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OBJECTIVE

Maternal gestational diabetes mellitus (GDM) has been associated with adverse
outcomes in the offspring. Growing evidence suggests that the epigenome may
play a role, but most previous studies have been small and adjusted for few
covariates. The current study meta-analyzed the association between maternal
GDM and cord blood DNAmethylation in the Pregnancy and Childhood Epigenetics
(PACE) consortium.

RESEARCH DESIGN AND METHODS

Seven pregnancy cohorts (3,677 mother-newborn pairs [317 with GDM]) contrib-
uted results fromepigenome-wide association studies, usingDNAmethylation data
acquired by the Infinium HumanMethylation450 BeadChip array. Associations
betweenGDMandDNAmethylationwere examined using robust linear regression,
with adjustment for potential confounders. Fixed-effects meta-analyses were
performed using METAL. Differentially methylated regions (DMRs) were identified
by taking the intersection of results obtained using two regional approaches:
comb-p and DMRcate.

RESULTS

Two DMRs were identified by both comb-p and DMRcate. Both regions were
hypomethylated in newborns exposed to GDM in utero compared with control
subjects. One DMR (chr 1: 248100345–248100614) was located in the OR2L13
promoter, and the other (chr 10: 135341870–135342620) was located in the gene
bodyofCYP2E1. IndividualCpGanalysesdidnot reveal anydifferentiallymethylated
loci based on a false discovery rate–adjusted P value threshold of 0.05.

CONCLUSIONS

Maternal GDMwas associatedwith lower cord bloodmethylation levelswithin two
regions, including the promoter ofOR2L13, a gene associatedwith autism spectrum
disorder, and the gene body of CYP2E1, which is upregulated in type 1 and type 2
diabetes. Future studies are needed to understand whether these associations are
causal and possible health consequences.
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Gestational diabetes mellitus (GDM) is
one of the most common pregnancy
complications, with prevalence estimates
ranging from 2% to 25% depending on
the screening and diagnostic criteria
used and the population examined
(1,2). In addition to the adverse preg-
nancy and delivery outcomes associated
withGDM,which can include preeclamp-
sia, macrosomia, and shoulder dystocia
(3), women diagnosedwith GDMare four
times more likely to have children who
develop metabolic syndrome later in life
and twice as likely to have children who
becomeoverweight or obese (4). There is
also evidence that maternal GDM during
pregnancy alters fetal growth trajectories
(5) and adversely affects neurodevelop-
ment (6,7). Thus, understanding the mo-
lecular changes related to prenatal
exposure toGDMcould havewidespread
implications for children’s health.
One potential mechanism underlying

such a diverse array of GDM-associated
outcomes is epigenetic dysregulation. In
support of this, a growing number of
studies have observed associations be-
tween GDM and cord blood DNA meth-
ylation patterns (8–17). However, the
majority of studies have been small
(e.g., ,100 participants or ,30 GDM
cases), adjusted for few if any covariates,
and used lenient or no adjustment for
multiple testing (8–10,12–15,17), which
may have contributed to a lack of rep-
lication of results across studies.
There has therefore been a call for

research on GDM and offspring DNA

methylation within larger studies (18).
The current study conducted a meta-
analysis of results from epigenome-
wide association studies (EWAS) of
GDM and cord blood DNA methylation
patterns from seven cohorts participat-
ing in the Pregnancy and Childhood
Epigenetics (PACE) consortium (19). Ad-
ditionally, we conducted a look-up in our
meta-analysis results for CpGs that were
previously identified as differentially
methylated in prior publications.

RESEARCH DESIGN AND METHODS

Participating Cohorts
All cohorts in the PACE consortium (19)
were invited to participate in the current
meta-analysis. Seven cohorts, representing
eight countries, participated, contributing
a total of 317 GDM case and 3,360 con-
trol subjects (Table 1 and Supplementary
Table 1). These cohorts are the Avon
Longitudinal Study of Parents and Children
(ALSPAC), the Genome-Wide Population-
Based Association Study of Extremely
Overweight Young Adults (GOYA), the
Healthy Start Study, Proyecto Infancia y
Medio Ambiente (INMA), the Prediction
and Prevention of Preeclampsia and In-
trauterine Growth Restriction (PREDO)
study, Project Viva, and a pooled analysis
of three cohorts: the Rhea Study (RHEA),
the ENVIRonmental influence ON early
AGEing (ENVIRONAGE) study, and the
Piccolipiù study (RHEA/ENVIRONAGE/
Piccolipiù). Cohort details are described
in the Supplementary Data. Each cohort
received ethics approval and informed

consent from participants prior to data
collection, and the current meta-analysis
was approved by the Health Sciences
Institutional Review Board of the Uni-
versity of Southern California.

GDM
Participants diagnosed with type 1 or
type 2 diabetes prior to the index preg-
nancy were excluded from analyses.
The criteria used to classify GDM cases
are summarized by cohort in Table 1
and are also described in more detail
in the Supplementary Data. For all co-
horts except Piccolipiù, GDM was
primarily classified based on informa-
tion that was abstracted from medical
records. Due to a lack of interna-
tional consensus, the criteria used to
classify GDM differ by country and have
changed over time. In the U.S. and some
European countries, GDM is often
diagnosed using a two-step approach,
which entails universal screening with a
50-g glucose challenge test, followedbya
100-g 3-h oral glucose tolerance test
(OGTT) for those who test positive
(20). In contrast, some European coun-
tries have adopted the International
Association of Diabetes and Pregnancy
Study Groups (IADPSG) guidelines (21),
which recommend a one-step approach,
inwhich a 75-g 2-hOGTT is performed for
all women at 24–28 weeks’ gestation.
Furthermore, some countries use a se-
lective approach and only administer
GDM diagnostic tests to women with
traditional risk factors. GDM cases
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from theHealthy Start Study, Project Viva,
RHEA, and ENVIRONAGE were classified
based on the two-step approach, using
the Carpenter-Coustan criteria (22). GDM
cases from PREDO were classified based
on the IADPSG one-step approach.
Piccolipiù identified GDM cases based
on self-reported questionnaire data col-
lectedat delivery, andall butone casewas
confirmed using medical record data
(IADPSG one-step approach [21]). GDM
cases from INMA were diagnosed using
a selective screening approach, where
women at high risk for GDM were
administered a glucose challenge test,
followed by a diagnostic OGTT, using
the Carpenter-Coustan criteria (22).
GDM cases from ALSPAC and GOYA
were diagnosed based on the practices
at the time in the U.K. and Denmark,
respectively, in which diagnostic tests
were only performed for women 1) at
high risk for GDM based on established
risk factors or 2) with glycosuria (23,24).
Given anticipated underreporting of
GDM in themedical records, information
from telephone interviewswas also used
to classify GDM cases in GOYA.

Methylation Measurements
Cord blood DNA was bisulfite converted
using a EZ-96 DNA Methylation Kit (Zymo

Research Corporation, Irvine). Each co-
hort measured DNA methylation using
the Infinium HumanMethylation450
BeadChip array (Illumina, San Diego,
CA), either at Illumina or in cohort-
specific laboratories, and each cohort
conducted its own quality control and
normalization of data, as described in
Supplementary Data. Since the PACE
consortium has observed that extreme
outliers (greater than three times the
interquartile range) can have a large
impact on results, they were removed
prior to analyses. For all analyses, nor-
malized, untransformed b values were
evaluated as outcomes.

Cohort-Specific Statistical Analyses
Cohorts ran independent EWAS models
according to the same analysis plan, using
robust linear regression, as this method
controls for possible heteroscedasticity
and potential outliers. Only singleton
pregnancies were included in analyses.
GDM was modeled as the exposure of
interest, and the cord blood DNA meth-
ylation level at each CpGwasmodeled as
the outcome. Regression models were
adjusted for hypothesized confounders,
which included newborn’s sex, maternal
age, maternal education level, maternal
BMI (prepregnancy or early pregnancy),

maternal smoking status during preg-
nancy (ever vs. never), and maternal
genetic ancestry (if available) ormaternal
race/ethnicity. Cohort-specific details for
covariate assessment are described in
Supplementary Data. First, we adjusted
only for this baseline set of covariates
(results are presented in Supplementary
Data), such that results could be com-
pared with previous studies, which have
generally not accounted for cord blood
cell heterogeneity. However, our final
model was additionally adjusted for
cordbloodcell fractions, includingBcells,
CD81 T cells, CD41 T cells, granulocytes,
natural killer cells, monocytes, and nu-
cleated red blood cells, which were es-
timated using a cord blood reference
panel (25). We also examined results
from two of the larger participating
cohorts (PREDO and Project Viva) after
additional adjustment for parity. Since
results were very similar (Supplementary
Tables 2 and3), paritywasnot included in
the final model.

Meta-analyses
METAL (26) was used to conduct inverse
variance–weighted fixed-effects meta-
analyses, using results from the cohort-
specific analyses. Control probes, probes
mapping to the X and Y chromosomes,

Table 1—Characteristics of participating cohorts*

Cohort Location
Participant

enrollment years
GDM screening

approach
GDM classification criteria and

source of information
GDM case
subjects (n)

Control
subjects (n)

ALSPAC U.K. 1991–1992 Selective Physician-diagnosed GDM
(medical records)

22 867

GOYA Denmark 1996–2002 Selective Physician-diagnosed GDM based
onaone-step75-gOGTT (medical

records) 1 self-report

28 404

Healthy Start Study U.S. 2009–2014 Universal Physician-diagnosed GDM based
on a two-step 100-g OGTT,
Carpenter-Coustan criteria

(medical records)

32 534

INMA Spain 2004–2007 Selective Two-step 100-g OGTT,
Carpenter-Coustan criteria

(medical records)

12 144

PREDO Finland 2006–2010 Universal One-step 75-g OGTT, IADPSG
criteria (medical records)

180 600

RHEA/ENVIRONAGE/
Piccolipiù (pooled)

Greece/
Belgium/Italy

2007–2008/
2010–ongoing/
2011–2015

Universal/
universal/
universal

Two-step 100-g OGTT,
Carpenter-Coustan criteria
(medical records)/two-step

100-g OGTT, Carpenter-Coustan
criteria (medical records)/

self-report

20 352

Project Viva U.S. 1999–2002 Universal Two-step 100-g OGTT,
Carpenter-Coustan criteria

(medical records)

23 459

*Additional details on GDM classification and other characteristics of each cohort are included in Supplementary Data.
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and probes that have been shown to
cross-hybridize or that target polymor-
phic CpGs or contain single nucleotide
polymorphisms (SNPs) at the single base
pair (bp) extension (27) were excluded. A
total of 380,878 CpGs were therefore
included in the meta-analyses. Probes
were annotated to hg19 using the Illu-
minaHumanMethylation450kanno.ilmn12
.hg19 R package (28). After meta-analyses
were complete, a second analyst ran
shadowmeta-analysestoruleoutpotential
human error. CpGs were considered dif-
ferentially methylated if the false discov-
ery rate (FDR)–adjusted P value (PFDR)
was ,0.05.
Potential heterogeneity between

studies was assessed using the Cochran
Q statistic and I2. Additionally, leave-one-
out meta-analyses (i.e., comparison of
results after the sequential removal of
one cohort and a meta-analysis of the
remaining six cohorts) were conducted
to evaluate the influence of each indi-
vidual cohort on the results.
Differentially methylated regions (DMRs)

were identified from meta-analysis re-
sults by taking the intersection of DMRs
identified using two different software
programs: comb-p (29) and DMRcate
(30). comb-p identifies regions enriched
for low P values, uses the Stouffer-Liptak
method to correct for autocorrelation,
and adjusts for multiple testing using the
Sidak correction (29). DMRcate calcu-
lates two smoothed estimates for each
chromosome (one weighted by F statistics
and one not) and uses a Satterthwaite
approximation to compare these esti-
mates; it then adjusts for multiple
testing using the FDR method (30).
These approaches were selected be-
cause they can be applied to meta-
analysis results. Windows of 500 and
1,000 bp were compared for each ap-
proach. For comb-p, a P value threshold
of 1 3 1023 was used to specify the
start of each region, and a distance of
200 bp was selected for extending the
region. For DMRcate, the default set-
tings were used, as recommended (30),
and FDR thresholds of 0.05 and 0.01
were compared.

Sensitivity Analyses
Since the seven participating cohorts
represent different geographic regions
and differ in the timing of participant
recruitment and the criteria used to
classify GDM cases, we ran a series of

sensitivity meta-analyses. We com-
pared meta-analysis results after re-
stricting to 1) cohorts with GDM
cases identified by selective versus uni-
versal screening, 2) cohorts with GDM
cases identified using a one-step 75-g
versus a two-step 100-g OGTT, 3) Euro-
pean versus U.S. cohorts, and 4) cohorts
that recruited participants prior to
2004 versus after 2004.

Look-up Analyses
In an effort to replicate previous
findings, a look-up of CpGs previously
identified as differentially methylated by
GDM status was conducted within results
from the meta-analyses (both with and
without adjustment for estimated cell
proportions). Relevant studies were
identified in PubMed using the following
search terms: Gestational diabetes AND
DNAmethylation.We focused on studies
that 1) were not included in the current
meta-analyses, 2) included .10 GDM
cases, 3) measured DNA methylation
in cord blood using the Infinium Human-
Methylation450K, MethylationEPIC, or
HumanMethylation27 BeadChip array,
4) adjusted for multiple testing using
any method, and 5) provided effect es-
timates and P values for individual CpGs.
Two studies met these criteria (9,12).
These studies collectively reported a
total of 110 differentially methylated
CpGs, none of which were common.
Additionally, nine CpGs within two
genes (MEST and NR3C1) that were
identified as differentially methylated
by GDM status in both cord blood and
placenta in a previous candidate gene
study (11),which are representedon the
450K array, were evaluated. Of these
119 CpGs, 32 were cross-reactive or
polymorphic or the CpG probe con-
tained a SNP at the single bp extension
(27). These 32 CpGs were therefore
excluded, leaving a total of 87 CpGs
for the look-up analyses.

RESULTS

Study Characteristics
Characteristics of participating studies
are shown in Table 1 and Supplementary
Table 1. The number (%) of GDM cases per
study ranged from 12 (7.7%) for INMA to
180 (23.1%) for PREDO. The majority of
participants were of European ancestry,
and approximately half of the newborns
were male (N 5 1,900 [51.7%]).

Meta-analyses for the Individual CpG
Results
Probe numbers and the level of inflation
(l) for individual cohort results are
shown in Supplementary Table 4. The
l for the meta-analyses was 1.15. Meta-
analysis results are summarized in a
Manhattan plot (Fig. 1). No CpGs were
identified as differentially methylated by
GDM status based on a PFDR , 0.05, but
sixwere identifiedbasedonaPFDR,0.10
(Table 2). While the directions of effect
were generally consistent for theHealthy
Start Study, INMA, PREDO, Project Viva,
and the pooled analysis of RHEA/
ENVIRONAGE/Piccolipiù, they often dif-
fered for ALSPAC or GOYA (Table 2). For
five of the CpGs, there was not strong
evidence of heterogeneity (I2 , 10.0,
Pheterogeneity . 0.36), but for one CpG
(cg11723077), there was evidence of
moderate heterogeneity (I2 5 38.7,
P 5 0.13). However, effect estimates
were similar across the leave-one-out
meta-analyses (results shown in Supple-
mentary Fig. 1 and Supplementary Table 5).

Look-up Analysis Results
The full look-up analysis results are pre-
sented in Supplementary Tables 6 and 7
within the Supplementary Data. Of the
87 CpGs examined, 4 were differentially
methylated (uncorrectedP,0.05) in the
same direction in the meta-analysis that
accounted for cell heterogeneity (Sup-
plementary Table 7). These four CpGs
(cg01203331, cg03345925, cg08471713,
and cg20507276) were annotated to a
total of seven genes: NOP56, SNORD56,
SNORD57, SNORD86, ZC3H3,MEOX1, and
OR2L13, respectively. However, based on
the 87 tests conducted, FDR-corrected P
values exceeded 0.05 for all of the CpGs
evaluated.

DMRs Identified from the Meta-
analysis Results
Using individual CpG results from the
meta-analyses, comb-p identified five re-
gions that were differentially methylated
by GDM status (Supplementary Table 8).
comb-p results were the same when
either a 500 or 1,000 bp window was
used. DMRcate identified two DMRs
when using an FDR threshold of 0.10.
One DMR was identified when using
the 500 bp window (chr 1: 248100407–
248100614) and the otherwhenusing the
1,000 bp window (chr 10: 135341870–
135342620) (Supplementary Table 9).
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Both of these DMRs overlapped two
DMRs that had also been identified by
comb-p (Table 3). One was located in the
promoter region of OR2L13 and was also
annotated to pseudogene CLK3P2. The
second overlapped a CpG island in the
gene body of CYP2E1. Percent methyl-
ation levels in both regions were lower
in the GDM case, compared with con-
trol, group, and effect estimates were
generally consistent for the individual
CpGs contained within each region
(Supplementary Fig. 2). DMRcate did
not identify any DMRs when using an
FDR threshold of 0.05.

Sensitivity Analysis Results
Results were generally similar for the six
CpGs, with a PFDR , 0.10, and also for
CpGs within the two DMRs identified by
comb-p andDMRcate, after restricting to
cohorts with GDM cases identified by a
one-step 75-g OGTT versus a two-step
100-g OGTT or using selective versus
universal screening. They were also gen-
erally similar for U.S. versus European
cohorts and for cohorts that recruited
participants prior to versus after 2004
(Supplementary Figs. 3–5).

CONCLUSIONS

While previous studies have investigated
associations between maternal GDM and
newborn DNA methylation (8–16), the

majority have been small, used lenient or
no adjustment for multiple testing, did
not consider regional methylation differ-
ences, and adjusted for a limited number
of covariates. In particular, few studies
have adjusted for cell heterogeneity, an
important source of variability in DNA
methylation (31). Results have been in-
consistent between these previous stud-
ies, raising questions of robustness and
reproducibility. The current study there-
fore conducted meta-analyses of EWAS
results from seven cohorts (3,677 mother-
newborn pairs [317 with GDM]) partici-
pating in the PACE consortium (19), which
examined associations between GDM and
cord blood DNA methylation, after ad-
justment for a larger number of potential
confounders. We evaluated methylation
differences at both the regional and in-
dividual CpG level.

Using two dimension reduction ap-
proaches (comb-p [29] and DMRcate
[30]), we identified two regions that
are differentially methylated by GDM
status. One of the DMRs identified by
the meta-analysis (chr 1: 248100276–
248100614) is located in the promoter
region of OR2L13, a gene that codes for
an olfactory receptor (9). Methylation
levels in this region were lower in cord
blood from GDM-exposed, compared
with -unexposed, newborns. This finding
is consistent with a previous study by

Quilter et al. (9), which observed lower
cord blood methylation levels at a CpG
located in this DMR (cg20507276) among
GDM-exposed newborns. This same CpG
has also been identified as differentially
methylated inbothbloodandbuccal cells
from autism spectrum disorder (ASD)
case versus control subjects (32). While
the mechanism by which OR2L13 may
contribute to ASD is currently unknown,
olfactory dysfunction has been asso-
ciated with more severe social impair-
ments among individuals with ASD
(32). Since children exposed to maternal
GDM in utero have a higher risk of de-
veloping ASD (6), future investiga-
tion into the potential mediating role of
OR2L13 in GDM-associated ASD is merited.
Methylation levels in the second DMR
(chr 10: 135341933–135342560) were
also lower in the GDM case, compared
with control, group. This DMR is located
in a CpG island within the gene body of
CYP2E1, which codes for an enzyme that
is highly expressed in the liver and me-
tabolizes ethanol, numerous drugs, and
certain protoxicants (33). Although, to
our knowledge, the CpGs within this
DMR have not previously been associ-
ated with in utero exposure to GDM,
increased CYP2E expression has been
observed in peripheral blood from indi-
viduals with type 1 and type 2 diabetes
(33).

In contrast with the DMR results, we
did not identify any individual differen-
tially methylated CpGs when we used a
conservative PFDR threshold of 0.05.
When we used a more lenient PFDR
threshold of 0.10, six individual CpGs
(cg00812770, cg11723077, cg22791932,
cg17588003, cg11187204, and cg10139436)
were identified as differentially methyl-
ated by GDM status, none of which had
been identified in the previous studies
that we reviewed. Three of these CpGs
(cg11723077, cg22791932, and cg17588003)
were annotated to genesdSYNJ2, ZFPM1,
and C17orf87, respectivelydand a fourth
CpG (cg00812770) was located in a long
intergenic noncoding RNA (LINC01342).
The remaining two CpGs were not anno-
tated to any genes, and the potential
consequences of altered methylation at
these loci are currently unclear.

The 13 CpGs comprising the two
DMRs identified by both comb-p and
DMRcate were not identified as differ-
entially methylated in individual CpG
meta-analyses, likely due to the greater

Figure 1—Manhattan plot summarizing results for meta-analyses of the associations between
maternal GDM and cord blood DNAmethylation.Meta-analyses were run usingMETAL on results
from robust linear regression models, which adjusted for newborn’s sex, maternal age, maternal
education, maternal BMI (prepregnancy or in early pregnancy), maternal smoking status during
pregnancy (ever vs. never),maternal genetic ancestry (if available) ormaternal race/ethnicity, and
estimatedcordbloodcell fractions.Blueand red lines indicate log10(Pvalues) thatareequivalent to
a PFDR of 0.10 and a PFDR of 0.05, respectively.
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statistical power of the DMR approaches.
Additionally, the six CpGs identified as
differentially methylated based on a
PFDR, 0.10 in the individual CpG analyses
were not identified by either comb-p or
DMRcate. It is possible that these six CpGs
are false positives, since they did not
reach statistical significance after appli-
cation of a more conservative threshold
of PFDR , 0.05. However, two of these
CpGs (cg11187204 and cg10139436) also
resided in intergenic regions that are
either CpG poor or sparsely represented
on the 450K array, which would have
precluded their identification using re-
gional approaches.

In our examination of 87 CpGs that
have previously been associated with
GDM status (9,11,12), only 4 were found
to be differentially methylated in the same
direction in the current meta-analysis,
based on an uncorrected P, 0.05. Since
these previous studieswere similarly con-
ducted in predominately European pop-
ulations, differences in race or ethnicity
are likely not driving these discrepancies.
However, some of the prior findings may
be false positives due to small sample
sizes, insufficient control for multiple
testing, or a lack of adjustment for im-
portant confounding factors, such as ma-
ternal BMI. Other potential explanations
for the lack of replication include differ-
ences in exclusion criteria and the fact
that these previous studies stratified by
fetal sex (9) or GDM treatment type
(11,12), which was not feasible for the
current meta-analysis.

Importantly, the seven cohorts partici-
pating in the current meta-analysis rep-
resent eight countries and multiple time
periods. Since the criteria used to classify
GDM differ by country and have changed
across time, the severityofdisease among
GDMcase subjects, and the proportion of
control subjects with undiagnosed GDM
or hyperglycemia, may have varied be-
tween cohorts. Nevertheless, we did not
observeevidenceofheterogeneity for the
majority ofmeta-analysis results. Further-
more, results were generally similar
acrossaseriesof sensitivityanalyses,which
stratified cohorts based on geographic lo-
cation, time, and the criteria used for GDM
classification. It is therefore possible that
there may be a linear relationship between
maternal glucose levels and cord blood
DNA methylation. However, while there
is some evidence for this (34), additional
studies are needed to determine whether
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maternal glucose is themainmechanism
through which GDM alters DNA meth-
ylation and, if so, whether there is a clear
threshold belowwhichmaternal glucose
does not alter cord blood methylation.
The current study had many notable

strengths. By meta-analyzing results
from multiple cohorts, we were able
to increase the statistical power of the
study and adjust for a large number of
potential confounders, including esti-
mated cell fractions. We also used strin-
gent adjustments for multiple testing to
reduce the chance of identifying false
positives. Another strength of the study
was the evaluation of DMRs (using two
different approaches) in addition to in-
dividual CpGs.
However, our meta-analyses also had

limitations. First, theremayhavebeen an
overall underestimation of GDM cases,
since GDM in several cohorts was di-
agnosed based on a selective approach.
This may have resulted in some partic-
ipants being misclassified as control sub-
jects, which would have biased results
toward the null. Another important con-
sideration is that regressionmodelswere
adjusted for maternal BMI because it is a
risk factor for GDM (35) and may impact
cord blood DNA methylation (36). How-
ever, this may have also biased results
toward the null, since GDM in several
cohorts was diagnosed selectively based
on traditional risk factors, including obe-
sity. Importantly, women with GDM
may have utilized different strategies to
manage their disease. However, this in-
formation was not available for all

cohorts, and the number of GDM case
subjects adhering to particular manage-
ment strategies or treatments was very
small for most cohorts, so these differing
subsets of GDM case subjects could not
be evaluated separately. We also could
not evaluate potential differences by
fetal sex due to the small number of
GDM case subjects per cohort. Addition-
ally, since the gestational age at OGTT
was not available for all participants, we
were unable to adjust for this covariate.
Another potential limitation was our
focus on cord blood DNA methylation,
which may not reflect methylation pat-
terns in other tissues. However, cord
blood DNA methylation has been asso-
ciated with several outcomes that have
been associated with in utero exposure
to GDM, such as early childhood weight
andadiposity (37)andASD (38).Whilewe
excluded CpGs that overlapped SNPs and
also CpG probes with SNPs at the single
bp extension (27), we cannot rule out the
possibility that some of the differentially
methylated CpGs and regions identified
in this meta-analysis may be driven by
genetic, rather than epigenetic, differ-
ences between GDM case and control
subjects, which merits future investiga-
tion. Finally, since the majority of indi-
viduals in the seven participating cohorts
were of European ancestry, results from
the current meta-analysis may not be
generalizable to other populations.

Conclusion
In a meta-analysis of integrated EWAS
results from seven pregnancy cohorts,

comprising data from 3,677 mother-
newborn pairs, GDM was associated
with lower cord bloodmethylation levels
within the promoter region of OR2L13
and the gene body of CYP2E1. Given that
reduced methylation in the OR2L13 pro-
moter has previously been associated
with both GDM status and ASD, its
potential role in mediating this rela-
tionship should be evaluated in future
studies. Additionally, since CYP2E1 is
upregulated in peripheral blood from
individuals with type 1 and type 2 dia-
betes, the impactof reducedmethylation
within this gene among GDM-exposed
newborns on subsequent health merits
future investigation. Finally, the inability
to replicate many results from previous
studies of GDM exposure and cord blood
DNA methylation highlights the impor-
tance of conducting EWAS meta-analyses
using data from multiple cohorts.
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Table 3—DMRs identified by both comb-p and DMRcate*

DMR
CpGs comprising

the DMR
Direction of
association

Nearby
gene(s)

Regulatory feature group/gene
group/relation to island

comb-p (500and1,000bpwindow)
chr 1: 248100345–248100614 cg00785941, cg03748376,

cg04028570, cg08260406,
cg08944170, cg20434529,

cg20507276

2 OR2L13,
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shore
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NA, not applicable. UTR, untranslated region. *DMRs were identified from meta-analysis results for individual CpGs, which used results from robust
linear regressionmodels that were adjusted for newborn sex, maternal age (in years), maternal BMI (prepregnancy or early pregnancy), maternal education,
maternal smoking status during pregnancy (ever vs. never), maternal genetic ancestry (if available) or maternal race/ethnicity, and estimated cord blood cell
fractions.
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