Glucose Management Indicator Based on Sensor Data and Laboratory HbA_{1c} in People With Type 1 Diabetes From the DPV Database: Differences by Sensor Type Diabetes Care 2020;43:e111-e112 | https://doi.org/10.2337/dc20-0259 Julia M. Grimsmann,^{1,2} Simone von Sengbusch,³ Markus Freff,⁴ Uwe Ermer,⁵ Kerstin Placzek,⁶ Thomas Danne,⁷ Elke Hammer,⁸ and Reinhard W. Holl,^{1,2} for the DPV Initiative The glucose management indicator (GMI) estimates HbA_{1c} from continuous glucose monitoring (CGM) profiles. The formula was developed with real-time CGM (rtCGM) sensors (1). As previous data indicated discrepancies between observed laboratory HbA_{1c} and CGM-derived estimates of HbA_{1c} for some individuals and sensor types (1,2), we aimed to compare observed HbA_{1c} and GMI using both rtCGM and intermittent scanning CGM (iscCGM) profiles collected during routine care in people with type 1 diabetes. We analyzed 132,361 CGM days from a total of 1,973 individuals with type 1 diabetes for ≥1 year from the German/Austrian/Swiss/Luxembourgian Prospective Diabetes Follow-up Registry (DPV) (3). As measurement ranges of the CGM devices differed, we truncated glucose values to the same range (40–400 mg/dL). We calculated the GMI from up to 90 CGM days per individual (median [interquartile range] 77 [46–89] days per individual) as GMI (%) = 3.31 + 0.02392 · [mean glucose (mg/dL)] (1). We compared GMI and observed HbA₁c at the end of the 90-day period overall and by age-group. Absolute differences between GMI and observed ${\rm HbA_{1c}}$ were illustrated for rtCGM vs. iscCGM and stratified by glucose variability, normal weight vs. overweight, and ${\rm HbA_{1c}} < 7.5\%$ vs. $\geq 7.5\%$ using boxplots. Low/high glucose variability was defined as coefficient of variation (CV = SD divided by the mean) $< 36/ \geq 36\%$. Overweight was defined based on German Health Interview and Examination Survey for Children and Adolescents (KiGGs) reference as > 90th percentile for individuals aged < 18 years and as BMI > 25 kg/m² for adults. Median age and duration of type 1 diabetes were 14 [10, 17] and 5 [3, 9] years, respectively; 52% (n=1,031) were boys/men, and 68% (n=1,329) were pump users. Mean (\pm SD) GMI estimated from CGM data were slightly higher than mean observed HbA $_{1c}$ in the overall cohort (7.8 \pm 0.9% vs. 7.6 \pm 1.2%) and within each age-group (<6 years: 7.5 \pm 0.7% vs. 7.2 \pm 1.0%, 6 to <12 years: 7.7 \pm 0.7% vs. 7.3 \pm 0.9%, 12 to <18 years: 8.0 \pm 0.9% vs. 7.8 \pm 1.3%, \ge 18 years: 7.7 \pm 1.0% vs. 7.6 \pm 1.3%). Overall, 11% (n=224) had an absolute difference between GMI and observed HbA $_{1c}$ of less than \pm 0.1%, and 46% (n = 910) had an absolute difference of at least \pm 0.5%. Stratification by sensor type revealed that mean GMI and HbA_{1c} were similar in rtCGM users (n = 341 CareLink Pro/ Personal, n=64 Dexcom G5; 7.6 \pm 0.7% vs. 7.6 \pm 1.1%), whereas iscCGM users (n = 1,568 FreeStyle Libre) had higher mean GMI than HbA_{1c} (7.9 \pm 0.9% vs. 7.6 \pm 1.2%). Similar patterns were observed after stratification by glucose variability or weight (Fig. 1): while absolute differences between GMI and laboratory HbA_{1c} were almost symmetrically distributed around 0 in rtCGM users, GMI was higher than the laboratory HbA_{1c} value in almost three-fourths of iscCGM users. This finding was still observed after additional stratification by age-group (data not shown). Stratification by HbA_{1c} level revealed higher GMI than HbA_{1c} in most individuals with HbA_{1c} <7.5%, with GMI-HbA_{1c} differences being higher in iscCGM users. In contrast, three-fourths of all rtCGM users with HbA_{1c} ≥7.5% had lower GMI than HbA_{1c}, whereas differences in iscCGM users with HbA_{1c} ≥7.5% were almost symmetrically distributed around 0 (Fig. 1). Corresponding author: Julia M. Grimsmann, julia.grimsmann@uni-ulm.de Received 5 February 2020 and accepted 4 June 2020 ¹Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Ulm, Germany ²German Center for Diabetes Research (DZD), München-Neuherberg, Germany ³University Hospital Schleswig-Holstein, Lübeck, Germany ⁴Princess Margaret Children's Clinic, Darmstadt, Germany ⁵Kliniken St. Elisabeth, Neuburg/Donau, Germany ⁶University Hospital Halle (Saale), Martin-Luther University, Halle, Germany ⁷Children's and Youth Hospital Auf der Bult, Hannover, Germany ⁸Catholic Children's Hospital Wilhelmstift, Hamburg, Germany Figure 1—Difference between CGM-derived estimated HbA1c and observed laboratory HbA1c-Difference between laboratory HbA_{1c} and GMI by sensor type, stratified by age-group, glucose variability, and HbA_{1c} (based on truncated sensor values). Boxes represent the interquartile range (IQR = Q3 - Q1), whiskers represent the 1.5-fold IQR, and dots represent 5th and 95th percentiles. Solid and dashed lines within boxes indicate median and mean, respectively. In conclusion, our analysis of glucose profiles collected during routine care from people with type 1 diabetes revealed discrepancies between CGMderived GMI and laboratory HbA_{1c} in a considerable subset of individuals. This finding is in line with results from Leelarathna et al., who analyzed data from three different rtCGM sensors. They found an absolute difference between GMI and laboratory HbA_{1c} of \geq 0.5% in one-third of all participants but found that only 20% of all participants had differences of <0.1%. It has been suggested that the difference between laboratory HbA_{1c} and CGM-derived GMI is clinically meaningful and should be considered when therapeutic goals are set (1). Our analysis, however, found that discrepancies between GMI and HbA_{1c} differed between iscCGM and rtCGM. Measurement ranges as well as distribution of sensor glucose values differed by sensor type. CGM systems typically have a higher accuracy in the euglycemic range, whereas accuracy often decreases in the hypoglycemic and/or hyperglycemic range (4). Moreover, different modes of calibration lead to different sensitivities and specificities in the detection of biochemical hypoglycemia (5). This indicates that it is necessary to adjust the GMI formula for sensor type. As both measures, CGM-derived GMI and laboratory HbA_{1c}, may affect therapeutic goals and diabetes management, further research is needed to examine potential explanatory factors, for example, duration of CGM usage, indication for usage, sensor type/version, ethnicity, subcutaneous adipose tissue, glucose variability, life span of red blood cells, or hemoglobinopathies that may affect glycosylation. Formulas specific for sensor type that account for the respective measurement range and type of calibration may be needed to accurately estimate Acknowledgments. The authors thank all individuals who contribute to the DPV database as well as the numerous participating DPV centers in Germany, Austria, Switzerland, and Luxembourg. Special thanks to A. Hungele and R. Ranz for support and development of the DPV documentation software and to K. Fink and E. Bollow for the DPV data management (all clinical data managers, Ulm University). Funding. This work was supported by the German Center for Diabetes Research (DZD) funded by the Federal Ministry of Education and Research (grant no. 82DZD0017G) and by a grant from the German Diabetes Association (DDG). The funders had no role in study design, data collection and analysis, preparation of the manuscript, or decision to publish. Duality of Interest. Additional funding was provided by Abbott and Sanofi. J.M.G. and R.W.H. report grants to their institution from Abbott, Lilly, Sanofi, Boehringer Ingelheim, and Novo Nordisk, outside the submitted work. S.v.S. is a consultant for Abbott, Dexcom, Lilly, Medtronic, and Novo Nordisk. She received speakers honoraria from Abbott. Berlin-Chemie. Lilly. Merck-Serono, Medtronic, and Novo Nordisk. T.D. reports grants and personal fees from AstraZeneca, Boehringer Ingelheim, Lilly, Dexcom, Medtronic, Novo Nordisk, Sanofi, and Ypsomed, outside the submitted work, and is a shareholder in DreaMed, Ltd. No other potential conflicts of interest relevant to this article were reported. Author Contributions. J.M.G. performed the statistical analysis, performed literature research, and wrote and edited the manuscript. S.v.S., M.F., U.E., K.P., T.D., E.H., and R.W.H. researched data, contributed to data interpretation and discussion, and reviewed and edited the manuscript. All authors reviewed and approved the final manuscript. R.W.H. is the guarantor of this work and, as such, had full access to the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis Prior Presentation. Parts of this work were presented at Advanced Technologies & Treatments for Diabetes (ATTD), Madrid, Spain, 19-22 February 2020. ## References - 1. Bergenstal RM, Beck RW, Close KL, et al. Glucose management indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. Diabetes Care 2018;41:2275- - 2. Angellotti E, Muppavarapu S, Siegel RD, Pittas AG. The calculation of the glucose management indicator is influenced by the continuous glucose monitoring system and patient race. Diabetes Technol Ther. 31 December 2019 [Epub ahead of print]. DOI: 10.1089/ dia.2019.0405 - 3. Hofer SE, Schwandt A, Holl RW; Austrian/ German DPV Initiative. Standardized documentation in pediatric diabetology: experience from Austria and Germany. J Diabetes Sci Technol 2016;10:1042-1049 - 4. Schrangl P, Reiterer F, Heinemann L, et al. Limits to the evaluation of the accuracy of continuous glucose monitoring systems by clinical trials. Biosensors (Basel) 2018:8:50 - 5. Seibold A, Schlaeger C. Comparison of continuous and flash glucose monitoring in type 1 diabetes: methodological inconsistency precludes hypoglycaemia conclusions. Diabet Med 2018; 35:1618-1619