4. MEDICAL EVALUATION AND COMORBIDITIES # 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes—2019 Diabetes Care 2019;42(Suppl. 1):S34-S45 | https://doi.org/10.2337/dc19-S004 American Diabetes Association The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC. # PATIENT-CENTERED COLLABORATIVE CARE ## Recommendations - 4.1 A patient-centered communication style that uses person-centered and strength-based language and active listening, elicits patient preferences and beliefs, and assesses literacy, numeracy, and potential barriers to care should be used to optimize patient health outcomes and health-related quality of life. B - **4.2** Diabetes care should be managed by a multidisciplinary team that may draw from primary care physicians, subspecialty physicians, nurse practitioners, physician assistants, nurses, dietitians, exercise specialists, pharmacists, dentists, podiatrists, and mental health professionals. **E** A successful medical evaluation depends on beneficial interactions between the patient and the care team. The Chronic Care Model (1–3) (see Section 1 "Improving Care and Promoting Health in Populations") is a patient-centered approach to care that requires a close working relationship between the patient and clinicians involved in treatment planning. People with diabetes should receive health care from an interdisciplinary team that may include physicians, nurse practitioners, physician assistants, nurses, dietitians, exercise specialists, pharmacists, dentists, podiatrists, and mental health professionals. Individuals with diabetes must assume an active role in their care. The patient, family or support people, physicians, and health care team should together formulate the management plan, which includes lifestyle management (see Section 5 "Lifestyle Management"). The goals of treatment for diabetes are to prevent or delay complications and maintain quality of life (Fig. 4.1). Treatment goals and plans should be created Suggested citation: American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019;42(Suppl. 1):S34–S45 © 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license. Figure 4.1—Decision cycle for patient-centered glycemic management in type 2 diabetes. Adapted from Davies et al. (119). with the patients based on their individual preferences, values, and goals. The management plan should take into account the patient's age, cognitive abilities, school/work schedule and conditions, health beliefs, support systems, eating patterns, physical activity, social situation, financial concerns, cultural factors, literacy and numeracy (mathematical literacy), diabetes complications and duration of disease, comorbidities, health priorities, other medical conditions, preferences for care, and life expectancy. Various strategies and techniques should be used to support patients' self-management efforts, including providing education on problemsolving skills for all aspects of diabetes management. Provider communications with patients and families should acknowledge that multiple factors impact glycemic management but also emphasize that collaboratively developed treatment plans and a healthy lifestyle can significantly improve disease outcomes and wellbeing (4-7). Thus, the goal of providerpatient communication is to establish a collaborative relationship and to assess and address self-management barriers without blaming patients for "noncompliance" or "nonadherence" when the outcomes of self-management are not optimal (8). The familiar terms "noncompliance" and "nonadherence" denote a passive, obedient role for a person with diabetes in "following doctor's orders" that is at odds with the active role people with diabetes take in directing the day-to-day decision making, planning, monitoring, evaluation, and problem-solving involved in diabetes self-management. Using a nonjudgmental approach that normalizes periodic lapses in self-management may help minimize patients' resistance to reporting problems with self-management. Empathizing and using active listening techniques, such as open-ended questions, reflective statements, and summarizing what the patient said, can help facilitate communication. Patients' perceptions about their own ability, or selfefficacy, to self-manage diabetes are one important psychosocial factor related to improved diabetes self-management and treatment outcomes in diabetes (9-13) and should be a target of ongoing assessment, patient education, and treatment planning. Language has a strong impact on perceptions and behavior. The use of empowering language in diabetes care and education can help to inform and motivate people, yet language that shames and judges may undermine this effort. The American Diabetes Association (ADA) and American Association of Diabetes Educators consensus report, "The Use of Language in Diabetes Care and Education," provides the authors' expert opinion regarding the use of language by health care professionals when speaking or writing about diabetes for people with diabetes or for professional audiences (14). Although further research is needed to address the impact of language on diabetes outcomes, the report includes five key consensus recommendations for language use: - Use language that is neutral, nonjudgmental, and based on facts, actions, or physiology/biology. - Use language that is free from stigma. - Use language that is strength based, respectful, and inclusive and that imparts hope. - · Use language that fosters collaboration between patients and providers. - Use language that is person centered (e.g., "person with diabetes" is preferred over "diabetic"). # COMPREHENSIVE MEDICAL **EVALUATION** #### Recommendations - 4.3 A complete medical evaluation should be performed at the initial visit to: - Confirm the diagnosis and classify diabetes. B - Evaluate for diabetes complications and potential comorbid conditions. B - Review previous treatment and risk factor control in patients with established diabetes. B - Begin patient engagement in the formulation of a care management plan. B - Develop a plan for continuing care. B - 4.4 A follow-up visit should include most components of the initial comprehensive medical evaluation including: interval medical history, assessment of medicationtaking behavior and intolerance/ side effects, physical examination, laboratory evaluation as appropriate to assess attainment of A1C and metabolic targets, and assessment of risk for complications, diabetes self-management behaviors, nutrition, psychosocial health, and the need for referrals, immunizations, or other routine health maintenance screening. B - **4.5** Ongoing management should be guided by the assessment of diabetes complications and shared decision making to set therapeutic goals. B - 4.6 The 10-year risk of a first atherosclerotic cardiovascular disease event should be assessed using the race- and sex-specific Pooled Cohort Equations to better stratify atherosclerotic cardiovascular disease risk. B The comprehensive medical evaluation includes the initial and follow-up evaluations, assessment of complications, psychosocial assessment, management of comorbid conditions, and engagement of the patient throughout the process. While a comprehensive list is provided in **Table 4.1**, in clinical practice, the provider may need to prioritize the components of the medical evaluation given the available resources and time. The goal is to provide the health care team information to optimally support a patient. In addition to the medical history, physical examination, and laboratory tests, providers should assess diabetes self-management behaviors, nutrition, and psychosocial health (see Section 5 "Lifestyle Management") and give guidance on routine immunizations. The assessment of sleep pattern and duration should be considered; a recent metaanalysis found that poor sleep quality, short sleep, and long sleep were associated with higher A1C in people with type 2 diabetes (15). Interval follow-up visits should occur at least every 3-6 months, individualized to the patient, and then annually. Lifestyle management and psychosocial care are the cornerstones of diabetes management. Patients should be referred for diabetes self-management education and support, medical nutrition therapy, and assessment of psychosocial/emotional health concerns if indicated. Patients should receive recommended preventive care services (e.g., immunizations, cancer screening, etc.), smoking cessation counseling, and ophthalmological, dental, and podiatric referrals. The assessment of risk of acute and chronic diabetes complications and treatment planning are key components of initial and follow-up visits (Table 4.2). The risk of atherosclerotic cardiovascular disease and heart failure (Section 10 "Cardiovascular Disease and Risk Management"), chronic kidney disease staging (Section 11 "Microvascular Complications
and Foot Care"), and risk of treatment-associated hypoglycemia (Table 4.3) should be used to individualize targets for glycemia (Section 6 "Glycemic Targets"), blood pressure, and lipids and to select specific glucose-lowering medication (Section 9 "Pharmacologic Approaches to Glycemic Treatment"), antihypertension medication, or statin treatment intensity. Additional referrals should be arranged as necessary (Table 4.4). Clinicians should ensure that individuals with diabetes are appropriately screened for complications and comorbidities. Discussing and implementing an approach to glycemic control with the patient is a part, not the sole goal, of the patient encounter. #### **Immunizations** #### Recommendations - 4.7 Provide routinely recommended vaccinations for children and adults with diabetes by age. C - 4.8 Annual vaccination against influenza is recommended for all people ≥6 months of age, especially those with diabetes. C - 4.9 Vaccination against pneumococcal disease, including pneumococcal pneumonia, with 13-valent pneumococcal conjugate vaccine (PCV13) is recommended for children before age 2 years. People with diabetes ages 2 through 64 years should also receive 23-valent pneumococcal polysaccharide vaccine (PPSV23). At age ≥65 years, regardless of vaccination history, additional PPSV23 vaccination is necessary. C - **4.10** Administer a 2- or 3-dose series of hepatitis B vaccine, depending on the vaccine, to unvaccinated adults with diabetes ages 18 through 59 years. C - 4.11 Consider administering 3-dose series of hepatitis B vaccine to unvaccinated adults with diabetes ages ≥60 years. C Children and adults with diabetes should receive vaccinations according to age-appropriate recommendations (16,17). The child and adolescent (\leq 18 years of age) vaccination schedule is available at www.cdc.gov/vaccines/ schedules/hcp/imz/child-adolescent.html, and the adult (≥19 years of age) vaccination schedule is available at www.cdc .gov/vaccines/schedules/hcp/imz/adult .html. These immunization schedules include vaccination schedules specifically for children, adolescents, and adults with diabetes. People with diabetes are at higher risk for hepatitis B infection and are more likely to develop complications from influenza and pneumococcal disease. The Centers for Disease Control and Prevention (CDC) Advisory Committee | | nponents of the comprehensive diabetes ation at initial, follow-up, and annual visits | INITIAL
VISIT | EVERY
FOLLOW-
UP VISIT | ANNUAL
VISIT | |---|--|------------------|------------------------------|-----------------| | | Diabetes history | | | | | | Characteristics at onset (e.g., age, symptoms) | ✓ | | | | | Review of previous treatment regimens and response | ✓ | | | | | Assess frequency/cause/severity of past hospitalizations | ✓ | | | | | Family history | | | | | | Family history of diabetes in a first-degree relative | ✓ | | | | | Family history of autoimmune disorder | ✓ | | | | | Personal history of complications and common comorbidities | | | | | PAST MEDICAL AND FAMILY | Macrovascular and microvascular | ✓ | | ✓ | | HISTORY | Common comorbidities (e.g., obesity, OSA) | ✓ | | | | | Hypoglycemia: awareness/frequency/causes/timing of episodes | ✓ | ✓ | ✓ | | | Presence of hemoglobinopathies or anemias | ✓ | | | | | High blood pressure or abnormal lipids | ✓ | | ✓ | | | Last dental visit | ✓ | | ✓ | | | Last dilated eye exam | ✓ | | ✓ | | | Visits to specialists | ✓ | ✓ | ✓ | | | Interval history | | | | | | Changes in medical/family history since last visit | | ✓ | ✓ | | LIFESTYLE
FACTORS | Eating patterns and weight history | ✓ | ✓ | ✓ | | | Physical activity and sleep behaviors | ✓ | ✓ | ✓ | | | Tobacco, alcohol, and substance use | ✓ | | ✓ | | | Current medication regimen | √ | ✓ | ✓ | | MEDICATIONS
AND
VACCINATIONS | Medication-taking behavior | ✓ | ✓ | ✓ | | | Medication intolerance or side effects | ✓ | ✓ | ✓ | | | Complementary and alternative medicine use | ✓ | ✓ | ✓ | | | Vaccination history and needs | ✓ | | ✓ | | TECHNOLOGY
USE | Assess use of health apps, online education, patient portals, etc. | ✓ | | ✓ | | | Glucose monitoring (meter/CGM): results and data use | ✓ | ✓ | ✓ | | | Review insulin pump settings and use | ✓ | ✓ | ✓ | | | Psychosocial conditions | | | | | | Screen for depression, anxiety, and disordered eating; refer
for further assessment or intervention if warranted | ✓ | | ✓ | | | Identify existing social supports | ✓ | | | | BEHAVIORAL | Consider assessment for cognitive impairment* | ✓ | | ✓ | | AND DIABETES
SELF-
MANAGEMENT
SKILLS | Diabetes self-management education and support | | | | | | History of dietician/diabetes educator visits/classes | ✓ | ✓ | ✓ | | | Assess diabetes self-management skills and barriers | ✓ | | ✓ | | | Assess familiarity with carbohydrate counting (type 1 diabetes) | ✓ | | | | | Pregnancy planning | | | | | | For women with childbearing capacity, review contraceptive needs | √ | √ | √ | | | and preconception planning | | | | | |)– Components of the comprehensive diabetes tion at initial, follow-up, and annual visits | INITIAL
VISIT | EVERY
FOLLOW-
UP VISIT | ANNUAL
VISIT | |--------------------------|--|------------------|------------------------------|-----------------| | PHYSICAL
EXAMINATION | Height, weight, and BMI; growth/pubertal development in children
and adolescents | ✓ | ✓ | ✓ | | | Blood pressure determination | ✓ | ✓ | ✓ | | | Orthostatic blood pressure measures (when indicated) | ✓ | | | | | Fundoscopic examination (refer to eye specialist) | ✓ | | ✓ | | | Thyroid palpation | ✓ | | ✓ | | | Skin examination (e.g., acanthosis nigricans, insulin injection or
insertion sites, lipodystrophy) | ✓ | ✓ | ✓ | | | Comprehensive foot examination | | | | | | Visual inspection (e.g., skin integrity, callous formation, foot
deformity or ulcer, toenails)** | ✓ | | ✓ | | | Screen for PAD (pedal pulses-refer for ABI if diminished) | ✓ | | ✓ | | | Determination of temperature, vibration or pinprick sensation,
and 10-g monofilament exam | ✓ | | ✓ | | LABORATORY
EVALUATION | A1C, if the results are not available within the past 3 months | ✓ | ✓ | ✓ | | | If not performed/available within the past year | ✓ | | ✓ | | | Lipid profile, including total, LDL, and HDL cholesterol and
triglycerides# | ✓ | | √^ | | | • Liver function tests# | ✓ | | ✓ | | | Spot urinary albumin-to-creatinine ratio | ✓ | | ✓ | | | Serum creatinine and estimated glomerular filtration rate[†] | ✓ | | ✓ | | | Thyroid-stimulating hormone in patients with type 1 diabetes# | ✓ | | ✓ | | | Vitamin B12 if on metformin (when indicated) | ✓ | | ✓ | | | Serum potassium levels in patients on ACE inhibitors, ARBs, or
diuretics⁺ | ✓ | | ✓ | ABI, ankle-brachial pressure index: ARBs, angiotensin receptor blockers; CGM, continuous glucose monitors; OSA, obstructive sleep appea; PAD, peripheral arterial disease #may also need to be checked after initiation or dose changes of medications that affect these laboratory values (i.e., diabetes medications, blood pressure medications, cholesterol medications, or thyroid medications) on Immunization Practices (ACIP) recommends influenza, pneumococcal, and hepatitis B vaccinations specifically for people with diabetes. Vaccinations against tetanus-diphtheria-pertussis, measles-mumps-rubella, human papillomavirus, and shingles are also important for adults with diabetes, as they are for the general population. ## Influenza Influenza is a common, preventable infectious disease associated with high mortality and morbidity in vulnerable populations including the young and the elderly and people with chronic diseases. Influenza vaccination in people with diabetes has been found to significantly reduce influenza and diabetesrelated hospital admissions (18). #### Pneumococcal Pneumonia Like influenza, pneumococcal pneumonia is a common, preventable disease. People with diabetes are at increased risk for the bacteremic form of pneumococcal infection and have been reported to have a high risk of nosocomial bacteremia, with a mortality rate as high as 50% (19). The ADA endorses recommendations from the CDC ACIP that adults age ≥65 years, who are at higher risk for pneumococcal disease, receive an additional 23-valent pneumococcal polysaccharide vaccine (PPSV23), regardless of prior pneumococcal vaccination history. See detailed recommendations at www.cdc.gov/vaccines/hcp/ acip-recs/vacc-specific/pneumo.html. ## Hepatitis B Compared with the general population, people with type 1 or type 2 diabetes have higher rates of hepatitis B. This may be due to contact with infected blood ^{*}at 65 years of age or older ⁺may be needed more frequently in patients with known chronic kidney disease or with
changes in medications that affect kidney function and serum ^{&#}x27;in people without dyslipidemia and not on cholesterol lowering therapy, testing may be less frequent. ^{**}should be performed at every visit in patients with sensory loss, previous foot ulcers, or amputations ## Table 4.2-Assessment and treatment plan* Assess risk of diabetes complications - ASCVD and heart failure history - ASCVD risk factors (see Table 10.2) and 10-year ASCVD risk assessment - Staging of chronic kidney disease (see Table 11.1) - Hypoglycemia risk (Table 4.3) #### Goal setting - Set A1C/blood glucose target - If hypertension present, establish blood pressure target - Diabetes self-management goals (e.g., monitoring frequency) #### Therapeutic treatment plan - Lifestyle management - Pharmacologic therapy (glucose lowering) - Pharmacologic therapy (cardiovascular disease risk factors and renal) - Use of glucose monitoring and insulin delivery devices - Referral to diabetes education and medical specialists (as needed) ASCVD, atherosclerotic cardiovascular disease. *Assessment and treatment planning is an essential component of initial and all follow-up visits. or through improper equipment use (glucose monitoring devices or infected needles). Because of the higher likelihood of transmission, hepatitis B vaccine is recommended for adults with diabetes age <60 years. For adults age ≥60 years, hepatitis B vaccine may be administered at the discretion of the treating clinician based on the patient's likelihood of acquiring hepatitis B infection. ## ASSESSMENT OF COMORBIDITIES Besides assessing diabetes-related complications, clinicians and their patients need to be aware of common comorbidities that affect people with diabetes and may complicate management (20-24). Diabetes comorbidities are conditions that affect people with diabetes more often than age-matched people without diabetes. This section includes many of the common comorbidities observed in patients with diabetes but is not necessarily inclusive of all the conditions that have been reported. #### Autoimmune Diseases #### Recommendation **4.12** Consider screening patients with type 1 diabetes for autoimmune thyroid disease and celiac disease soon after diagnosis. B People with type 1 diabetes are at increased risk for other autoimmune diseases including thyroid disease, primary adrenal insufficiency, celiac disease, autoimmune gastritis, autoimmune hepatitis, dermatomyositis, and myasthenia gravis (25–27). Type 1 diabetes may also occur with other autoimmune diseases in the context of specific genetic disorders or polyglandular autoimmune syndromes (28). In autoimmune diseases, the immune system fails to maintain self-tolerance to specific peptides within target organs. It is likely that many factors trigger autoimmune disease; however, common triggering factors are known for only some autoimmune conditions (i.e., gliadin peptides in celiac disease) (see Section 13 "Children and Adolescents"). #### Cancer Diabetes is associated with increased risk of cancers of the liver, pancreas, endometrium, colon/rectum, breast, and bladder (29). The association may result from shared risk factors between type 2 diabetes and cancer (older age, obesity, and physical inactivity) but may also be due to diabetes-related factors (30), such as underlying disease physiology or diabetes treatments, although evidence for these links is scarce. Patients with diabetes should be encouraged to undergo recommended age- and sexappropriate cancer screenings and to reduce their modifiable cancer risk factors (obesity, physical inactivity, and smoking). New onset of atypical diabetes (lean body habitus, negative family history) in a middle-aged or older patient may precede the diagnosis of pancreatic adenocarcinoma (31). However, in the absence of other symptoms (e.g., weight loss, abdominal pain), routine screening of all such patients is not currently recommended. # Cognitive Impairment/Dementia ## Recommendation 4.13 In people with a history of cognitive impairment/dementia, intensive glucose control cannot be expected to remediate deficits. Treatment should be tailored to avoid significant hypoglycemia. B Diabetes is associated with a significantly increased risk and rate of cognitive decline and an increased risk of dementia (32,33). A recent meta-analysis of prospective observational studies in people with diabetes showed 73% increased risk of all types of dementia, 56% increased risk of Alzheimer dementia, and 127% increased risk of vascular dementia compared with individuals without diabetes (34). The reverse is also true: people with Alzheimer dementia are more likely to develop diabetes than people without Alzheimer dementia. In a 15-year prospective study of community-dwelling people >60 years of age, the presence of diabetes at baseline significantly increased the age- and sex-adjusted # Table 4.3—Assessment of hypoglycemia risk Factors that increase risk of treatment-associated hypoglycemia - Use of insulin or insulin secretagogues (i.e., sulfonylureas, meglitinides) - Impaired kidney or hepatic function - Longer duration of diabetes - Frailty and older age - Cognitive impairment - Impaired counterregulatory response, hypoglycemia unawareness - Physical or intellectual disability that may impair behavioral response to hypoglycemia - Alcohol use - Polypharmacy (especially ACE inhibitors, angiotensin receptor blockers, nonselective **β-blockers**) ## Table 4.4-Referrals for initial care management - Eye care professional for annual dilated eye exam - Family planning for women of reproductive age - Registered dietitian for medical nutrition - Diabetes self-management education and support - Dentist for comprehensive dental and periodontal examination - Mental health professional, if indicated incidence of all-cause dementia, Alzheimer dementia, and vascular dementia compared with rates in those with normal glucose tolerance (35). ## Hyperglycemia In those with type 2 diabetes, the degree and duration of hyperglycemia are related to dementia. More rapid cognitive decline is associated with both increased A1C and longer duration of diabetes (34). The Action to Control Cardiovascular Risk in Diabetes (ACCORD) study found that each 1% higher A1C level was associated with lower cognitive function in individuals with type 2 diabetes (36). However, the ACCORD study found no difference in cognitive outcomes in participants randomly assigned to intensive and standard glycemic control, supporting the recommendation that intensive glucose control should not be advised for the improvement of cognitive function in individuals with type 2 diabetes (37). #### Hypoglycemia In type 2 diabetes, severe hypoglycemia is associated with reduced cognitive function, and those with poor cognitive function have more severe hypoglycemia. In a long-term study of older patients with type 2 diabetes, individuals with one or more recorded episode of severe hypoglycemia had a stepwise increase in risk of dementia (38). Likewise, the ACCORD trial found that as cognitive function decreased, the risk of severe hypoglycemia increased (39). Tailoring glycemic therapy may help to prevent hypoglycemia in individuals with cognitive dysfunction. ## Nutrition In one study, adherence to the Mediterranean diet correlated with improved cognitive function (40). However, a recent Cochrane review found insufficient evidence to recommend any dietary change for the prevention or treatment of cognitive dysfunction (41). #### Statins A systematic review has reported that data do not support an adverse effect of statins on cognition (42). The U.S. Food and Drug Administration postmarketing surveillance databases have also revealed a low reporting rate for cognitive-related adverse events, including cognitive dysfunction or dementia, with statin therapy, similar to rates seen with other commonly prescribed cardiovascular medications (42). Therefore, fear of cognitive decline should not be a barrier to statin use in individuals with diabetes and a high risk for cardiovascular disease. # Nonalcoholic Fatty Liver Disease ## Recommendation **4.14** Patients with type 2 diabetes or prediabetes and elevated liver enzymes (alanine aminotransferase) or fatty liver on ultrasound should be evaluated for presence of nonalcoholic steatohepatitis and liver fibrosis. C Diabetes is associated with the development of nonalcoholic fatty liver disease, including its more severe manifestations of nonalcoholic steatohepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma (43). Elevations of hepatic transaminase concentrations are associated with higher BMI, waist circumference, and triglyceride levels and lower HDL cholesterol levels. Noninvasive tests, such as elastography or fibrosis biomarkers, may be used to assess risk of fibrosis, but referral to a liver specialist and liver biopsy may be required for definitive diagnosis (43a). Interventions that improve metabolic abnormalities in patients with diabetes (weight loss, glycemic control, and treatment with specific drugs for hyperglycemia or dyslipidemia) are also beneficial for fatty liver disease (44,45). Pioglitazone and vitamin E treatment of biopsy-proven nonalcoholic steatohepatitis have been shown to improve liver histology, but effects on longerterm clinical outcomes are not known (46,47). Treatment with liraglutide and with sodium-glucose cotransporter 2 inhibitors (dapagliflozin and empagliflozin) has also shown some promise in preliminary studies, although benefits may be mediated, at least in part, by weight loss (48-50). ## **Pancreatitis** #### Recommendation **4.15** Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes. C Diabetes is linked to diseases of the exocrine pancreas such as pancreatitis, which may disrupt the global architecture or physiology of the
pancreas, often resulting in both exocrine and endocrine dysfunction. Up to half of patients with diabetes may have impaired exocrine pancreas function (51). People with diabetes are at an approximately twofold higher risk of developing acute pancreatitis (52). Conversely, prediabetes and/or diabetes has been found to develop in approximately one-third of patients after an episode of acute pancreatitis (53), thus the relationship is likely bidirectional. Postpancreatitis diabetes may include either new-onset disease or previously unrecognized diabetes (54). Studies of patients treated with incretin-based therapies for diabetes have also reported that pancreatitis may occur more frequently with these medications, but results have been mixed (55,56). Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes. Approximately one-third of patients undergoing total pancreatectomy with islet autotransplantation are insulin free 1 year postoperatively, and observational studies from different centers have demonstrated islet graft function up to a decade after the surgery in some patients (57-61). Both patient and disease factors should be carefully considered when deciding the indications and timing of this surgery. Surgeries should be performed in skilled facilities that have demonstrated expertise in islet autotransplantation. ## Fractures Age-specific hip fracture risk is significantly increased in people with both type 1 (relative risk 6.3) and type 2 (relative risk 1.7) diabetes in both sexes (62). Type 1 diabetes is associated with osteoporosis, but in type 2 diabetes, an increased risk of hip fracture is seen despite higher bone mineral density (BMD) (63). In three large observational studies of older adults, femoral neck BMD T score and the World Health Organization Fracture Risk Assessment Tool (FRAX) score were associated with hip and nonspine fractures. Fracture risk was higher in participants with diabetes compared with those without diabetes for a given T score and age or for a given FRAX score (64). Providers should assess fracture history and risk factors in older patients with diabetes and recommend measurement of BMD if appropriate for the patient's age and sex. Fracture prevention strategies for people with diabetes are the same as for the general population and include vitamin D supplementation. For patients with type 2 diabetes with fracture risk factors, thiazolidinediones (65) and sodiumglucose cotransporter 2 inhibitors (66) should be used with caution. #### **Hearing Impairment** Hearing impairment, both in high frequency and low/midfrequency ranges, is more common in people with diabetes than in those without, perhaps due to neuropathy and/or vascular disease. In a National Health and Nutrition Examination Survey (NHANES) analysis, hearing impairment was about twice as prevalent in people with diabetes compared with those without, after adjusting for age and other risk factors for hearing impairment (67). # HIV # Recommendation 4.16 Patients with HIV should be screened for diabetes and prediabetes with a fasting glucose test before starting antiretroviral therapy, at the time of switching antiretroviral therapy, and 3-6 months after starting or switching antiretroviral therapy. If initial screening results are normal, checking fasting glucose every year is advised. E Diabetes risk is increased with certain protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs). New-onset diabetes is estimated to occur in more than 5% of patients infected with HIV on PIs, whereas more than 15% may have prediabetes (68). Pls are associated with insulin resistance and may also lead to apoptosis of pancreatic β -cells. NRTIs also affect fat distribution (both lipohypertrophy and lipoatrophy), which is associated with insulin resistance. Individuals with HIV are at higher risk for developing prediabetes and diabetes on antiretroviral (ARV) therapies, so a screening protocol is recommended (69). The A1C test may underestimate glycemia in people with HIV and is not recommended for diagnosis and may present challenges for monitoring (70). In those with prediabetes, weight loss through healthy nutrition and physical activity may reduce the progression toward diabetes. Among patients with HIV and diabetes, preventive health care using an approach similar to that used in patients without HIV is critical to reduce the risks of microvascular and macrovascular complications. For patients with HIV and ARVassociated hyperglycemia, it may be appropriate to consider discontinuing the problematic ARV agents if safe and effective alternatives are available (71). Before making ARV substitutions, carefully consider the possible effect on HIV virological control and the potential adverse effects of new ARV agents. In some cases, antihyperglycemia agents may still be necessary. #### Low Testosterone in Men #### Recommendation **4.17** In men with diabetes who have symptoms or signs of hypogonadism, such as decreased sexual desire (libido) or activity, or erectile dysfunction, consider screening with a morning serum testosterone level. B Mean levels of testosterone are lower in men with diabetes compared with agematched men without diabetes, but obesity is a major confounder (72,73). Treatment in asymptomatic men is controversial. Testosterone replacement in men with symptomatic hypogonadism may have benefits including improved sexual function, well-being, muscle mass and strength, and bone density (74). In men with diabetes who have symptoms or signs of low testosterone (hypogonadism), a morning total testosterone should be measured using an accurate and reliable assay. Free or bioavailable testosterone levels should also be measured in men with diabetes who have total testosterone levels close to the lower limit, given expected decreases in sex hormonebinding globulin with diabetes. Further testing (such as luteinizing hormone and follicle-stimulating hormone levels) may be needed to distinguish between primary and secondary hypogonadism. ## Obstructive Sleep Apnea Age-adjusted rates of obstructive sleep apnea, a risk factor for cardiovascular disease, are significantly higher (4- to 10-fold) with obesity, especially with central obesity (75). The prevalence of obstructive sleep apnea in the population with type 2 diabetes may be as high as 23%, and the prevalence of any sleepdisordered breathing may be as high as 58% (76,77). In obese participants enrolled in the Action for Health in Diabetes (Look AHEAD) trial, it exceeded 80% (78). Patients with symptoms suggestive of obstructive sleep apnea (e.g., excessive daytime sleepiness, snoring, witnessed apnea) should be considered for screening (79). Sleep apnea treatment (lifestyle modification, continuous positive airway pressure, oral appliances, and surgery) significantly improves quality of life and blood pressure control. The evidence for a treatment effect on glycemic control is mixed (80). #### Periodontal Disease Periodontal disease is more severe, and may be more prevalent, in patients with diabetes than in those without (81,82). Current evidence suggests that periodontal disease adversely affects diabetes outcomes, although evidence for treatment benefits remains controversial (24). #### Psychosocial/Emotional Disorders Prevalence of clinically significant psychopathology diagnoses are considerably more common in people with diabetes than in those without the disease (83). Symptoms, both clinical and subclinical, that interfere with the person's ability to carry out daily diabetes self-management tasks must be addressed. Providers should consider an assessment of symptoms of depression, anxiety, and disordered eating and of cognitive capacities using patient-appropriate standardized/validated tools at the initial visit, at periodic intervals, and when there is a change in disease, treatment, or life circumstance. Including caregivers and family members in this assessment is recommended. Diabetes distress is addressed in Section 5 "Lifestyle Management," as this state is very common and distinct from the psychological disorders discussed below (84). ## **Anxiety Disorders** #### Recommendations - 4.18 Consider screening for anxiety in people exhibiting anxiety or worries regarding diabetes complications, insulin injections or infusion, taking medications, and/or hypoglycemia that interfere with self-management behaviors and those who express fear, dread, or irrational thoughts and/or show anxiety symptoms such as avoidance behaviors, excessive repetitive behaviors, or social withdrawal. Refer for treatment if anxiety is present. B - **4.19** People with hypoglycemia unawareness, which can co-occur with fear of hypoglycemia, should be treated using blood glucose awareness training (or other evidence-based intervention) to help reestablish awareness of hypoglycemia and reduce fear of hypoglycemia. A Anxiety symptoms and diagnosable disorders (e.g., generalized anxiety disorder, body dysmorphic disorder, obsessive-compulsive disorder, specific phobias, and posttraumatic stress disorder) are common in people with diabetes (85). The Behavioral Risk Factor Surveillance System (BRFSS) estimated the lifetime prevalence of generalized anxiety disorder to be 19.5% in people with either type 1 or type 2 diabetes (86). Common diabetes-specific concerns include fears related to hypoglycemia (87, 88), not meeting blood glucose targets (85), and insulin injections or infusion (89). Onset of complications presents another critical point when anxiety can occur (90). People with diabetes who exhibit excessive diabetes self-management behaviors well beyond what is prescribed or needed to achieve glycemic targets may be experiencing symptoms of obsessivecompulsive disorder (91). General anxiety is a predictor of injection-related anxiety and associated
with fear of hypoglycemia (88,92). Fear of hypoglycemia and hypoglycemia unawareness often co-occur, and interventions aimed at treating one often benefit both (93). Fear of hypoglycemia may explain avoidance of behaviors associated with lowering glucose such as increasing insulin doses or frequency of monitoring. If fear of hypoglycemia is identified and a person does not have symptoms of hypoglycemia, a structured program of blood glucose awareness training delivered in routine clinical practice can improve A1C, reduce the rate of severe hypoglycemia, and restore hypoglycemia awareness (94,95). #### Depression ## Recommendations - 4.20 Providers should consider annual screening of all patients with diabetes, especially those with a self-reported history of depression, for depressive symptoms with age-appropriate depression screening measures, recognizing that further evaluation will be necessary for individuals who have a positive screen. B - 4.21 Beginning at diagnosis of complications or when there are significant changes in medical status, consider assessment for depression. B - 4.22 Referrals for treatment of depression should be made to mental health providers with experience using cognitive behavioral therapy, interpersonal therapy, or other evidencebased treatment approaches in conjunction with collaborative care with the patient's diabetes treatment team. A History of depression, current depression, and antidepressant medication use are risk factors for the development of type 2 diabetes, especially if the individual has other risk factors such as obesity and family history of type 2 diabetes (96-98). Elevated depressive symptoms and depressive disorders affect one in four patients with type 1 or type 2 diabetes (99). Thus, routine screening for depressive symptoms is indicated in this high-risk population including people with type 1 or type 2 diabetes, gestational diabetes mellitus, and postpartum diabetes. Regardless of diabetes type, women have significantly higher rates of depression than men (100). Routine monitoring with patientappropriate validated measures can help to identify if referral is warranted. Adult patients with a history of depressive symptoms or disorder need ongoing monitoring of depression recurrence within the context of routine care (96). Integrating mental and physical health care can improve outcomes. When a patient is in psychological therapy (talk therapy), the mental health provider should be incorporated into the diabetes treatment team (101). ## Disordered Eating Behavior ## Recommendations - 4.23 Providers should consider reevaluating the treatment regimen of people with diabetes who present with symptoms of disordered eating behavior, an eating disorder, or disrupted patterns of eating. B - 4.24 Consider screening for disordered or disrupted eating using validated screening measures when hyperglycemia and weight loss are unexplained based on self-reported behaviors related to medication dosing, meal plan, and physical activity. In addition, a review of the medical regimen is recommended to identify potential treatmentrelated effects on hunger/ caloric intake. B Estimated prevalence of disordered eating behaviors and diagnosable eating disorders in people with diabetes varies (102-104). For people with type 1 diabetes, insulin omission causing glycosuria in order to lose weight is the most commonly reported disordered eating behavior (105,106); in people with type 2 diabetes, bingeing (excessive food intake with an accompanying sense of loss of control) is most commonly reported. For people with type 2 diabetes treated with insulin, intentional omission is also frequently reported (107). People with diabetes and diagnosable eating disorders have high rates of comorbid psychiatric disorders (108). People with type 1 diabetes and eating disorders have high rates of diabetes distress and fear of hypoglycemia (109). When evaluating symptoms of disordered or disrupted eating in people with diabetes, etiology and motivation for the behavior should be considered (104,110). Adjunctive medication such as glucagon-like peptide 1 receptor agonists (111) may help individuals not only to meet glycemic targets but also to regulate hunger and food intake, thus having the potential to reduce uncontrollable hunger and bulimic symptoms. ## Serious Mental Illness #### Recommendations - 4.25 Annually screen people who are prescribed atypical antipsychotic medications for prediabetes or diabetes. B - 4.26 If a second-generation antipsychotic medication is prescribed for adolescents or adults with diabetes, changes in weight, glycemic control, and cholesterol levels should be carefully monitored and the treatment regimen should be reassessed. C - 4.27 Incorporate monitoring of diabetes self-care activities into treatment goals in people with diabetes and serious mental illness. B Studies of individuals with serious mental illness, particularly schizophrenia and other thought disorders, show significantly increased rates of type 2 diabetes (112). People with schizophrenia should be monitored for type 2 diabetes because of the known comorbidity. Disordered thinking and judgment can be expected to make it difficult to engage in behaviors that reduce risk factors for type 2 diabetes, such as restrained eating for weight management. Coordinated management of diabetes or prediabetes and serious mental illness is recommended to achieve diabetes treatment targets. In addition, those taking second-generation (atypical) antipsychotics, such as olanzapine, require greater monitoring because of an increase in risk of type 2 diabetes associated with this medication (113). #### References - 1. Stellefson M, Dipnarine K, Stopka C. The Chronic Care Model and diabetes management in US primary care settings: a systematic review. Prev Chronic Dis 2013;10:E26 - 2. Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the Chronic Care Model in the new millennium. Health Aff (Millwood) 2009:28:75-85 - 3. Gabbay RA, Bailit MH, Mauger DT, Wagner EH, Siminerio L. Multipayer patient-centered medical home implementation guided by the chronic care model. Jt Comm J Qual Patient Saf 2011;37: 265-273 - 4. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-853 - 5. Nathan DM, Genuth S, Lachin J, et al.; Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of longterm complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977-986 - 6. Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN; DCCT/EDIC Research Group. Effect of glycemic exposure on the risk of microvascular complications in the Diabetes Control and Complications Trial—revisited, Diabetes 2008: 57:995-1001 - 7. White NH, Cleary PA, Dahms W, Goldstein D, Malone J, Tamborlane WV; Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT). J Pediatr 2001:139:804-812 - 8. Anderson RM, Funnell MM. Compliance and adherence are dysfunctional concepts in diabetes care. Diabetes Educ 2000;26:597-604 9. Sarkar U, Fisher L, Schillinger D. Is self-efficacy associated with diabetes self-management across race/ethnicity and health literacy? Diabetes Care 2006:29:823-829 - 10. King DK, Glasgow RE, Toobert DJ, et al. Selfefficacy, problem solving, and social-environmental support are associated with diabetes selfmanagement behaviors. Diabetes Care 2010; 33:751-753 - 11. Nouwen A, Urquhart Law G, Hussain S, McGovern S, Napier H. Comparison of the role of self-efficacy and illness representations in relation to dietary self-care and diabetes distress in adolescents with type 1 diabetes. Psychol Health 2009;24:1071-1084 - 12. Beckerle CM, Lavin MA. Association of self-efficacy and self-care with glycemic control in diabetes. Diabetes Spectr 2013;26:172–178 13. Iannotti RJ, Schneider S, Nansel TR, et al. Self-efficacy, outcome expectations, and diabetes self-management in adolescents with type 1 diabetes. J Dev Behav Pediatr 2006;27:98-105 - 14. Dickinson JK, Guzman SJ, Maryniuk MD, et al. The use of language in diabetes care and education. Diabetes Care 2017;40:1790-1799 15. Lee SWH, Ng KY, Chin WK. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: a systematic review and meta-analysis. Sleep Med Rev 2017:31:91- - 16. Robinson CL, Romero JR, Kempe A, Pellegrini C: Advisory Committee on Immunization Practices (ACIP) Child/Adolescent Immunization Work Group. Advisory Committee on Immunization Practices recommended immunization schedule for children and adolescents aged 18 years or younger-United States, 2017. MMWR Morb Mortal Wkly Rep 2017; 66:134-135 - 17. Kim DK, Riley LE, Harriman KH, Hunter P, Bridges CB. Advisory Committee on Immunization Practices recommended immunization schedule for adults aged 19 years or older-United States, 2017. MMWR Morb Mortal Wkly Rep 2017;66:136-138 - 18. Goeijenbier M, van Sloten TT, Slobbe L, et al. Benefits of flu vaccination for persons with diabetes mellitus: a review. Vaccine 2017;35:5095-5101 - 19. Smith SA. Poland GA. Use of influenza and pneumococcal vaccines in people with diabetes. Diabetes Care 2000;23:95-108 - 20. Selvin E, Coresh J, Brancati FL. The burden and treatment of diabetes in elderly individuals in the U.S. Diabetes Care 2006;29:2415- - 21. Grant RW, Ashburner JM, Hong CS, Chang Y, Barry MJ, Atlas SJ. Defining patient complexity from the primary care physician's perspective: a cohort study [published correction appears in Ann Intern Med 2012;157:152]. Ann Intern Med 2011;155:797-804
- 22. Tinetti ME, Fried TR, Boyd CM. Designing health care for the most common chronic condition-multimorbidity. JAMA 2012;307:2493-2494 - 23. Sudore RL, Karter AJ, Huang ES, et al. Symptom burden of adults with type 2 diabetes across the disease course: Diabetes & Aging Study. J Gen Intern Med 2012;27:1674-1681 - 24. Borgnakke WS, Ylöstalo PV, Taylor GW, Genco RJ. Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence. J Periodontol 2013;84 (Suppl.):S135-S152 - 25. Triolo TM, Armstrong TK, McFann K, et al. Additional autoimmune disease found in 33% of patients at type 1 diabetes onset. Diabetes Care 2011;34:1211–1213 - 26. Hughes JW, Riddlesworth TD, DiMeglio LA, Miller KM, Rickels MR, McGill JB. Autoimmune diseases in children and adults with type 1 diabetes from the T1D Exchange Clinic Registry. J Clin Endocrinol Metab 2016;101:4931-4937 - 27. Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev 2016:15:644-648 - 28. Eisenbarth GS, Gottlieb PA. Autoimmune polyendocrine syndromes. N Engl J Med 2004; 350:2068-2079 - 29. Suh S, Kim K-W. Diabetes and cancer: is diabetes causally related to cancer? Diabetes Metab J 2011;35:193-198 - 30. Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin 2010;60:207-221 - 31. Aggarwal G, Kamada P, Chari ST. Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas 2013;42: 198-201 - 32. Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetessystematic overview of prospective observational studies. Diabetologia 2005;48:2460-2469 - 33. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006;5:64-74 - 34. Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: a metaanalysis of prospective observational studies. J Diabetes Investig 2013;4:640-650 - 35. Ohara T, Doi Y, Ninomiya T, et al. Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology 2011:77:1126-1134 - 36. Cukierman-Yaffe T. Gerstein HC. Williamson JD, et al.; Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) Investigators. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) trial. Diabetes Care 2009;32:221-226 - 37. Launer LJ, Miller ME, Williamson JD, et al.; ACCORD MIND Investigators. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol 2011:10:969-977 - 38. Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 2009;301:1565-1572 - 39. Punthakee Z, Miller ME, Launer LJ, et al.; ACCORD Group of Investigators; ACCORD-MIND Investigators. Poor cognitive function and risk of severe hypoglycemia in type 2 diabetes: post hoc epidemiologic analysis of the ACCORD trial. Diabetes Care 2012;35:787-793 - 40. Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol 2009:66:216-225 - 41. Ooi CP, Loke SC, Yassin Z, Hamid T-A. Carbohydrates for improving the cognitive performance of independent-living older adults with normal cognition or mild cognitive impairment. Cochrane Database Syst Rev 2011;4:CD007220 42. Richardson K, Schoen M, French B, et al. Statins and cognitive function: a systematic review. Ann Intern Med 2013;159:688-697 - 43. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 2004;126:460-468 - 43a. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018;67:328-357 - 44. American Gastroenterological Association. American Gastroenterological Association - medical position statement: nonalcoholic fatty liver disease. Gastroenterology 2002;123:1702- - 45. Cusi K, Orsak B, Bril F, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med 2016;165:305-315 - 46. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006;355:2297-2307 - 47. Sanyal AJ, Chalasani N, Kowdley KV, et al.; NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010:362:1675-1685 - 48. Armstrong MJ, Gaunt P, Aithal GP, et al.; LEAN Trial Team. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016: - 49. Shimizu M, Suzuki K, Kato K, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab. 3 September 2018 [Epub ahead of print]. DOI: 10.1111/ - 50. Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME trial. Diabetologia 2018;61:2155-2163 51. Hardt PD. Brendel MD. Kloer HU. Bretzel RG. Is pancreatic diabetes (type 3c diabetes) underdiagnosed and misdiagnosed? Diabetes Care 2008:31(Suppl. 2):S165-S169 - 52. Lee Y-K, Huang M-Y, Hsu C-Y, Su Y-C. Bidirectional relationship between diabetes and acute pancreatitis: a population-based cohort study in Taiwan. Medicine (Baltimore) 2016;95: e2448 - 53. Das SLM, Singh PP, Phillips ARJ, Murphy R, Windsor JA, Petrov MS. Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 2014;63: 818-831 - 54. Petrov MS. Diabetes of the exocrine pancreas: American Diabetes Association-compliant lexicon. Pancreatology 2017;17:523-526 - 55. Thomsen RW, Pedersen L, Møller N, Kahlert J, Beck-Nielsen H, Sørensen HT. Incretin-based therapy and risk of acute pancreatitis: a nationwide population-based case-control study. Diabetes Care 2015:38:1089-1098 - 56. Tkáč I, Raz I. Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 2017:40:284-286 - 57. Bellin MD. Gelrud A. Arreaza-Rubin G. et al. Total pancreatectomy with islet autotransplantation: summary of an NIDDK workshop. Ann Surg 2015:261:21-29 - 58. Sutherland DER, Radosevich DM, Bellin MD, et al. Total pancreatectomy and islet autotransplantation for chronic pancreatitis. J Am Coll Surg 2012;214:409-424; discussion 424-426 - 59. Quartuccio M, Hall E, Singh V, et al. Glycemic predictors of insulin independence after total pancreatectomy with islet autotransplantation. J Clin Endocrinol Metab 2017;102:801-809 60. Webb MA. Illouz SC. Pollard CA. et al. Islet. auto transplantation following total pancreatectomy: a long-term assessment of graft function. Pancreas 2008;37:282-287 - 61. Wu Q, Zhang M, Qin Y, et al. Systematic review and meta-analysis of islet autotransplantation after total pancreatectomy in chronic pancreatitis patients. Endocr J 2015;62:227-234 62. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007;166:495-505 - 63. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 2007;18:427-444 - 64. Schwartz AV, Vittinghoff E, Bauer DC, et al.; Study of Osteoporotic Fractures (SOF) Research Group; Osteoporotic Fractures in Men (MrOS) Research Group; Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 2011;305:2184-2192 - 65. Kahn SE, Zinman B, Lachin JM, et al.; A Diabetes Outcome Progression Trial (ADOPT) Study Group. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008:31:845-851 - 66. Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 2015;3:8-10 - 67. Bainbridge KE, Hoffman HJ, Cowie CC. Diabetes and hearing impairment in the United States: audiometric evidence from the National Health and Nutrition Examination Survey, 1999 to 2004. Ann Intern Med 2008;149:1-10 - 68. Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis 2015; 60:453-462 - 69. Schambelan M, Benson CA, Carr A, et al.; International AIDS Society-USA. Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel. J Acquir Immune Defic Syndr 2002; 31:257-275 - 70. Kim PS, Woods C, Georgoff P, et al. A1C underestimates glycemia in HIV infection. Diabetes Care 2009;32:1591-1593 - 71. Wohl DA, McComsey G, Tebas P, et al. Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy. Clin Infect Dis 2006;43:645-653 72. Dhindsa S, Miller MG, McWhirter CL, et al. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care 2010; 33:1186-1192 - 73. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J
Clin Endocrinol Metab 2011;96:2341-2353 - 74. Bhasin S, Cunningham GR, Hayes FJ, et al.; Endocrine Society Task Force. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2010;95:2536-2559 - 75. Li C, Ford ES, Zhao G, Croft JB, Balluz LS, Mokdad AH. Prevalence of self-reported clinically diagnosed sleep apnea according to obesity status in men and women: National Health and Nutrition Examination Survey, 2005-2006. Prev Med 2010;51:18-23 - 76. West SD, Nicoll DJ, Stradling JR. Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax 2006;61:945-950 - 77. Resnick HE, Redline S, Shahar E, et al.: Sleep Heart Health Study. Diabetes and sleep disturbances: findings from the Sleep Heart Health Study. Diabetes Care 2003;26:702-709 - 78. Foster GD, Sanders MH, Millman R, et al.; Sleep AHEAD Research Group. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care 2009;32:1017-1019 - 79. Bibbins-Domingo K, Grossman DC, Curry SJ, et al.; US Preventive Services Task Force. Screening for obstructive sleep apnea in adults: US Preventive Services Task Force recommendation statement. JAMA 2017;317:407-414 - 80. Shaw JE, Punjabi NM, Wilding JP, Alberti KGMM. Zimmet PZ: International Diabetes Federation Taskforce on Epidemiology and Prevention. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract 2008;81:2-12 81. Khader YS, Dauod AS, El-Qaderi SS, Alkafajei - A, Batayha WQ. Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications 2006;20:59-68 - 82. Casanova L, Hughes FJ, Preshaw PM. Diabetes and periodontal disease: a two-way relationship. Br Dent J 2014;217:433-437 - 83. de Groot M, Golden SH, Wagner J. Psychological conditions in adults with diabetes. Am Psychol 2016;71:552-562 - 84. Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M. Psychosocial care for people with diabetes: a position statement of the American Diabetes Association. Diabetes Care 2016;39:2126-2140 - 85. Smith KJ, Béland M, Clyde M, et al. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res 2013; 74:89-99 - 86. Li C, Barker L, Ford ES, Zhang X, Strine TW, Mokdad AH. Diabetes and anxiety in US adults: findings from the 2006 Behavioral Risk Factor Surveillance System. Diabet Med 2008;25:878-881 87. Cox DJ, Irvine A, Gonder-Frederick L, Nowacek G, Butterfield J. Fear of hypoglycemia: quantification, validation, and utilization. Diabetes Care 1987;10:617-621 - 88. Wild D, von Maltzahn R, Brohan E, Christensen T, Clauson P, Gonder-Frederick L. A critical review of the literature on fear of hypoglycemia in diabetes: implications for diabetes management and patient education. Patient Educ Couns 2007;68:10-15 - 89. Zambanini A, Newson RB, Maisey M, Feher MD. Injection related anxiety in insulin-treated diabetes. Diabetes Res Clin Pract 1999;46:239-246 - 90. Young-Hyman D, Peyrot M. Psychosocial Care for People with Diabetes. Alexandria, VA, American Diabetes Association, 2012 - 91. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Fifth Edition [Internet], 2013. Available from http://psychiatryonline.org/doi/book/10.1176/ appi.books.9780890425596. Accessed 9 November 2018 - 92. Mitsonis C, Dimopoulos N, Psarra V. P01-138 Clinical implications of anxiety in diabetes: a critical review of the evidence base (abstract). Eur Psychiatry 2009;24(Suppl. 1):S526 - 93. Yeoh E, Choudhary P, Nwokolo M, Ayis S, Amiel SA. Interventions that restore awareness of hypoglycemia in adults with type 1 diabetes: a systematic review and meta-analysis. Diabetes Care 2015;38:1592-1609 - 94. Cox DJ, Gonder-Frederick L, Polonsky W, Schlundt D, Kovatchev B, Clarke W. Blood glucose awareness training (BGAT-2): long-term benefits. Diabetes Care 2001;24:637-642 - 95. Gonder-Frederick LA, Schmidt KM, Vajda KA, et al. Psychometric properties of the hypoglycemia fear survey-II for adults with type 1 diabetes. Diabetes Care 2011;34:801-806 - 96. Lustman PJ, Griffith LS, Clouse RE. Depression in adults with diabetes. Results of 5-yr follow-up study. Diabetes Care 1988;11:605- - 97. de Groot M, Crick KA, Long M, Saha C, Shubrook JH. Lifetime duration of depressive disorders in patients with type 2 diabetes. Diabetes Care 2016;39:2174-2181 - 98. Rubin RR, Ma Y, Marrero DG, et al.; Diabetes Prevention Program Research Group. Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the Diabetes Prevention Program. Diabetes Care 2008;31:420-426 - 99. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 2001;24:1069-1078 - 100. Clouse RE, Lustman PJ, Freedland KE, Griffith LS, McGill JB, Carney RM. Depression and coronary heart disease in women with diabetes. Psychosom Med 2003;65:376-383 - 101. Katon WJ, Lin EHB, Von Korff M, et al. Collaborative care for patients with depression and chronic illnesses. N Engl J Med 2010;363: 2611-2620 - 102. Pinhas-Hamiel O, Hamiel U, Levy-Shraga Y. Eating disorders in adolescents with type 1 diabetes: challenges in diagnosis and treatment. World J Diabetes 2015;6:517-526 - 103. Papelbaum M, Appolinário JC, Moreira RdeO, Ellinger VCM, Kupfer R, Coutinho WF. Prevalence of eating disorders and psychiatric comorbidity in a clinical sample of type 2 diabetes mellitus patients. Rev Bras Psiquiatr 2005;27:135-138 - 104. Young-Hyman DL, Davis CL. Disordered eating behavior in individuals with diabetes: importance of context, evaluation, and classification. Diabetes Care 2010;33:683-689 - 105. Pinhas-Hamiel O, Hamiel U, Greenfield Y, et al. Detecting intentional insulin omission for weight loss in girls with type 1 diabetes mellitus. Int J Eat Disord 2013;46:819-825 - 106. Goebel-Fabbri AE. Fikkan J. Franko DL. Pearson K, Anderson BJ, Weinger K. Insulin restriction and associated morbidity and mortality in women with type 1 diabetes. Diabetes Care 2008;31:415-419 - 107. Weinger K, Beverly EA. Barriers to achieving glycemic targets: who omits insulin and why? Diabetes Care 2010;33:450-452 - 108. Hudson JI, Hiripi E, Pope HG Jr, Kessler RC. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 2007;61:348-358 - 109. Martyn-Nemeth P, Quinn L, Hacker E, Park H, Kujath AS. Diabetes distress may adversely affect the eating styles of women with type 1 diabetes. Acta Diabetol 2014;51:683-686 - 110. Peterson CM, Fischer S, Young-Hyman D. Topical review: a comprehensive risk model for disordered eating in youth with type 1 diabetes. J Pediatr Psychol 2015:40:385-390 - 111. Garber AJ. Novel GLP-1 receptor agonists for diabetes. Expert Opin Investig Drugs 2012; 21:45-57 - 112. Suvisaari J, Perälä J, Saarni SI, et al. Type 2 diabetes among persons with schizophrenia and other psychotic disorders in a general population survey. Eur Arch Psychiatry Clin Neurosci 2008:258:129-136 - 113. Koro CE, Fedder DO, L'Italien GJ, et al. Assessment of independent effect of olanzapine and risperidone on risk of diabetes among patients with schizophrenia: population based nested case-control study. BMJ 2002;325:243 114. Lipska KJ, Ross JS, Wang Y, et al. National trends in US hospital admissions for hyperglycemia and hypoglycemia among Medicare beneficiaries, 1999 to 2011. JAMA Intern Med 2014; - 115. Shorr RI, Ray WA, Daugherty JR, Griffin MR. Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonvlureas. Arch Intern Med 1997;157:1681-1686 116. Abdelhafiz AH, Rodríguez-Mañas L, Morley JE, Sinclair AJ. Hypoglycemia in older people - a 174:1116-1124 - less well recognized risk factor for frailty. Aging Dis 2015:6:156-167 - 117. Yun J-S, Ko S-H, Ko S-H, et al. Presence of macroalbuminuria predicts severe hypoglycemia in patients with type 2 diabetes: a 10-year follow-up study. Diabetes Care 2013;36:1283-1289 - 118. Chelliah A, Burge MR. Hypoglycaemia in elderly patients with diabetes mellitus: causes and strategies for prevention. Drugs Aging 2004; 21:511-530 - 119. Davies MJ, D'Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018;41:2669-2701