main secondary pre-
specified renal outcome in DECLARE-
TIMI 58 was the composite cardiore-
nal outcome, defined as a sustained
decline of at least 40% in eGFR to <60
mL/min/1.73 m2, ESKD, or death from
renal or CV causes (3). A renal-specific
composite outcome was similarly pre-
defined but excluded death from CV
causes. We previously published sig-
nificant reductions in both the cardi-
orenal and renal-specific composite
outcomes (3).

In this secondary exploratory analysis,
we present the effect of dapagliflozin
on urinary albumin-to-creatinine ratio
(UACR), both in the entire trial popula-
tion and according to baseline UACR
and eGFR categories. We also present
the effect of dapagliflozin on the cardi-
orenal and renal-specific composite out-
comes according to baseline UACR.

RESEARCH DESIGN AND METHODS

The DECLARE-TIMI 58 design, partici-
pants’ baseline characteristics, main
outcomes, and main renal results have
been previously reported (3,4,16,17).
Briefly, we recruited patients with type
2 diabetes and either MRFs for ASCVD
(age $55 years for men or $60 years
for women plus one or more of the fol-
lowing: dyslipidemia, hypertension, or
current tobacco use), or eASCVD (age
$40 years and ischemic heart disease,
cerebrovascular disease, or peripheral
arterial disease). Other inclusion criteria
were HbA1c between 6.5 and 12.0%
(47.5–113.1 mmol/mol) and creatinine
clearance of $60 mL/min as estimated
by the Cockcroft-Gault equation (18).
The institutional review board at each
participating site approved the trial pro-
tocol, and all participants provided writ-
ten informed consent.

Participants were randomly assigned
in a double-blinded manner to once-
daily dapagliflozin 10 mg or matching
placebo (1:1). The primary end points of
the trial, major adverse cardiovascular
events (MACE), a composite of CV
death, myocardial infarction, or ischemic
stroke, achieved noninferiority, and a
composite of CV death or hospital
admission for heart failure achieved
superiority (3). Since the trial met only
one of its dual primary outcomes for
superiority, all other analyses of addi-
tional outcomes should only be consid-
ered as hypothesis generating. The
cardiorenal outcome was defined as
time to first event of a composite of sus-
tained confirmed decrease in eGFR by
at least 40% (as confirmed by two tests
at the central laboratory at least 4
weeks apart) to <60 mL/min/1.73 m2,
ESKD (defined as dialysis for $90 days,
kidney transplantation, or sustained [i.e.,
two measurements at the central labo-
ratory at least 4 weeks apart] eGFR of
<15 mL/min/1.73 m2), or CV or renal
death. The renal-specific outcome included
all the components of the cardiorenal out-
come except CV death (3).

The serum creatinine and spot urine
albumin and creatinine were measured
at the central laboratories (LabCorp Clini-
cal Trials [Covance], Singapore, Geneva,
and New York) at screening, baseline, 6
months, 12 months, yearly thereafter,
and at the end of the trial. eGFR was cal-
culated using the Chronic Kidney Disease

Epidemiology Collaboration equation (18).
Baseline values and categorization of these
values were defined according to the labo-
ratory test on the date of randomization.
The change from baseline was calculated
for these parameters, and time to onset
of renal outcomes was calculated accord-
ing to the first of the two subsequent lab-
oratory assessments.

Participants were divided into prespe-
cified subgroups according to their
baseline eGFR (eGFR $90, <90 to $60,
and <60 mL/min/1.73 m2) and accord-
ing to their baseline UACR (UACR #15,
>15 to <30, $30 to #300, and >300
mg/g) (19). Patients with baseline uri-
nary albumin below the laboratory’s
lowest detectable level were recog-
nized as a distinct UACR category and
grouped together with patients with
UACR #15 mg/g. Due to a change in
the assay used in the central laboratory
to measure urinary albumin, the lowest
detectable level of albumin was modi-
fied during the trial from urine albumin
<3.0 mg/L since the initiation of the
trial on 25 April 2013 until 30 April
2017, and then <7.0 mg/L until the end
of the trial on 18 September 2018. For
calculation of the continuous change in
UACR over time and avoid bias due to
the date of enrollment, all measured
values of urine albumin <7.0 mg/L
were recognized as below the detect-
able level and assigned a value of
7 mg/g UACR for continuous analysis.
A sensitivity analysis was performed
assigning below detectable measures
of urinary albumin to UACR = 3.5 mg/g
(the midpoint of the range). Confirmed
sustained change in the categorical
UACR was defined as a change in the
UACR categories in two consecutive
tests done according to the schedule
for UACR testing at the central labora-
tory, as mentioned above.

Statistical Analysis
Baseline characteristics of the four pre-
defined subgroups of baseline UACR are
reported as absolute numbers and per-
centages for categorical variables and as
mean and SD or median and interquar-
tile range (IQR), as appropriate, for
continuous variables. We used the x2

test to compare categorical variables
and the Kruskal-Wallis test to compare
continuous variables between UACR
subgroups. Analyses were performed
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according to the intention-to-treat prin-
ciple, using data from all randomly
assigned participants.
Change in the geometric mean UACR

over time were analyzed using mixed mod-
els for each baseline UACR and eGFR cate-
gory separately, adjusting for treatment
arm, baseline ACE inhibitors (ACEi)/angio-
tensin II receptor blockers (ARBs) treat-
ment, use of diuretics, baseline HbA1c, visit,
the interaction between treatment arm
and visit, stratification factors (hematuria
and eASCVD/MRF status), and the baseline
value of the UACR.
UACR data were log-transformed

before analysis due to their nonnormal
distribution as was previously done in
similar analyses (20,21). Adjusted least-
square means, 95% CIs, and differences
between treatments were back-trans-
formed to the original scale.
Cox proportional hazards models

were used to compare the change in
categorical UACR between treatment
arms, both for confirmed sustained
repeated change, done according to
UACR test timelines, and for a single
change in UACR category. The hazard
ratio (HR) and 95% CI are reported. We
used Kaplan-Meier curves to demon-
strate the risk of deterioration in cate-
gorical albuminuria status over time
and compared between treatment arms
using a log-rank test. In addition, the
percentage of participants distributed
within the UACR categories at baseline
and 6 months, among those with
readings at both time points, are pre-
sented, and a comparison between
treatment arms was performed using
the x2 test.
Cox proportional hazards models were

also used to compare treatment arms for
risk of cardiorenal and renal-specific com-
posite outcomes according to baseline
UACR categories. All Cox models were
stratified by baseline ASCVD (i.e., estab-
lished disease vs. MRFs) and hematuria
(i.e., present vs. absent) at baseline.
No adjustments for multiple compari-

sons were made. Analyses were per-
formed using SAS 9.4 software (SAS
Institute, Cary, NC). DECLARE-TIMI 58 is
registered with ClinicalTrials.gov, clinical
trial reg. no. NCT01730534.

Data and Resource Availability
Individual participant data will not be
made available. However, we encourage

parties interested in collaboration to con-
tact the corresponding author directly for
further discussions.

RESULTS

Of the 17,160 participants of DECLARE-
TIMI 58, 16,843 (98.15%) had baseline
UACR data. There were 9,067 (53.83%)
participants with baseline UACR #15
mg/g category, of which 551 (3.30%)
had albumin below detectable levels;
2,577 (15.30%) with UACR of >15 to
<30 mg/g; 4,030 (23.93%) with base-
line UACR $30 to #300 mg/g; and
1,169 (6.94%) with baseline UACR >300
mg/g (Table 1).

Participants with lower baseline UACR
categories were more likely to be female
and White, had shorter diabetes duration,
and were less likely to have a history of
eASCVD, heart failure, or hypertension.
Patients with a higher baseline UACR had
higher mean HbA1c, lower eGFR, and
higher systolic blood pressure. ACEi/ARBs
use was common across all baseline
UACR categories (80.0–85.5%) but dif-
fered with statistical significance among
UACR categories (P < 0.0001) (Table 1).

Change in the geometric mean in
UACR over time by treatment arm is
presented according to the four UACR
baseline subgroups #15, >15 to <30,
$30 to #300, and >300 mg/g (Fig.
1A–D). At 6 months, the dapagliflozin
arm had a statistically significant lower
mean UACR compared with placebo in
all UACR baseline subgroups (P =
0.0033 for UACR #15 mg/g and P <
0.0001 for all other subgroups) (Fig.
1A–D). Between 6 months and 4 years,
UACR in the subgroup of UACR >15
mg/g was lower in the dapagliflozin
arm than in the placebo arm (Fig.
1B–D). A separation of the curves as a
marker for effect in the lowest UACR
category (#15 mg/g) was seen after
36 months (P = 0.0140 at 36 months, P
< 0.0001 at 48 months) (Fig. 1A). In
the high-risk category of patients with
baseline proteinuria (UACR >300 mg/
g), after a large decrease in mean
UACR during the first 6 months of
treatment, the mean UACR remained
stable to decreased during 48 months
of treatment with dapagliflozin (Fig. 1D).
Sensitivity analyses in which below
detectable levels of albumin were imputed
differently (UACR = 3.5 mg/g) did not
materially change outcomes.

Change in the geometric mean in
UACR over time by treatment arm is pre-
sented according to the three baseline
eGFR subgroups eGFR $90, <90–$60,
and <60 mL/min/1.73 m2 (Fig. 1E–G). In
all three eGFR subgroups and at all time
points after baseline, the dapagliflozin
arm had a statistically significant lower
mean UACR compared with placebo (at
4 years P < 0.0001 for all three eGFR
subgroups).

Analysis of confirmed sustained change
in the categorical UACR from baseline to
end of trial (EOT) demonstrated an
improvement in UACR categories for all
UACR subgroups with dapagliflozin versus
placebo (Fig. 2A). The improvement with
dapagliflozin was statistically significant for
each UACR category separately as well as
for the sum of patients who improved by
at least one UACR category (HR 1.45 [95%
CI 1.35–1.56], P < 0.0001) and two UACR
categories (HR 1.43 [1.23–1.65], P <
0.0001). A statistically significant reduction
in the deterioration in UACR categories
from baseline to EOT was also seen with
dapagliflozin in most categories (the
increase to UACR >15 mg/g in those with
baseline UACR #15 mg/g was the only
category that was numerically but not sta-
tistically reduced with dapagliflozin) (Fig.
2B). The overall one-category and two-cat-
egory deteriorations in UACR were both
reduced with dapagliflozin versus placebo
(HR 0.82 [0.77–0.88], P < 0.0001; and HR
0.79 [0.69–0.91], P = 0.0007, respectively).

In addition, improvement in categori-
cal UACR on one measure from baseline
to EOT was increased with dapagliflozin
compared with placebo (Supplementary
Fig. 1A), while one-time worsening in
categorical UACR was greatly reduced
with dapagliflozin (Supplementary Fig.
1B).

Looking specifically at the change in
the distribution of UACR categories from
randomization to 6 months according to
treatment arms, there were statistically
significant differences between patients
treated with dapagliflozin versus placebo.
While at baseline the UACR categories
distribution was equal between treat-
ment arms (P = 0.99), at 6 months there
was a higher percentage of patients
treated with dapagliflozin than placebo
in the UACR #15 mg/g category, at 56%
vs. 52%. The opposite was true for the
$30 to #300 mg/g category, at 23% vs.
25%, and for the >300 mg/g category, at
5% vs. 7%, in the dapagliflozin and
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Table 1—Patients’ baseline characteristics in DECLARE-TIMI 58 according to four baseline UACR categories: UACR #15, >15
to <30, $30 to #300, and >300 mg/g

UACR #15 mg/g
(n = 9,067)

UACR >15 to <30
mg/g (n = 2,577)

UACR $30 to #300
mg/g (n = 4,030)

UACR >300 mg/g
(n = 1,169) P

Demographic characteristics
Female sex 3,583 (39.5) 1,083 (42.0) 1,292 (32.1) 339 (29.0) <0.0001
Age, years, mean (SD) 63.8 (6.6) 64.4 (7.0) 64 (7.1) 63.5 (6.9) 0.0008
BMI, kg/m2 31.2 (27.7–35.2) 31.2 (27.7–35.4) 31.5 (28.0–35.5) 32.0 (28.1–36.3) 0.0002
BMI, kg/m2, mean (SD) 31.9 (5.9) 32.0 (6.1) 32.1 (6.0) 32.7 (6.2) 0.0002
Race

White 7,441 (82.1) 2,000 (77.6) 3,079 (76.4) 860 (73.6)
Asian 1,015 (11.2) 402 (15.6) 674 (16.7) 190 (16.3) <0.0001
Black 319 (3.5) 81 (3.1) 139 (3.4) 49 (4.2)
Other 292 (3.2) 94 (3.6) 138 (3.4) 70 (6.0)

Medical history

Diabetes duration
#5 years 2,303 (25.4) 555 (21.5) 750 (18.6) 145 (12.4) <0.0001
>5 to #15 years 4,647 (51.3) 1,325 (51.4) 1,997 (49.6) 567 (48.5)
>15 years 2,117 (23.3) 697 (27) 1,283 (31.8) 457 (39.1)

eASCVD 3,415 (37.7) 1,037 (40.2) 1,786 (44.3) 578 (49.4) <0.0001
History of congestive heart
failure 811 (8.9) 274 (10.6) 437 (10.8) 169 (14.5) <0.0001
Hypertension 8,025 (88.5) 2,333 (90.5) 3,690 (91.6) 1,096 (93.8) <0.0001
Hyperlipidemia 7,319 (80.7) 2,071 (80.4) 3,217 (79.8) 930 (79.6) 0.5815

CV and glucose-lowering drug
used

ACEi/ARB 7,257 (80.0) 2,115 (82.1) 3,316 (82.3) 1,000 (85.5) <0.0001
MRAs 413 (4.6) 93 (3.6) 182 (4.5) 59 (5.0) 0.1355
Diuretic 3,561 (39.3) 1,051 (40.8) 1,708 (42.4) 517 (44.2) 0.0004
Metformin 7,482 (82.5) 2,119 (82.2) 3,308 (82.1) 919 (78.6) 0.013
Insulin 3,248 (35.8) 1,073 (41.6) 1,897 (47.1) 656 (56.1) <0.0001
Sulfonylurea 3,896 (43.0) 1,137 (44.1) 1,680 (41.7) 489 (41.8) 0.2196
DPP-4 inhibitors 1,562 (17.2) 453 (17.6) 646 (16.0) 185 (15.8) 0.1975
GLP-1 receptor agonist 383 (4.2) 115 (4.5) 181 (4.5) 50 (4.3) 0.8928

Laboratory and clinical
measurements

HbA1c, % 7.9 (7.3–8.8) 8.1 (7.5–9.1) 8.3 (7.5–9.3) 8.4 (7.6–9.6) <0.0001
HbA1c, %, mean (SD) 8.1 (1.1) 8.4 (1.2) 8.5 (1.3) 8.6 (1.3) <0.0001
eGFR, mL/min/1.73 m2,

mean (SD) 85.9 (15.0) 86.2 (15.7) 84.6 (17.0) 80.7 (18.3) <0.0001
eGFR (CKD-EPI) categories

<60 mL/min/1.73 m2 508 (5.6) 178 (6.9) 381 (9.5) 167 (14.3) <0.0001
60 to <90 mL/min/1.73 m2 4,156 (45.8) 1,111 (43.1) 1,761 (43.7) 554 (47.4)
$90 mL/min/1.73 m2 4,403 (48.6) 1,288 (50.0) 1,887 (46.8) 448 (38.3)

Blood pressure
Systolic, mmHg 132.5 (122.5–142.5) 135 (125.0–145.0) 137.5 (127.0–147.5) 142 (132.0–154.0) <0.0001
Systolic, mmHg,

mean (SD) 132.9 (14.8) 135.4 (15.2) 137.3 (15.6) 142.7 (16.1) <0.0001
Diastolic, mmHg 78 (71.0–83.5) 79 (71.5–84.5) 79 (71.5–85.0) 80 (74.0–86.5) <0.0001
Diastolic, mmHg,

mean (SD) 77.6 (9.0) 78.2 (9.1) 78.2 (9.2) 79.9 (9.3) <0.0001
Total cholesterol, mg/dL 163 (138.0–194.0) 163 (138.0–195.0) 162 (137.0–193.0) 171 (142.0–206.0) <0.0001
Total cholesterol, mg/dL,

mean (SD) 168.7 (43.2) 168.6 (42.6) 168.7 (45.1) 178.2 (53.3) <0.0001
Fasting triglycerides, mg/dL 141 (104.0–197.0) 149 (107.0–208.0) 155 (112.0–224.0) 160.5 (114.0–238.0) <0.0001
Fasting triglycerides, mg/dL,

mean (SD) 168.4 (120.9) 175.7 (112.9) 192.6 (153.2) 211.1 (191.3) <0.0001

Categorical data are shown as n (%) and continuous data as median (IQR) or as indicated otherwise. The P value between UACR subgroups
was calculated using the x2 test to compare categorical variables and the Kruskal-Wallis test to compare continuous variables. CKD-EPI,
Chronic Kidney Disease Epidemiology Collaboration; DPP-4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide 1; MRAs, mineralocorticoid
receptor antagonists.
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placebo arm, respectively (P < 0.0001)
(Supplementary Table 1).
Kaplan-Meier curves for new onset of

UACR >15 mg/g in patients with a base-
line UACR #15 mg/g did not achieve
statistical significance (log-rank P =
0.0536) (Supplementary Fig. 2A). Kap-
lan-Meier curves for new onset of UACR
$30 mg/g in patients with a baseline
UACR <30 mg/g (Supplementary Fig.
2B) and new onset of UACR $300 mg/g
in patients with a baseline UACR <300
mg/g (Supplementary Fig. 2C) demon-
strated an improvement with dapagliflo-
zin compared with placebo (log-rank P
< 0.0001 for both).
The cardiorenal event rates in the

placebo arm in participants with UACR
#15 mg/g versus those with UACR >15
to <30 mg/g were 3.1% and 4.9% (P <
0.0001), and the renal-specific event
rates in the placebo arm were 1.3% and
2.4% (P < 0.0001) for the UACR #15
mg/g versus those with UACR >15 to
<30 mg/g, respectively. Together these

findings demonstrate an increased
risk for both outcomes with higher
baseline UACR categories, even in the
normoalbuminuria range. The cardiore-
nal outcome was reduced with dapagli-
flozin for all UACR $30 mg/g subgroups
(P < 0.0125, Pinteraction = 0.0327) while
the renal-specific outcome was reduced
with dapagliflozin versus placebo for all
UACR subgroups (P < 0.05, Pinteraction =
0.480) (Fig. 3).

CONCLUSIONS

In this exploratory analysis of the results
from DECLARE-TIMI 58, dapagliflozin
reduced the deterioration of UACR,
regardless of baseline eGFR and UACR,
even in the category of UACR #15 mg/g.
Dapagliflozin increased the likelihood of
categorical improvement in UACR and
decreased the risk for categorical UACR
deterioration. This improvement was
already demonstrated in the first postran-
domization UACR test at 6 months. We

also demonstrated a decreased risk for
cardiorenal outcome with dapagliflozin for
those with baseline UACR $30 mg/g. In
addition, a decreased risk for renal-
specific outcomes with dapagliflozin was
demonstrated for all baseline UACR
categories.

SGLT2i have been previously demon-
strated to reduce albuminuria by 30–40%
(22–24), and various mechanisms have
been proposed to explain this effect. These
include an increase in natriuresis, a con-
traction in plasma volume, and a reduction
in single nephron hyperfiltration (25).
Reduction in hyperfiltration has been sug-
gested to result from sodium delivery to
the macula densa, thereby restoring glo-
merular pressure to physiological levels
(26,27). The decrease in nephron perfusion
back to normal levels may cause reduced
wall tension and shear stress (28), leading
to the deactivation of proinflammatory
cytokines and a possible reduction in renal
fibrosis (29). Moreover, SGLT2i have been
shown to decrease renal cortical hypoxia
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Figure 1—Change in UACR over time by treatment arm at baseline, 6 months, and 1, 2, 3, and 4 years in the group of patients with baseline UACR
#15 mg/g (A), baseline UACR >15 to <30 mg/g (B), baseline UACR$30 to#300 mg/g (C) and baseline UACR >300 mg/g (D), and in the group of
patients with baseline eGFR $90 mL/min/1.73 m2 (E), baseline eGFR <90 to $60 mL/min/1.73 m2 (F), and baseline eGFR <60 mL/min/1.73 m2

(G). Shown are point estimates and 95% confidence intervals of geometric mean back-transformed to the original scale.
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due to a reduction in the energy require-
ment of proximal tubular cells (30) and in
contrary to increased renal medullary hyp-
oxia causing an increase in the expression
of hypoxia-inducible factors and erythro-
poietin (31).

Compared with placebo, dapagliflozin
treatment reduced UACR across all
baseline eGFR and UACR categories,
including those with UACR #15 mg/g
and those with eGFR $90 mL/min/1.73
m2, during �4 years of follow-up. The
results indicate a beneficial effect for
dapagliflozin on UACR as early as 6
months following treatment initiation.
Dapagliflozin decreased UACR compared
with placebo after 6 months for most
baseline eGFR and UACR categories,
except for the UACR #15 mg/g sub-
groups. In the placebo arm at 6 months,
UACR values in the subgroups of UACR
>15 mg/g seemed lower compared
with baseline, a phenomenon that may
be partially explained by regression to
the mean, placebo-effect, or adjustment
of background medications. Nonethe-
less, in all these subgroups, the

reduction in UACR in the dapagliflozin
arm was significantly larger, which testi-
fies to the effect of the drug. Analysis
of the distribution between subgroups
of UACR after 6 months of treatment
compared with baseline demonstrated
an increase in the percentage of
patients with UACR #15 mg/g in the
dapagliflozin treatment arm, while the
percentage of patients with UACR $30
mg/g was increased in the placebo arm.
These findings add important informa-
tion to the findings from the BI 10773
(Empagliflozin) Cardiovascular Outcome
Event Trial in Type 2 Diabetes Mellitus
Patients (EMPA-REG OUTCOME) trial
and the Canagliflozin Cardiovascular
Assessment Study (CANVAS) program,
which had smaller populations with nor-
moalbuminuria and did not divide this
group category into two subgroups
(1,2,20,21). The population in DECLARE-
TIMI 58 was larger than previous trials
and included a higher percentage of
participants both without eASCVD and
with normal kidney function and UACR
at baseline (3). The length of follow-up

in the trial was also longer, with a
median follow-up of 4.2 (IQR 3.9–4.4)
years compared with 3.1 (IQR 2.2–3.6)
years of follow-up and 2.6 years (IQR
2.0–3.4) of treatment duration in the
EMPA REG and 188 (SD 106) weeks in
CANVAS and 108 (SD 20) weeks in Can-
agliflozin Cardiovascular Assessment
Study-Renal (CANVAS-R) (1–3). Similar
to previous trials, the effect of dapagli-
flozin on UACR was in addition to wide-
spread treatment with ACEi/ARBs
(81.3% of participants) (3).

Unlike previous trials, we grouped
our population into four categories of
baseline UACR, dividing the large group
of patients with normal albuminuria at
baseline (11,644 patients, 69.1% of
patients with baseline UACR measure-
ments) into those with UACR #15 ver-
sus those with UACR >15 to <30 mg/g.
The greater representation of patients
with normal albumin excretion com-
pared with previous trials allowed us to
better define subtle changes within this
important group of patients, which
according to prior publications represent
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Figure 1—Continued.
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50–70% of the general population of
patients with type 2 diabetes (32–34). We
were able to demonstrate an improve-
ment in UACR deterioration even in this
group of patients with UACR #15 mg/g.
The division into four categories also con-
forms to the current knowledge that both
increased renal and CV risk do not begin
at UACR $30 mg/g, but rather at much
lower levels of UACR (35–37), and to the
current Kidney Disease: Improving Global
Outcomes (KDIGO) recommendation to
divide the range of normoalbuminuria into
two separate groups (19). The data pre-
sented here further emphasize the associa-
tion between higher levels of UACR within
the normoalbuminuria range and increased
risk for adverse renal events.

Studying the categorical changes in
UACR, we found that patients treated
with dapagliflozin were more likely to
experience a categorical improvement
and were less likely to experience dete-
rioration. The observation was consis-
tent when defined as at least one
categorical shift, or at least two shifts,
and remained stable when calculated as
a single measurement change or as sus-
tained change. Although albuminuria-
based end points are limited by high
day-to-day variability, recent analyses
indicated that similar drug effects are
achieved when comparing single and
confirmed measurements (38). The sin-
gle measurement analysis may suffer
from increased “noise” but benefits

from a higher number of events, result-
ing in a possible increase in statistical
power (39). Time wise, dapagliflozin
reduced the rate of new onset micro-
or macroalbuminuria relatively early
during the trial, and the separation
between the populations was main-
tained throughout (Supplementary Fig.
2B and C). Considering these findings,
the analyses of the change in UACR
both as a continuous and categorical
variable provide a comprehensive pic-
ture, emphasizing the beneficial effect
for dapagliflozin on urinary albumin
excretion across all baseline UACR and
eGFR categories.

Albumin excretion rate is a clinically
useful surrogate marker for severity of
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Figure 2—Change in confirmed sustained categorical UACR (mg/g) from baseline (BL) to EOT in dapagliflozin vs. placebo arm. A: Improvement in
UACR categories. B: Deterioration in UACR categories.
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kidney disease. Treatments that improve
albuminuria status are associated with a
reduction in the progression of CKD
(13). Clinically, improvement in albumin-
uria status serves as a positive prognos-
tic factor for adverse CV and renal
outcomes, while increased albumin
excretion serves as a warning sign (14).
We previously reported a 24% decrease
in the composite cardiorenal outcome
of the trial (40% sustained decrease in
eGFR, ESKD, and renal or CV death)
(3,4). Here we demonstrated that the
improvement was most pronounced in
those patients with higher albuminuria
at baseline (Pinteraction = 0.0327), how-
ever this analysis was not adjusted
for the differences in the subgroups
population. This stands in contrast to
the renal-specific composite outcome
(defined as all of the above but without
CV death), in which the improvement
with dapagliflozin was independent of
baseline UACR (Pinteraction = 0.4801).
These results emphasize that dapagliflo-
zin improved renal outcomes in all
patients, but improvement of composite
cardiorenal outcomes was achieved in
patients who already had renal damage,
as evidenced by an increased UACR.
This finding widens the newer findings
from the Canagliflozin and Renal Events

in Diabetes with Established Nephropathy
Clinical Evaluation (CREDENCE) (5) and
Dapagliflozin And Prevention of Adverse
outcomes in Chronic Kidney Disease
(DAPA-CKD) (6) trials, both of which dem-
onstrated a lower rate of both renal and
cardiorenal outcomes in different popula-
tions of patients with CKD, with (5,6) and
without (6) type 2 diabetes.

While treatment with dapagliflozin
may improve prognosis even when initi-
ated in patients with kidney markers in
the normal-healthy range, the low rate
of adverse renal events in this popula-
tion may require longer duration of
treatment to demonstrate dapagliflo-
zin’s full effect. These results, along with
the improvement demonstrated in the
renal-specific outcome for all UACR sub-
groups, emphasize the way in which
DECLARE-TIMI 58 was able to add sup-
porting information to the renal-specific
outcomes trials (CREDENCE, DAPA-CKD,
EMPA-KIDNEY and others) (4–6,40)
regarding the effect of SGLT2i in the
healthier population of patients with
type 2 diabetes that is a large part of
the population with type 2 diabetes in
our daily practice but not well repre-
sented in renal outcomes trials.

These analyses must be viewed as
hypothesis generating, since one of the

dual primary efficacy outcomes (MACE)
was not achieved and because DECLARE-
TIMI 58 was a CV outcome trial rather
than a renal outcome trial. Though Afri-
can American and Hispanic patients are
at high risk for CKD, the limited number
of subjects enrolled from these categories
precludes a definitive understanding of
any race- or ethnicity-based differences in
outcomes or treatment effects (41).
Another limitation of our trial was that
we tested UACR only as a single sample,
rather than an average of two to three
samples, and only 6 months from base-
line and thereafter once yearly. The eGFR
dynamics in DECLARE-TIMI 58, including
the early drop following dapagliflozin initi-
ation, are not included in this analysis. An
additional limitation is the relatively low
number of patients in the highest risk cat-
egory of albuminuria (1,169 patients with
UACR >300 mg/g at baseline, <7% of
the entire trial population), reflected in
the relatively small number of renal
events. However, this can also be seen as
a possible strength of the trial, as this is
more representative of the general popu-
lation of patients with type 2 diabetes
worldwide (32–34).

In conclusion, in the large population
of patients with type 2 diabetes and
low renal risk in DECLARE-TIMI 58, we
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Figure 3—Treatment effect of dapagliflozin vs. placebo on composite cardiorenal and renal-specific outcomes according to baseline UACR catego-
ries of#15, >15 to <30,$30 to#300, and >300 mg/g. Cox model with stratification factor (baseline hematuria status and eASCVD or MRF sta-
tus). KM, Kaplan-Meier.
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were able to demonstrate a significant
positive long-term effect of dapagliflozin
on UACR, irrespective of baseline eGFR
and UACR, and even in patients with
normoalbuminuria at baseline. We also
demonstrated a reduction in renal-spe-
cific outcomes across all baseline UACR
categories. This reduction in UACR and
renal outcomes with dapagliflozin was
achieved on top of >80% use of ACEi/
ARBs. The possible association between
the positive effect of dapagliflozin on
albuminuria and its positive effect on
the cardiorenal and renal-specific out-
comes in DECLARE-TIMI 58 remain to
be further analyzed.
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