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OBJECTIVE

Prediabetes and type 2 diabetes are associatedwith structural brain abnormalities,
often observed in cognitive disorders. Besides visible lesions, (pre)diabetes might
also be associatedwith alterations of the intrinsic organization of thewhitematter.
In this population-based cohort study, the association of prediabetes and type 2
diabetes with white matter network organization was assessed.

RESEARCH DESIGN AND METHODS

In theMaastricht Study, a type 2 diabetes–enriched population-based cohort study
(1,361 subjects with normal glucose metabolism, 348 with prediabetes, and
510 with type 2 diabetes assessed by oral glucose tolerance test; 52% men; aged
59 6 8 years), 3 Tesla structural and diffusion MRI was performed. Whole-brain
white matter tractography was used to assess the number of connections (node
degree) between94brain regionsand the topology (graphmeasures).Multivariable
linear regression analyses were used to investigate the associations of glucose
metabolismstatuswithnetworkmeasures. Associationswereadjusted for age, sex,
education, and cardiovascular risk factors.

RESULTS

Prediabetes and type 2 diabetes were associated with lower node degree after
full adjustment (standardized [st]bPrediabetes 5 20.055 [95% CI 20.172, 0.062],
stbType2diabetes 5 20.256 [20.379, 20.133], Ptrend < 0.001). Prediabetes was
associated with lower local efficiency (stb 5 20.084 [95% CI 20.159, 20.008],
P5 0.033) and lower clustering coefficient (stb520.097 [95%CI20.189,20.005],
P5 0.049), whereas type 2 diabetes was not. Type 2 diabetes was associated with
higher communicability (stb 5 0.148 [95% CI 0.042, 0.253], P 5 0.008).

CONCLUSIONS

These findings indicate that prediabetes and type 2 diabetes are associated with
fewer white matter connections and weaker organization of white matter net-
works. Type 2 diabeteswas associatedwith higher communicability, whichwas not
yet observed in prediabetes and may reflect the use of alternative white matter
connections.
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Type 2 diabetes is associated with cognitive
decline (1–3) and poses an increased
risk for brain diseases, such as Alzheimer
disease and depression (4,5). As type 2
diabetes is associated with abundant
macro- and microvascular disease, it
may also affect brain vessels, leading to
cerebral small vessel disease (e.g., white
matter lesions [WMLs]) and neurodegen-
eration (brain atrophy) (6,7), which repre-
sent early features in the pathophysiology
of cognitive decline and dementia (8) and
can be measured by brain MRI. Some
studies even show that prediabetes is
already associated with alterations in
the brain (9,10), more specifically with
the presence of lacunar infarcts, larger
WML volumes, and smaller white matter
volumes, with further deterioration in
type 2 diabetes, as previously reported
(7). The white matter is organized as a
complex network of connected fibers,
which is responsible for efficient infor-
mation exchange between brain regions.
Alterations in one region may affect the
function of other regions to which they
are connected via white matter tracts.
Thus, to understand the organization
of white matter networks entirely, the
assessment of regional brain volumes is
insufficient. The use of diffusion MRI–
derived white matter tracts, in combi-
nation with graph theoretical analysis,
does address both the regional volumes
and its connections to other regions.
Type 2 diabetes might also be associ-

ated with alterations in the intrinsic or-
ganization of the white matter (11–14).
However, whether changes in the intrinsic
network organization of the white matter
already occur in prediabetes is currently
unknown (15–17). We hypothesize that
brain abnormalities comparable to those
found in type 2 diabetes are, to a lesser
extent, already present in prediabetes,
possibly already before the onset of cog-
nitive decline. The main objective of this
study is to assess the association of pre-
diabetes and type 2 diabetes with white
matter network characteristics in terms of
the number (node degree) and organiza-
tion (graph measures) of the white matter
connections.

RESEARCH DESIGN AND METHODS

The Maastricht Study: Population and
Design
We used data from the Maastricht
Study, an observational, prospective,
population-based cohort study. The

rationale and methodology have been
described previously (18). In brief, the
study focuses on the etiology, patho-
physiology, complications, and comor-
bidities of type 2 diabetes and is
characterized by an extensive phenotyp-
ing approach. Eligible for participation
were all individuals aged between 40 and
75 years and living in the southern part of
the Netherlands. Participants were re-
cruited through mass media campaigns
and from the municipal registries and the
regional Diabetes Patient Registry via
mailings. Recruitment was stratified ac-
cording to known type 2 diabetes status,
with an oversampling of individuals with
type 2 diabetes, for reasons of efficiency.
Participantswith type1diabetes or other
typesof diabeteswereexcluded fromthe
analysis. The present report includes
cross-sectional data from the first 3,451
participants, who completed the baseline
survey between November 2010 and Sep-
tember 2013. The examinations of each
participant were performed within a
timewindow of 3months.MRI measure-
ments were implemented from December
2013 onwards until February 2017 and
were available in 2,318 out of 3,451
participants. Of the 2,318 participants
withMRI measurements available, 2,302
subjects had complete data without ar-
tifacts (flowchart in Supplementary Fig.
1). The study has been approved by the
institutional medical ethical committee
(NL31329.068.10) and the Dutch Minis-
try of Health, Welfare, and Sports of the
Netherlands (permit 131088-105234-
PG). All participants gave written in-
formed consent.

Glucose Metabolism Status
Todetermineglucosemetabolismstatus,
all participants, except those who used
insulin, underwent a standardized 2-h
75-g oral glucose tolerance test (OGTT)
after an overnight fast. For safety rea-
sons, participants with a fasting blood
glucose (FBG) level .11.0 mmol/L, as
determined by a finger prick, did not
undergo the OGTT. For these individuals,
fasting glucose level and information
about diabetes medication were used
to determine glucosemetabolism status.
Glucose metabolism status was defined
according to the World Health Organi-
zation 2006 criteria into normal glucose
metabolism (NGM), prediabetes, and
type 2 diabetes (19). Participants were
considered tohave type2diabetes if they

had an FBG $7.0 mmol/L or a 2-h post-
load blood glucose $11.1 mmol/L or
used oral glucose-lowering medication
or insulin. They were considered to have
prediabetes if they had an FBG $6.1
mmol/L and/or a 2-h postload blood
glucose $7.8 mmol/L, and NGM if
they had an FBG ,6.1 mmol/L and a
2-h postload blood glucose,7.8mmol/L
and no use of diabetes medication.

MRI
MRI was performed on a 3 Tesla MRI
scanner (MAGNETOM Prisma-fit Syngo
MR D13D; Siemens Healthcare, Erlangen,
Germany) using a 64-element head/neck
coil for parallel imaging with an acceler-
ation factor of two. A 3D T1–weighted
magnetization prepared rapid acquisition
gradient echo (MPRAGE) sequence (TR/
TI/TE 2,300/900/2.98 ms, 176 slices,
2563 240 matrix size, and 1.00 mm cubic
voxel size) was acquired for anatomic
reference. Diffusion-weightedMRI (dMRI)
data were acquired using a diffusion-
sensitized echo-planar imaging (EPI)
sequence (TR/TE 6,100/57 ms, 65 slices,
100 3 100 matrix size, 2.00 mm cubic
voxel size, and 64 diffusion-sensitizing
gradient directions [b 5 1,200 s/mm2]).
In addition, three minimally diffusion-
weighted images (b 5 0 s/mm2) were
acquired.

Image Preprocessing
To define n5 94 regions, the automatic
anatomical labeling 2 (AAL2) atlas (20)
was used. The AAL2 volumes of interest
were transformed to diffusion space for
each individual subject. First, affine
registrations of the dMRI image to
the T1 image and of the T1 image to
T1 MNI-152 standard space (21) were
performed. These two transformations
were combined, and the inverse trans-
formation matrix was applied to the
AAL2 template. T1-weighted and
fluid-attenuated inversion recovery
(FLAIR) images were segmented by
use of an ISO13485:2012-certified, au-
tomated method (which included vi-
sual inspection) (22,23) into white
matter, gray matter, cerebrospinal fluid,
and WML. Detailed methods were pre-
viously described (7). dMRI data analysis
was performed with the diffusion MR
Toolbox ExploreDTI version 4.8.6 (24).
Themain preprocessing steps were eddy
current–induced geometric distortions
and head motion correction, and

202 White Matter Connectivity in Type 2 Diabetes Diabetes Care Volume 43, January 2020

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/43/1/201/529543/dc190762.pdf by guest on 09 April 2024

http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-0762/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-0762/-/DC1


estimation of the diffusion tensor. After
preprocessing, fiber orientation distribu-
tions (FODs) were estimated using con-
strained spherical deconvolution with a
maximum harmonic degree of 8 (25),
which allows fiber tracking through re-
gions with crossing fibers. Whole-brain
deterministic tractography was per-
formed using FOD sampling (26) with a
seed point resolution of 2 mm3, a step size
of 1 mm, and an FOD and maximum
deflection angle threshold of 0.1 and
30°, respectively. The next step was per-
forming connectivity analysis to obtain white
mattertractsfromandtoall thesegmented
regions. A previous study of our group
confirmed the robustness of tract volume
as a measure for the edge weighting (27).
Therefore, for each connection, the tract
volume was calculated as the number of
voxels visited by at least one tract be-
tween concerned areas multiplied by the
voxel volume (in mm3). The obtained
connectivity matrix with tract volumes
was normalized to intracranial volume
to reduce intersubject variation (28).
When regions were connected by

only one or two streamlines, the corre-

sponding tract volumes were removed

from the connectivity matrix, as an ad-
ditional noise filter.

White Matter Networks
Network analysis was performed using
the Brain Connectivity Toolbox (version
2017-15-01) (29) in MATLAB (Release
2016a; The MathWorks, Inc., Natick,
MA). In this method (for an overview,
see Fig. 1), the brain is represented as a
graph, which is a network of nodes (i.e.,
gray matter brain regions) connected by
edges (i.e., white matter connections
betweenbrain regions). Theorganization
of such a graph can be characterized by
the use of graph measures, e.g., cluster-
ing coefficient, local efficiency, commu-
nicability, and global efficiency. These
graph measures describe the effi-
ciency and integrity of the white matter
networks.

The node degree is calculated for each
AAL2 region, and the mean value is de-
fined as the average node degree, which
is a measure for the average number of

edges connected to a region (node).
In a network with a high average node
degree, nodes are connected to many
other nodes in the network (i.e., strong
innervation). The sparsity of a network is
the ratio of the number of missing con-
nections in a network to the possible
number of connections and is closely, but
inversely, related to the node degree.
The sparsity ranges from 0 to 1; the
higher the sparsity, the lower the density
of the network (29).

Graph Measures
To describe network organization, mea-
sures indicative of network segregation
were calculated to assess the presence of
local densely interconnected groups of
brain regions, and measures indicative
of integration were calculated to assess
large-scale communication between
nodes (see Fig. 1). Measures of segre-
gation describe the local connectivity
properties of a network and comprise
clustering and local efficiency. The clus-
tering coefficient quantifies the num-
ber of connections between the nearest
neighbors of a region as a proportion of
the maximum number of possible con-
nections (15). The local efficiency of a
region is the inverse of the average
shortest path connecting all neighbors
of that region (30). Paths are sequences
of connections in the network, which
represent potential routes for commu-
nication between brain regions.

Measures of integration describe the
ease with which brain regions commu-
nicate in terms of paths and include
global efficiency and communicability.
The global efficiency is the inverse of
the average shortest path length calcu-
lated over the entire brain; thus, a high
global efficiency reflects long paths be-
tween regions (30). However, neural
communication does not necessarily
follow the shortest paths only; slightly
longer paths might also be used (e.g., to
bypass affected paths). Therefore, an
alternative measure of communication,
the communicability, was calculated,
which includes all possible paths be-
tween brain regions, weighted according
to their length (31).

White Matter Structural Connectivity
The node degree was first calculated for
the full connectivity matrices of the
groups (NGM, prediabetes, and type 2
diabetes) for comparison of the basic

Figure 1—Glossary.
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network architecture between them.
Subsequently, a standard group aver-
aged network was calculated for each
group separately (32). Note that these
standard networks may differ per group
comparison. This standard network was
proportionally thresholded to a sparsity
of 0.80 (only the connections that were
present in at least 80% of the partic-
ipants in that group will be taken into
account in the individual connectivity
matrices), resulting in a weighted, un-
directed network with a sparsity close to
the sparsity of the standard network.
The standard networks were also
thresholded for a range of sparsity val-
ues (0.65–0.9, step size 0.05) to assess
the robustness over different sparsity
values. Additionally, connections were
identified with a significantly increased
or decreased tract volume. First, we
applied thresholding by a network
based on only the NGM subjects, to
check whether differences in basic net-
work architecture were also present
after the exclusion of connections
formed due to noise as opposed to
pathology. As the networks of the group
with type 2 diabetes appeared to be
most sparse, subsequently, the organi-
zation of this remaining (sub)network
was analyzed. Hence, the resulting net-
work contains only the connections of
the sparser type 2 diabetes network of
which the connections are also present in
the other two groups. Otherwise, the
“true sparsity” of the subjects with type 2
diabetes would be lower than for the sub-
jects with NGM and prediabetes, which
again leads to different results in graph
measures due to differences in sparsity.
To investigate whether prediabetes is
already associated with a structural re-
organization, for the comparison of
prediabetes and NGM, the average
prediabetes-derived network was
applied.
To investigate the structural organiza-

tion in thewhitematter networks in type 2
diabetes and prediabetes, graphmeasures
of segregation (i.e., clustering coefficient
and local efficiency) and integration (i.e.,
global efficiency and communicability)
(15–17) were calculated from the brain
graphs. Graph measures were normalized
to comparable values from randomly gen-
erated networks of equal size and similar
connectivity distribution (n5 100) (33) and
calculated over a range of six sparsity
values, 0.65–0.9 (step size 0.05).

General Characteristics and Covariates
Educational level (low, intermediate, and
high), smoking status (never, current,
and former), and history of cardiovascu-
lar disease were assessed by question-
naires (18).Medication usewas assessed
in a medication interview where generic
name, dose, and frequency were regis-
tered.Wemeasuredweight, height, BMI,
waist circumference, blood pressure
(measured in office [705IT; Omron,
Kyoto, Japan]), and plasma lipid profile
(18).

Statistical Analysis
All statistical analyses were performed
using SPSS (SPSS Statistics 23.0; IBM,
Chicago, IL). Clinical characteristics of
the participants within the three groups
of glucose metabolism status were com-
pared using ANOVA and Pearson x2 tests,
where appropriate. Multivariable linear
regression was used to investigate the
association of glucosemetabolism status
with average node degree and graph
measures. For linear trend analyses,
the categorical variable glucose metab-
olism status (NGM5 0, prediabetes5 1,
and type 2 diabetes5 2) was used in the
regression models. To assess regression
coefficients per glucose metabolism
group, analysis with dummy variables
for prediabetes and type 2 diabetes,
with NGM as the reference group, was
used. Analyses were adjusted for po-
tential confounders, notably age, sex,
education level, and MRI date (model 1),
and additionally adjusted for cardiovas-
cular disease risk factors: BMI, ratio of
total cholesterol to HDL, lipid-modifying
medication, office systolic blood pres-
sure, antihypertensive medication, and
prior cardiovascular disease (model 2).
Regression coefficients for normal aging
(i.e., in participants with normal com-
pared with abnormal glucose metab-
olism) were determined in the group
with NGM. Multiple linear regression
with false discovery rate correction (q
value 5 0.05) was used to correct for
multiple comparisons to determine
which connections had significantly dif-
ferent tract volumes between groups,
andwereadjusted for age, sex, education
level, and MRI lag time. In the type 2
diabetes–based standard networks, the
associations of glucose metabolism
groups and continuous measures of
blood glucose with graph measures
were analyzed by use of multiple

regression analyses. Analyses on graph
measures were adjusted for age, sex,
education level, MRI date, and average
node degree (model 1), and additionally
for cardiovascular disease risk factors
(model 2). Furthermore, we investi-
gated the association of hemoglobin
A1c (HbA1c), FBG, and 2-h postload glu-
cose levels with average node degree
and graph measures, and adjusted in an
additional model for lifestyle factors.
Skewed variables (WML volumes) were
log10 transformed. P values,0.05 were
considered statistically significant.

RESULTS

General Characteristics of the Study
Population
Table 1 shows the general characteristics
of the study population for subjects
with NGM, prediabetes, and type 2 di-
abetes. The study population consisted
of 2,219 individuals; 1,361 had NGM,
348 had prediabetes, and 510 had
type 2 diabetes. Mean age was 59 6
8 years, and 48% were women. Individuals
withprediabetesand type 2diabeteswere
older, less often female, more often had
an adverse cardiovascular risk profile,
and more often had a low educational
level (Table 1). Individuals who under-
went MRI were younger, less likely to
have type 2 diabetes, less often current
smokers, and less often had a low ed-
ucation level compared with those who
did not undergo MRI (Supplementary
Table 1).

Structural Network Characteristics
After full adjustment, the average node
degree for the full connectivity matrices
(i.e., before thresholding) was signifi-
cantly lower for subjects with type 2
diabetes compared with NGM (1.3%
lower, standardized [st]b 5 20.111 [95%
20.220, 20.002], Ptrend 5 0.047) (Sup-
plementary Table 2). Subsequent analysis
using the standard network based on only
subjects with NGM showed significantly dif-
ferent results for type 2 diabetes compared
withprediabetes (0.7% lower, stb520.256
[95% CI 20.379, 20.133], Ptrend ,
0.001). Higher HbA1c, FBG, and 2-h post-
load glucose levels were also associ-
ated with lower node degree in the
unthresholded and NGM-based net-
works (Supplementary Table 3).

In Fig. 2A, the standard network for
the group with NGM is schematically
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shown. Figure2B andC indicate forwhich
connections the tract volumes were
significantly different in prediabetes
compared with NGM, and in type 2 di-
abetes compared with NGM, respec-
tively. These results indicate that in
prediabetes, only intrahemispheric con-
nections had significantly smaller tract
volumes. In type 2 diabetes, both inter-
and intrahemispheric connections (of
which 66% were interhemispheric) had
significantly smaller tract volumes, es-
pecially between the frontal lobes
and between the frontal and temporal
lobe.
As an additional analysis, the associ-

ation between WML volume and node
degreewas determined over all subjects.
After full adjustment, relative WML
volume (in % of intracranial volume)
was negatively associated with the
node degree of the NGM-based stan-
dard network (stb 5 20.059 [95%
CI 20.101, 20.018], P 5 0.001). This
association was not present for the

smaller type 2 diabetes–based standard
network (stb520.010 [95% CI20.035,
0.018], P 5 0.714).

White Matter Graph Measures of the
Type 2 Diabetes–Based Standard
Network
After thresholdingall individualnetworks
by use of the prediabetes- or type 2
diabetes–based networks, graph analy-
sis was performed. In Table 2, the asso-
ciations of these graph measures at a
sparsity of 0.8 are shown. In the pre-
diabetes-based standard network, pre-
diabetes was significantly associated
with a lower normalized clustering co-
efficient compared with NGM, which
indicates a lower local connectivity. Pre-
diabeteswas also associatedwith a lower
normalized average local efficiency. No
association was found between pre-
diabetes and the normalized global effi-
ciency and communicability. In addition,
type 2 diabetes was associated with
higher communicability as compared

with NGM, despite the lower node
degree. The other three graphmeasures
were not significantly associated with
type 2 diabetes. Graph measures for a
range of sparsity thresholds are shown
in Supplementary Fig. 2. After full ad-
justment, only the association with
higher communicability in type 2 di-
abetes remained significant. No asso-
ciations remained significant for
prediabetes. A higher communicability
was also found for higher continuous
glucose measures, and this remained sig-
nificantafterfulladjustment(Supplementary
Table 4).

Diabetes and Aging
Multiple linear regression analysis was
used to determine the relative associa-
tion of prediabetes and type 2 diabetes
with node degree as compared with
aging. Node degree was significantly
lower in subjects with prediabetes or
type 2 diabetes compared with NGM
and corresponded to 2.3 or 10.4 years

Table 1—Clinical characteristics of participants according to glucose metabolism status

Characteristic NGM (n 5 1,361) Prediabetes (n 5 348) Type 2 diabetes (n 5 510) Ptrend

Demographics
Age (years) 57.6 6 8.1 61.2 6 7.5 62.5 6 7.6 ,0.001
Sex, male (%) 44.2 55.2 68.6 ,0.001
Education level (%), low/middle/high 25.4/28.1/46.4 33.0/31.0/36.0 41.3/30.2/28.5 ,0.001

Glucose metabolism
FBG (mmol/L) 5.2 6 0.4 5.9 6 0.6 7.8 6 1.9 ,0.001
2-h postload glucose (mmol/L)* 5.4 6 1.1 8.1 6 1.8 14.2 6 4.1 ,0.001
HbA1c (%) 5.4 6 0.3 5.7 6 0.4 6.9 6 1.0 ,0.001
HbA1c (mmol/mol) 36.0 6 3.7 38.6 6 4.4 51.4 6 11.0 ,0.001
Diabetes duration (years)† d d 6.9 6 7.2 d

Cardiovascular risk factors
BMI (kg/m2) 25.5 6 3.5 27.3 6 4.0 29.3 6 4.6 ,0.001
Waist circumference (cm) 90.2 6 10.9 96.8 6 11.3 104.3 6 12.9 ,0.001
Office systolic blood pressure (mmHg) 131 6 17 136 6 16 141 6 17 ,0.001
Office diastolic blood pressure (mmHg) 75 6 10 78 6 10 77 6 9 ,0.001
Hypertension, yes (%) 39.1 59.4 82.0 ,0.001
Ratio of total cholesterol to HDL 3.6 6 1.2 3.9 6 1.2 3.6 6 1.1 0.152
History of cardiovascular disease, yes (%) 8.9 11.3 21.3 ,0.001
History of CVA, yes (%)‡ 1.1 2.3 3.9 ,0.001

Medication use
Insulin use, yes (%)† d d 19.6 d
Antihypertensive medication, yes (%) 20.6 38.8 70.2 ,0.001
Lipid-modifying medication, yes (%) 14.8 29.0 72.5 ,0.001

Lifestyle factors
Alcohol consumption (%), none/low/high 13.9/57.5/28.6 16.3/53.5/30.2 26.4/53.1/20.5 ,0.001
Smoking status (%), never/former/current 40.9/47.9/11.1 30.4/58.0/11.6 32.7/53.7/13.5 0.001

Cognitive score
MMSE total score§ 29.2 6 1.1 28.9 6 1.1 28.7 6 1.3 ,0.001

Data arepresented asmeans6 SDor percentageand stratified for glucosemetabolismstatus:NGM,prediabetes, and type2diabetes.P values indicate
trend analysis over glucose metabolism status. CVA, cerebrovascular accident; MMSE, Mini-Mental State Examination. *2-h postload glucose values
wereavailable inn52,098.†Available in344 individualswith type2diabetes.‡HistoryofCVAdatawereavailable inn52,191. §Fiveparticipantshadan
MMSE score of 22 or 23 (mild cognitive impairment) and none had dementia. Detailed protocols of the general measurements are presented in the
Supplementary Data. Characteristics of variables used in the additional models (Supplementary Tables 6–11) are given in Supplementary Table 12.
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of aging, respectively (Supplementary
Table 5). Adjustment for potential con-
founders (i.e., BMI, systolic blood pres-
sure, ratio of total cholesterol to HDL,

prior cardiovascular disease, and anti-
hypertensive and lipid-lowering med-
ication) did not substantially change these
results.

There were also connections where
tract volumes were significantly associated
with age (Supplementary Fig. 3A). Please
note the large similarities between connec-
tion tract volumes associated with age and
type 2 diabetes. However, in type 2 di-
abetes, the connections between the left
and right hippocampus and between right
frontal and temporal regions had signifi-
cantly smaller tract volumescomparedwith
NGM, but these connections were not
associated with age (Supplementary
Fig. 3B).

CONCLUSIONS

In this study, we found that both pre-
diabetes and type 2 diabetes were as-
sociated with a lower node degree, and
thus fewer white matter connections,
as compared with NGM. Continuous
measures of hyperglycemia (HbA1c,
FBG, and 2-h postload glucose levels)
were also associated with lower node
degree. Moreover, prediabetes and
type 2 diabetes were associated with
smaller tract volumes of several connec-
tions between cortical regions, which
were comparable with those associated
with aging. The lower node degree of 0.4
and 1.3% in subjects with prediabetes
and type 2 diabetes, respectively, com-
pared with NGM, was equivalent to
2.3 and 10.4 years of aging, which fits
with the idea that (pre)diabetes is ac-
companied by accelerated aging. We also
investigated the association between
prediabetes and type 2 diabetes and
structural organization. In prediabetes
compared with NGM, the local efficiency
and clustering coefficient were lower,

Figure 2—Schematic representation of connections between the atlas regions (for the legend of the
regions, see Supplementary Fig. 3) present in the NGM-based standard network (A), and those
connections which had a significantly different tract volume in subjects with prediabetes (B) or type 2
diabetes (C) compared with subjects with NGM. Blue connection lines indicate connections with
significantly smaller tract volumes (unstandardized b ,0) and red lines connections with
significantly larger tract volumes (unstandardized b.0). P, 0.05, false discovery rate corrected.
Darker blue or red connection lines indicate lower P values. D: Brain regions that represent the
color-coded brain regions.

Table 2—Associations of prediabetes and type 2 diabetes with graph network measures at a sparsity value of 0.8

Normalized graph measures Prediabetes, stb (95% CI)* P Type 2 diabetes, stb (95% CI)† P

Clustering coefficient
Model 1 20.097 (20.189, 20.005) 0.049 20.026 (20.111, 0.059) 0.562
Model 2 20.066 (20.161, 0.028) 0.169 0.027 (20.074, 0.128) 0.603

Global efficiency
Model 1 0.034 (20.086, 0.151) 0.625 20.056 (20.164, 0.052) 0.212
Model 2 0.032 (20.092, 0.156) 0.615 20.051 (20.180, 0.077) 0.434

Local efficiency
Model 1 20.084 (20.159, 20.008) 0.033 20.043 (20.113, 0.027) 0.208
Model 2 20.060 (20.137, 0.017) 0.128 0.010 (20.073, 0.093) 0.816

Communicability
Model 1 0.026 (20.092, 0.144) 0.475 0.148 (0.042, 0.253) 0.008
Model 2 0.043 (20.079, 0.165) 0.491 0.163 (0.037, 0.290) 0.011

Associations of prediabetes and type 2 diabetes with graph measures. Standardized regression coefficients and 95% CI indicate the mean difference in
clusteringcoefficient,globalefficiency, localefficiency,andcommunicabilityofparticipantswithprediabetesor type2diabetescomparedwithNGM.Model1was
adjusted for age, sex, education, averagenode degree, andMRI date.Model 2was the sameasmodel 1 and additionally adjusted for BMI, office systolic
bloodpressure, ratioof total cholesterol toHDL,antihypertensivemedication, lipid-loweringmedication,andhistoryof cardiovasculardisease.Boldface
type indicates P , 0.05. *Prediabetes-based standard network. †Type 2 diabetes–based standard network.
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which indicates that there was a weaker
local connectivity. In type 2 diabetes
compared with NGM, a higher commu-
nicability was found, indicating that in
type 2 diabetes, more alternative white
matter connections are used to facili-
tate structural connectivity between
brain regions.
In prediabetes, the clustering coeffi-

cient and local efficiency were lower
compared with NGM, indicating that
structural alterations can be observed
already in prediabetes. These findings
indicate that brain changes already
occur in prediabetes before the clinical
diagnosis of type 2 diabetes. Therefore,
treatment of prediabetes should be con-
sidered as a potential target of interven-
tion for the prevention of complications
of type 2 diabetes, including structural
brain changes. In type 2 diabetes com-
pared with NGM, a higher communica-
bility was found. Communicability is a
measure that indicates the ease of com-
munication between two brain regions,
taking into account not only the shortest
path but also all other possible paths
connecting them. A potential explana-
tion for the higher communicability in
type 2 diabetes compared with NGM
involves the increased WML load in
type 2 diabetes and prediabetes (7).
The brain might be able to adapt to
changing circumstances (to a small ex-
tent), and staying physically and men-
tally fit can possibly promote this
effect (34,35). However, the precise
pathophysiological basis of white matter
alterations in patients with (pre)diabetes
remains to be elucidated, and a complex
interplay of endocrinological, metabolic,
and vascular mechanisms is likely in-
volved (5,7).
Our findings are in line with previous

studies that assessed the association
between type 2 diabetes and white
matter connectivity. Previous reports
showed lower white matter connectivity
between the hippocampus and the fron-
tal lobe (13), and microstructural abnor-
malities in four major white matter tracts
connecting the frontal, parietal, and tem-
poral lobe (12) in type 2 diabetes com-
pared with a control group. In contrast,
a study comparing 55 age-, sex-, and
education-matched individuals with type 2
diabetes with 50 individuals without
diabetes (11) found that the mean clus-
tering coefficients and global efficiency
were lower in subjects with type 2

diabetes compared with control sub-
jects. However, the total number of con-
nections in the network did not differ
between the groups, and these between-
group differences were independent of
vascular lesion load. This difference in
observations may be due to the much
smaller sample size and the differences in
the specific networks, which were ana-
lyzed in that study. Interestingly, altered
functional connectivity, in terms of a
higher clusteringcoefficient andhigh local
efficiency, was found in type 2 diabetes
and at a lower level in prediabetes (36),
which was interpreted as a compensatory
mechanism in the form of functional re-
organization to counteract a decrease in
cognitive performance. This is in agree-
ment with the altered structural con-
nectivity observed in the current study,
which is indicative of alternative white
matter connections in type 2 diabetes.

Study Considerations
The strengths of this study are the sample
size and population-based design with
anoversamplingofparticipantswith type
2 diabetes, which enables an accurate
comparison between the three glucose
metabolism groups. The large amount
of diffusion MRI scans available were
semiautomatically processed blinded to
group status, which ensures an objective
analysis. Other strengths were the use of
HbA1c levels and a 2-h OGTT to accurate-
ly characterize glucose metabolism and
the extensive assessment of potential
confounders. In this study, most findings
were robust over a large sparsity range
and remained statistically significant af-
ter adjustment for potential confound-
ers. Thereare also some limitations. First,
the time between baseline measure-
ments and MRI scan might have influ-
enced the associations observed.
However, whenwe additionally adjusted
for this, associations did not significantly
change. Second,weuseda singleOGTT to
assess (pre)diabetes status, which may
result in the misclassification of long-
term glucose tolerance status (37).
When group sizes and misclassification
estimates (37)are taken intoaccount, the
net result of this misclassification is likely
to be underestimation of brain abnor-
malities in the group with prediabetes.
Furthermore, individuals who under-
went MRI were younger, less likely to
have type 2 diabetes, less often current
smokers, and less often had a low

educational level, as compared with
the study population that did not un-
dergo MRI. However, as included
individuals with MRI data were rela-
tivelymore healthy comparedwith those
without MRI, our current selection may
have caused us to underestimate any of
the associations between glucose me-
tabolism status and network measures.
And finally, due to the cross-sectional
design of the study, we cannot infer any
conclusion about the causality of this
association. Therefore, future longitudi-
nal studies are needed to address if
hyperglycemia preceeds the develop-
ment of the observed brain abnormali-
ties, which may infer causality.

Conclusion
Weshowed, in apopulation-based study,
that prediabetes, type 2 diabetes, and
continuous measures of hyperglycemia
are associated with fewer white matter
connections and weaker organization
of white matter networks. In addition,
type 2 diabetes was associated with
higher communicability, which was not
yet observed in prediabetes and may
reflect the use of alternative white mat-
ter connections. These findings support
the concept that hyperglycemia, even in
the prediabetes phase, may be harmful
to the brain, and that type 2 diabetes
affects the global and local organization
of brain structures.
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