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OBJECTIVE

Weanalyzeddata from inpatientswithdiabetes admitted toa largeuniversityhospital
to predict the risk of hypoglycemia through the use of machine learning algorithms.

RESEARCH DESIGN AND METHODS

Four years of data were extracted from a hospital electronic health record system.
This included laboratory and point-of-care blood glucose (BG) values to identify
biochemicalandclinicallysignificanthypoglycemicepisodes(BG£3.9and£2.9mmol/L,
respectively). We used patient demographics, administered medications, vital signs,
laboratory results, and procedures performed during the hospital stays to inform the
model.Twoiterationsof thedataset includedthedosesof insulinadministeredandthe
past history of inpatient hypoglycemia. Eighteen different prediction models were
compared using the area under the receiver operating characteristic curve (AUROC)
through a 10-fold cross validation.

RESULTS

We analyzed data obtained from 17,658 inpatients with diabetes who underwent
32,758 admissions between July 2014 and August 2018. The predictive factors from
the logistic regression model included people undergoing procedures, weight, type
of diabetes, oxygen saturation level, use of medications (insulin, sulfonylurea, and
metformin), and albumin levels. The machine learning model with the best
performancewas the XGBoost model (AUROC 0.96). This outperformed the logistic
regression model, which had an AUROC of 0.75 for the estimation of the risk of
clinically significant hypoglycemia.

CONCLUSIONS

Advanced machine learning models are superior to logistic regression models in
predicting the riskof hypoglycemia in inpatientswithdiabetes. Trials of suchmodels
should be conducted in real time to evaluate their utility to reduce inpatient
hypoglycemia.

Hypoglycemia is a common and serious complication affecting people with diabetes
(1). It is an inappropriately low blood glucose (BG) that results in significant morbidity
in people with type 1 diabetes and inmany people with type 2 diabetes (2). A BG level
of#3.9mmol/L is definedas level 1hypoglycemia. ABG level of 2.9mmol/L and lower
is defined as level 2 hypoglycemia requiring immediate action, as at that level,
neurogenic andneuroglycopenic symptomsbegin tooccur (3). Hypoglycemia can lead
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topermanent neurological damage if not
treated promptly and can ultimately be
fatal (1).
Hypoglycemia is an important and

common clinical problem under inpatient
settings. Retrospective analysis of a U.S.
electronic medical records database
showeda20% incidenceofhypoglycemia
and a 7% incidence of severe hypogly-
cemia (4). There was an associated 66%
increase in adjusted inpatient mortality
risk and greater than 50% increase in
length of hospitalization stay. In a cross-
sectional national audit of over 200 hos-
pitals intheU.K., the2017NationalDiabetes
Inpatient Audit showed that almost one
in five people with diabetes experience
hypoglycemia during their hospital stay.
Although only 7% experience a severe
(level 2) hypoglycemic episode, this rises
to 26.9% of all patients with type 1 di-
abetes with 185 people over the course
of 1 week requiring injectable rescue
treatment for their hypoglycemia. Inpa-
tient hypoglycemia has been implicated
in the development of adverse clinical
and economic outcomes, including in-
creased mortality (5–7), adverse cardio-
vascular outcomes (8,9), and increased
duration of hospital stay (6,10,11).
A recent review article has highlighted

the urgent need for evidence-based
methodologies to reduce inpatient hy-
poglycemia. Several strategies have al-
ready been developed to predict and
prevent the occurrence of inpatient hy-
poglycemia (12). One approach to re-
ducing inpatient hypoglycemia is to
retrospectively analyze historical clinical
data and develop a prediction tool to
determine the individualized risk of hy-
poglycemia during an inpatient admis-
sion.Withsuchapredictiontool,prevention
measures can be tested in inpatients with
high hypoglycemia risk. The possibility of
developing such a prediction tool lies in the
growing availability of rich clinical data sets
stored in a hospital’s electronic patient
records (EPR) system.
Previous studies have used clinical

information from local healthcare sys-
tems to develop inpatient hypoglycemia
risk prediction tools (13–15). In one
study, the prediction model developed
by the researchers was tested in a clinical
trial. This demonstrated the feasibility
of using such a model to reduce se-
vere hypoglycemia (glucose ,40 mg/dL
or ,2.2 mmol/L) in inpatients with di-
abetes (14).

However, previous studies have only
applied multilinear or logistic regression
models on these data sets resulting in
only amodest predictive capability of the
models. Over the last few years, a num-
ber of advanced machine learning tech-
niques have been developed within the
field of biomedical engineering (16).
These can be used to create predictive
models which can be tested and com-
pared with traditional logistic regression
models in order to determine the model
with the best predictive performance.
This is the first study to assess the
performance of novel machine learning
models in predicting the risk of inpatient
hypoglycemia.

RESEARCH DESIGN AND METHODS

We compared the performance of 18
different machine learning algorithms in
predicting the risk of hypoglycemia in
inpatients with diabetes.

Data Set
The study was approved by the Oxford
University Hospitals National Health Ser-
vice Foundation Trust Clinical DataWare-
house ProgramBoard following completion
of a Data Protection Impact Assessment.
Data from Oxford University Hospitals Na-
tional Health Service Foundation Trust was
usedwhich includedtheCernerEPRsystem,
the laboratory information management
system and the point-of-care testing
system. All the data used was collected
for routine patient management with no
additional data input required for the
modeling. The data set contains hospital
admission data from 1 September 2014
to 30 June 2018 for qualified patients
with diabetes. The qualified patients are
defined asmeeting the following criteria:
1) being an inpatient as coded in the EPR;
2) having one diagnosis code among E10
(type 1 diabetes), E11 (non–type 1 di-
abetes), E13 (other specified diabetes),
E14 (unspecified diabetes), or O24 (di-
abetes in pregnancy) as defined in the
World Health Organization ICD-10 (17);
and 3) having at least one BG test per-
formed during the hospital admissions.
Hospital admission data for qualified
patients, including patient demographics,
procedures undertaken, diagnosis, labo-
ratory tests, medication administration
details, and vital signs, were extracted
from different source data systems and
pooled into a final data table for use by
the machine learning prediction models.

A schematic representation of the data
flow from the source data systems to the
final data set used in the current study is
depicted in Supplementary Fig. 1.

Predictors and Outcome
The outcome of interest in the current
study is the risk of inpatient hypoglyce-
mia during a hospital admission. We
prepared two binary outcome variables
Hypo,4.0 and Hypo,3.0 for each hospital
admission representing two different
severities of the potential hypoglycemic
episodes since the degree of hypoglyce-
miamaybe influencedbydifferent clinical
predictors.Weput value 1 toHypo,4.0 for
any level 1 hypoglycemic episode (any BG
measurement,4mmol/L) and value 1 to
Hypo,3.0 for any level 2 hypoglycemic
episode(anyBGmeasurement,3mmol/L)
detected during the hospital admission,
and value 0 to the two variables if no
hypoglycemic episode detected (all BG
measurements .4 mmol/L).

We preprocessed the integrated data
set from the EPR and prepared 42 can-
didate predictors of interest based on
clinical knowledge and previous studies.
The predictors cover patient demograph-
ics (age, sex, and soon), procedures (value
1 for at least one procedure undertaken),
laboratorytest results (sodium,potassium
levels, and so on), medication adminis-
tration details (names and doses of med-
ication delivered including different types
of insulin), and vital signs (temperature,
heart rate, andsoon).Additional variables
were added to thedata set to improve the
performance of the prediction algorithm.
These included an episode of hypogly-
cemia in a previous admission within
6 months. Table 1 shows the full list of
predictors and how they were repre-
sented in the source data systems and
in the prediction models with units of the
predictors provided.

Prediction Models
Weevaluated thepredictionperformance
of 18 different machine learning models
on the data set. The models were used to
predicttheriskofhypoglycemia(eitherBG
,4.0mmol/L [Hypo,4.0] or,3.0 mmol/L
[Hypo,3.0]). A total of 42 different vari-
ables were used as inputs into the pre-
diction model. The models cover a wide
range of commonly used classification
algorithms including logistic regression,
random forests, and artificial neural
networks that have been previously
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demonstrated to be robust and applica-
ble to big data sets.

Model Validation and Comparison
For internal model validation, we used a
10-fold cross-validation. We randomly
selected nine-tenths of the data set to be
the training data set (developing themodel)
and the remaining one-tenth to be used
to validate the model.
Theoutcomevariables indicatewhether

or not a hypoglycemic episode occurred
during an admission. The model was

constructed to predict the probability of
at least one hypoglycemic episode oc-

curring.Wemeasured the area under the

receiver operating characteristic curve

(AUROC), which shows the probability

that the model correctly ranks the risk of

hypoglycemia) higher no hypoglycemia.

The AUROC is not sufficient on its own to

use as a hypoglycemia prognostic model

as it does not take into account the

prevalence of hypoglycemia in the popu-

lation. It assumes that positive and neg-

ative predictions are equally important. A

detailed technical analysis of the short-
comings of the AUROC was recently con-

ducted by Saito et al. (18). To ensure a

comprehensive assessment of pre-

dictive performance, we used additional

metrics. We used the terminology TP to

represent the number of true positive

predictions; FP to represent the number

of false positives; TN to represent the

number of true negatives; and FN to

represent the number of false negatives.

We defined precision (positive predictive

value) as the ratio TP/(TP1 FP). This is a

Table 1—Potential predictors and how they are represented in the EPR and in the prediction models

Category Predictor Data in EPR Data in models Unit
Completeness

(%)
Data
sets

Demographics Age Year of birth Computed based on the year of admission years 100 IH
Sex Male/female Binary variable (1/0) NA 100 IH
Ethnicity Ethnicity (categorical value) Categorical variable (white British, African, etc.) NA 100 IH
Weight Weight measured at time of

admission
Weight value kg 71 IH

Height Height measured at time of
admission

Height value cm 59 IH

Type of diabetes Type of diabetes (categorical
value)

Categorical variable (T1D/T2D/other) NA 100 IH

Vital signs Diastolic blood pressure Multiple measurements Average value throughout the admission mmHg 73 IH
Systolic blood pressure Multiple measurements Average value throughout the admission mmHg 73 IH
Heart rate Multiple measurements Average value throughout the admission /min 71 IH
Oxygen saturation Multiple measurements Average value throughout the admission % 73 IH
Temperature Multiple measurements Average value throughout the admission Celsius 72 IH

Laboratory tests Albumin Multiple measurements Average value throughout the admission g/L 81 IH
Amylase Multiple measurements Average value throughout the admission IU/L 15 IH
C-peptide Multiple measurements Average value throughout the admission pmol/L 17 IH
Cortisol Multiple measurements Average value throughout the admission nmol/L 26 IH
Creatinine Multiple measurements Average value throughout the admission mmol/L 80 IH
C-reactive protein Multiple measurements Average value throughout the admission mg/L 78 IH
eGFR Multiple measurements Average value throughout the admission mL/min/

1.73 m2
80 IH

Hemoglobin Multiple measurements Average value throughout the admission g/L 80 IH
HbA1c Multiple measurements Average value throughout the admission % 42 IH
Potassium Multiple measurements Average value throughout the admission mmol/L 80 IH
Sodium Multiple measurements Average value throughout the admission mmol/L 80 IH
White cells Multiple measurements Average value throughout the admission 3 109/L 79 IH

Medications Sulfonylurea Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
DPP-4 Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
GLP-1 Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Metformin Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Morphine Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Pioglitazone Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Bisoprolol Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Amitriptyline Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Pregabalin Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Dexamethasone Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Prednisolone Drug dose and time Binary variable (1 for on drug and 0 for not) NA 100 IH
Intravenous insulin Multiple rates of insulin

infusion
Binary variable (1 for on i.v. insulin and 0 for not) NA 100 IH1

Insulin (rapid-acting analog) Multiple doses of different
amount

Average total daily insulin dose unit 100 IH1

Insulin (mixed analog) Multiple doses of different
amount

Average total daily insulin dose unit 100 IH1

Insulin (long-acting analog) Multiple doses of different
amount

Average total daily insulin dose unit 100 IH1

Insulin (short-acting human) Multiple doses of different
amount

Average total daily insulin dose unit 100 IH1

Insulin (mixed human) Multiple doses of different
amount

Average total daily insulin dose unit 100 IH1

Insulin (intermediate-acting
human)

Multiple doses of different
amount

Average total daily insulin dose unit 100 IH1

Procedures Procedure indication Procedure name and time Binary variable (1 for had at least one procedure
during the admission and 0 for not)

NA 100 IH1

Previous
hypoglycemia

Previous biochemical
hypoglycemia

Blood glucose measurements Binary variable (1 for had at least one blood
glucose ,4 mmol/L)

NA 63 PH

Previous clinically significant
hypoglycemia

Blood glucose measurements Binary variable (1 for had at least one blood
glucose ,3 mmol/L)

NA 63 PH

DPP-4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide 1; NA, not applicable; T1D, type 1 diabetes; T2D, type 2 diabetes. Insulin (rapid-acting
analog): “Insulin aspart,” “Insulin lispro,” “Insulin glulisine,” “Insulin faster actingaspart.” Insulin (mixedanalog): “Insulin aspart biphasic (Novomix30),”
“Insulin lispro biphasic (Humalog Mix 25 and Humalog Mix 50).” Insulin (long-acting analog): “Insulin glargine,” “Insulin detemir,” “Insulin degludec.”
Insulin (short-acting human): “Insulin Actrapid,” “Insulin Humulin S.” Insulin (mixed human): “Insulin Humulin M3.” Insulin (intermediate-acting
human): “Insulin Insulatard,” “Insulin Humulin I.”
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measure of the ability of the model to
correctly predict a patient as having hy-
poglycemia.Wedefinedrecall (sensitivity)
as theratioTP/(TP1FN).This isameasure
of the ability of the model to label as
hypoglycemic all of patients who did in-
deed develop hypoglycemia. The preci-
sion and the recall were calculated for
each machine learning model (Table 3).

Model Development
Following the development of the initial
model (inpatient hypo [IH]), two further
iterations of the data set were carried out.
In thefirst change to thedata set, the dose
of insulin was added and the variable of
intravenous insulin was indicated sepa-
rately (IH1). In the second change, any
previous admission in the last months
containing a low glucose (,3 and ,4
mmol/L) were added (previous hypo
[PH]). The 18 different machine learning
models were then rerun on each of these
new data sets, and the model outputs
were compared with the original data
set. The last column in Table 1 shows
which variable is used in each data set.

Variable Ranking
We sought to understand how the dif-
ferent variables contributed to the pre-
dictions by the XGBoost model (the best
predictive model among the 18 tested
models). We evaluated the predictive
power of each individual variable by
providing XGBoost with one variable at a
time and assessing the diagnostic accu-
racy of the model that it constructed
using only that variable. We evaluated the
AUROC (using 10-fold cross-validation)
to get a full picture of each variable’s
predictive power.

Statistical Analysis
All statistical analyses were performed
using Python 3.6 and R version 3.3. All
algorithms were implemented with the
machine learning library “sklearn” (19)
that contains all the algorithms and data
science utilities used in this report. In-
ternal validationwasobtainedvia 10-fold
stratified cross-validation. Performance
comparisonsweremadewith t tests from
whichwe specified P values,0.001 tobe
considered statistically significant.

RESULTS

Baseline Characteristics
We analyzed data obtained from 17,658
inpatients with diabetes (9,277 males,

mean [SD], age 66 [18] years) who un-
derwent 32,758 hospital admissions be-
tween July 2014 and August 2018. We
identifiedall thebiochemical (level 1) and
clinically significant (level 2) hypoglyce-
mic episodes during these admissions.
The incidence of biochemical hypoglyce-
miaduringahospital admissionwas21.5%
and that of clinically significant hypogly-
cemia was 9.6%. This is in keeping with
data from the National Diabetes Inpatient
Audit (20).

A selection of the baseline character-
istics of the inpatient cohort and the
glycemicoutcomesarereported inTable2.

Model Performance

The performancemetrics of themachine
learningmodels testedon thePHdata set
are presented in Table 3. The AUROC
varied between 0.62 and 0.96 for differ-
ent machine learning models. The esti-
mation performance was better when
predicting the risk of Hypo,3.0 compared
with predicting that of Hypo,4.0. The
AUROC for the logistic regression model
was acceptable with 0.73 and 0.75 for
estimation of the risk of Hypo,4.0 and
Hypo,3.0, respectively. However, the
best performingmodel for predicting the
risk of Hypo,4.0 and Hypo,3.0 was the
XGBoost model, which had the highest
AUROC (0.96 for both), the highest pre-
cision value (0.88), as well as a high recall
value (0.70) among all themodels. Figure
1 shows the ROC curves contrasting the
logistic regression, gradient boosting,
decision tree, and XGBoost models.
Supplementary Table 4 shows the nor-
malized confusion matrix for these four
models with the true positive and true
negative rates on the upper left and
lower right in the matrices, respectively.
The XGBoost model was again the best
performing model with a true positive
rate of 0.98 and a true negative rate of
0.71 (Supplementary Table 4).

Logistic Regression Model
Estimated regression coefficients with
SEs and P values from the logistic re-
gression model with the PH data set are
presented in Supplementary Table 3. The
variables that are significantpredictors of
hypoglycemia are shown in Table 4.
Similar predictors for Hypo,4.0 and
Hypo,3.0werefound.Significantpredictors
for both Hypo,4.0 and Hypo,3.0 included
weight, type of diabetes, oxygen saturation,

albumin level, sulfonylurea use,metformin
use, intravenous insulin titration, long-
acting human insulin use, procedures
undertaken, and previous hypoglycemic
episode.

Model Development
Two iterations of the original data set
were carriedoutduring thedevelopment
of the prediction model. Supplementary
Table 1 shows that the addition of a
variable to discriminate patients on in-
travenous insulin compared with those
on subcutaneous insulin and a variable
for the dose of subcutaneous insulin
(IH 1 data set) increased the best per-
forming model (XGBoost) AUROC by
3 percentage points for Hypo,4.0. When
the PH data set was used, all models
showed higher AUROC values while the
XGBoost and gradient boosting models
stood out with a significant increase of
AUROC by 15 percentage points.

Variable Ranking
Supplementary Table 2 demonstrates
the relative importance of the variables
with the top three most important var-
iables being previous hypoglycemic epi-
sodes,albumin levels,andtype2diabetes.
A number of novel predictive variables
were identifiedfromthemachine learning
method. These include several vital signs
and medications that have logical clinical
rationale underlying their importance to
hypoglycemia. Further studies will be re-
quired to confirm their importance in the
development of hypoglycemia.

CONCLUSIONS

To our knowledge, this is the first study
comparing the performance of advanced
machine learning models in predicting
the risk of inpatient hypoglycemia. With
the rich inpatient data set collected from
the EPR system in a large university
hospital, the 18machine learningmodels
showed high predicting power with an
average AUROC at 0.85 for the detection
of clinically significant hypoglycemia. The
model with the highest AUROC (0.96)
was the XGBoost model, which outper-
formed the logistic regression model.
This model performed equally well in
predicting both level 1 hypoglycemia
(BG ,4 mmol/L) and level 2 hypoglyce-
mia (BG ,3 mmol/L).

Among the 18 evaluated machine
learning models, most machine learning
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prognostic models performed markedly
better than the predictions of the linear
regression model. XGBoost is a highly
flexible nonparametricmodel that integra-
tes a large number of other machine
learning models (decision trees). It was
consistently the best performer with the
highest AUROC, the highest precision,
and good recall. It is important to note
that XGBoost performed significantly
better than the linear regression model,
which has been used to predict inpatient
hypoglycemia. There was an improve-
ment of over 20 percentage points in

terms of AUROC for prediction of both
biochemical and clinically significant hy-
poglycemia. The high predictive capabil-
ityof theXGBoostmodel also camewitha
high precision and recall showing low
levels of overestimation of risk and low
levels of missed events.

With the stepwise iteration of the data
set, the predictive ability of the XGBoost
model and some other models im-
proved significantly. This was in contrast
to the logistic regression model, which
showed no significant improvement.
This emphasizes the importance of

developing a clinically relevant and
comprehensive data set on which to
base any machine learning in order to
optimize the capability of the learning
algorithm.

Our data set covers a wide range of
potential predictors of inpatient hypo-
glycemia. The logistic regression model
detected a number of significant predic-
tors for clinically significant hypoglyce-
mia including weight, type of diabetes,
diastolic blood pressure, oxygen satura-
tion, temperature, albumin levels, sulfo-
nylurea use, metformin use, intravenous
insulin use, high dose of long-acting
human insulin, and people undertaking
procedures (see Supplementary Table 3).
Previous studies also found similar pre-
dictors, such as the albumin levels and
glucose-lowering drugs (13,15,21). In our
data set, undertaking any kind of pro-
cedure was also found to be a significant
predictor. This is clinically understand-
able as procedures may disrupt the daily
hospital routine of food intake and drug
administration and, thereby, cause in-
creased variability in glycemic levels.

Our machine learning models outper-
form other inpatient hypoglycemia pre-
diction models that have been published
using logistic or multivariate regression
techniques. These have shown a discrim-
ination of between 0.70 and 0.80 (15,21).
Our model development also includes a
variable for previous hypoglycemia,
which has not previously been included
in other prediction models.

Machine learning models have been
widely used within hospital information
systems to predict the risk of emergency
admission, sepsis in the intensive care
unit, and identifying type 2 diabetes
using electronic health records (22–24).
Theperformanceof the current study also
compares favorably to these other pre-
dictive models that have an AUROC of
between 0.75 and 0.85.

There are several key strengths of the
current study. First, we evaluated a wide
range of machine learning models and
compared their predicting ability against
the most commonly used statistical
model, which we used as a benchmark
model. Second, we used an iterative
approach to develop the model with
additional variables that revealed how
significant improvements to the model
could be achieved. Third, this was the
largest data set used to predict inpatient
hypoglycemia containing the data for

Table 2—Baseline characteristics and glycemic outcomes of the inpatients cohorts

Predictors

Inpatients with diabetes (N 5 17,658)

Inpatient hospital admissions (n 5 32,758)

Sex, N (%)
Female 8,381 (47)
Male 9,277 (53)

Age, mean (SD) 66 (18)

Ethnicity, N (%)
White British 12,511 (70.8)
African 116 (0.7)
Pakistani 331 (1.9)
Chinese 53 (0.3)
Indian 254 (1.4)
Not stated 2,869 (16.2)
Other 1,524 (8.6)

Type of diabetes, N (%)
Insulin-dependent diabetes 1,696 (9.6)
Non–insulin-dependent diabetes 14,006 (79.3)
Other forms 1,956 (11.1)

Systolic blood pressure, mean (SD) 132.5 (18.2)

eGFR, mean (SD) 29.8 (6.4)

Medication use
Sulfonylurea, n (%) 6,435 (19.6)
DPP-4, n (%) 1,415 (4.3)
GLP-1, n (%) 349 (1.1)
Metformin, n (%) 10,756 (32.8)
Insulin, n (%)
Intravenous insulin 4,678 (14.3)
Rapid-acting analog 3,954 (12.1)
Mixed-acting analog 1,553 (4.7)
Long-acting analog 5,118 (15.6)
Short-acting human 3,561 (10.9)
Mixed-acting human 1,388 (4.2)
Intermediate-acting human 2,394 (7.3)

Procedures, n (%) 22,931 (70.0)

Glycemic outcomes
Hypoglycemia, n (%)
Biochemical hypoglycemia 7,030 (21.5)
Clinically significant hypoglycemia 3,154 (9.6)

BG level, mean (SD) 10.1 (4.7)

N (%), number of patients and percentage over the total number of patients; n (%), number of
admissions and percentage over the total number of admissions. DPP-4, dipeptidyl peptidase 4;
GLP-1, glucagon-like peptide 1. Insulin (rapid-acting analog): “Insulin aspart, ” “Insulin lispro, ”
“Insulin glulisine, ” “Insulin faster acting aspart. ” Insulin (mixed analog): “Insulin aspart biphasic
(Novomix 30), ” “Insulin lispro biphasic (Humalog Mix 25 and Humalog Mix 50). ” Insulin (long-
acting analog): “Insulin glargine, ” “Insulin detemir, ” “Insulin degludec. ” Insulin (short-acting
human): “Insulin Actrapid, ” “Insulin Humulin S. ” Insulin (mixed human): “Insulin Humulin M3. ”
Insulin (intermediate-acting human): “Insulin Insulatard, ” “Insulin Humulin I. ”
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32,758 hospital admissions. It also in-
tegrated clinical information that pre-
vious studies have not considered before,
such as the medication dosage infor-
mation and hypoglycemia in previous
admissions.
However, as with all modeling efforts,

there are also limitations. One limitation
with the data set is the unavailability of
carbohydrate intake/meal content infor-
mation from the EPR during the hospital
admissions. Carbohydrate intake has a
direct impacton thepostprandial glucose
excursions and, consequently, the prandial

insulin doses titrated to individuals and
could be an important predictor for
hypoglycemic events. This information
is unavailable because it is not routinely
recorded electronically in hospitals. Sec-
ond, the current electronic health record
doesnot record the levelofhypoglycemia
unawareness, prior continuous glucose
monitoring (CGM) data, or prior self-
monitoring of BG. These data are likely to
be an important factor in developing
hypoglycemia while in hospital, although
for acutely unwell patients, these data
may not be directly applicable. Third, our

data set is derived from a single organi-
zation, and the generalizability of our
best performingmachine learningmodel
needs to be tested in other data sets and
evaluated in other centers. Finally, al-
though we have developed a highly pre-
dictivemodel for inpatient hypoglycemia,
the feasibility of using thismodel needs to
be tested within a live EPR to confirm the
ability of themodel to receive data in real
time and ensure that the model performs
as strongly as the current data suggests.

One of the advantages of the current
prediction model is that it uses variables
that are readily accessiblewithin the EPR.
As a result, the model can be integrated
into a decision support system under the
EPR framework. In practice, the decision
support system would access the clinical
information of a new inpatient and feed
the required information to the predic-
tion model, which would then calculate
the risk of thepatient experiencing either
biochemical or clinically significant hy-
poglycemia during his or her hospital
admission. This would enable the de-
cision support system to suggest appropri-
ate treatment options based on individual
risk levels, thereby reducing hypoglycemia
and its consequent associated morbidity
and potentially reduce the economic bur-
den of prolonged hospital stay due to

Table 3—Performance metrics of the machine learning models based on the PH data set

Machine learning algorithm

Biochemical hypoglycemia (BG ,4 mmol/L) Clinically significant hypoglycemia (BG ,3 mmol/L)

AUROC Precision Recall AUROC Precision Recall

Logistic regression 0.73 0.48 0.10 0.75 0.39 0.10

SGD 0.74 0.12 0.10 0.77 0.10 0.10

kNN 0.62 0.40 0.18 0.62 0.30 0.15

Decision tree 0.81 0.70 0.71 0.84 0.68 0.73

Gaussian-naive Bayes 0.81 0.47 0.68 0.86 0.33 0.81

Bernoulli-naive Bayes 0.82 0.60 0.60 0.86 0.47 0.67

Multinomial-naive Bayes 0.75 0.10 0.10 0.79 0.10 0.10

SVM 0.79 0.73 0.10 0.83 0.41 0.10

QDA 0.77 0.23 0.96 0.89 0.15 0.97

Random forest 0.94 0.86 0.67 0.93 0.96 0.66

Extra trees 0.93 0.85 0.68 0.93 0.94 0.66

LDA 0.88 0.69 0.75 0.90 0.72 0.72

Passive aggressive 0.76 0.46 0.25 0.77 0.33 0.10

AdaBoost 0.89 0.68 0.60 0.93 0.63 0.46

Bagging 0.93 0.84 0.70 0.92 0.93 0.67

Gradient boosting 0.96 0.87 0.70 0.96 0.96 0.67

XGBoost 0.96 0.88 0.70 0.96 0.97 0.67

MLP 0.74 0.57 0.17 0.78 0.47 0.14

Mean (SD) 0.82 (0.10) 0.59 (0.25) 0.49 (0.29) 0.85 (0.10) 0.55 (0.31) 0.48 (0.31)

kNN, k-nearest neighbor; LDA, linear discriminant analysis;MLP,multilayer perceptron (artificial neural network);QDA, quadratic discriminant analysis;
SGD, stochastic gradient descent; SVM, support vector machine.

Figure 1—ROC curves for logistic regression, XGBoost, and decision tree model when predicting
biochemical hypoglycemia.
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hypoglycemia. Inaprevious single-center
study, a linear regression prediction model
with a sensitivity of 50% and specificity of
71% was used to detect patients at risk for
hypoglycemia. Clinician education resulted
in medication change in 40% of patients
and a reduction of 68% in the rate of severe
hypoglycemia in alerted high-risk patients
versus nonalerted high-risk patients (14).
Thebenefitsofasignificantlymorepowerful
prediction model based on machine learn-
ing need to be evaluated in a large multi-
center randomized controlled trial.
Another potential application of the

predictionmodel is the selection of high-
risk patients who may benefit from an
advanced treatmentoption, suchasCGM
or closed-loop insulin delivery. Theuse of
CGM in the inpatient setting was con-
sidered at a recent symposiumwhere the
trials in both the intensive care unit and
non–intensive care unit settings were
reviewed (25). While there was some
evidence that CGMmay reduce the rates
of severe hypoglycemia, it was recog-
nized that there were limited data on
clinical outcomesand that such technology
may be most suitable for “populations.. at
high risk for glucose variability and hypo-
glycemia.” Closed-loop insulin delivery, or
artificial pancreas, is a novel treatment
option for people with diabetes who
require exogenous insulin administration
(26). The system titrates insulin based
on real-time glucose monitoring and a

titrationalgorithm.Previous clinical stud-
ies have shown promising glycemic re-
sults of the closed-loop systems under
inpatient settings (27,28). However, the
system is costly and cannot be applied in
every inpatient with diabetes. Prediction
models, such as the one described in this
study, could be used as a preselection
tool to determine which patients would
benefit the most from CGM or auto-
mated insulin delivery.

In conclusion, this study demonstrates
for the first time, the utility of advanced
machine learning models in predicting
the risk of hypoglycemia for inpatients
with diabetes.Wehave shown that these
models are significantly better in predicting
inpatienthypoglycemia than the traditional
logistic regression model. However further
trials are needed to determine if this pre-
diction model provides a significant clinical
advantage over traditional logistic regres-
sion analysis or more simple risk factor
prediction models, e.g., insulin use alone.
Such machine learning models need to be
evaluated within a real-time clinical setting
to demonstrate their ability to predict
hypoglycemia following admission. The
use of new technological methods, such
as machine learning and artificial intel-
ligence, are not a substitute for clinicians,
but they should be used to enhance
clinical judgement and support everyday
decisions.Multicenter clinical trials are now
needed to evaluate their utility within a

clinical decision support system and reduce
the burden of hypoglycemia in hospital.
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