12. Older Adults: Standards of Medical Care in Diabetes—2019 Diabetes Care 2019;42(Suppl. 1):S139-S147 | https://doi.org/10.2337/dc19s012 American Diabetes Association The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC. #### Recommendations - 12.1 Consider the assessment of medical, psychological, functional (self-management abilities), and social geriatric domains in older adults to provide a framework to determine targets and therapeutic approaches for diabetes management. C - **12.2** Screening for geriatric syndromes may be appropriate in older adults experiencing limitations in their basic and instrumental activities of daily living as they may affect diabetes self-management and be related to health-related quality of life. **C** Diabetes is an important health condition for the aging population; approximately one-quarter of people over the age of 65 years have diabetes and one-half of older adults have prediabetes (1), and this proportion is expected to increase rapidly in the coming decades. Older individuals with diabetes have higher rates of premature death, functional disability, accelerated muscle loss, and coexisting illnesses, such as hypertension, coronary heart disease, and stroke, than those without diabetes. Older adults with diabetes also are at greater risk than other older adults for several common geriatric syndromes, such as polypharmacy, cognitive impairment, urinary incontinence, injurious falls, and persistent pain. These conditions may impact older adults' diabetes self-management abilities (2). See Section 4 "Comprehensive Medical Evaluation and Assessment of Comorbidities" for comorbidities to consider when caring for older adult patients with diabetes. Screening for diabetes complications in older adults should be individualized and periodically revisited, as the results of screening tests may impact therapeutic approaches and targets (2–4). Older adults are at increased risk for depression and should therefore be screened and treated accordingly (5). Diabetes management may require assessment of medical, psychological, functional, and social domains. This may provide a framework to determine targets and therapeutic approaches, including whether referral for diabetes self-management education is appropriate (when complicating factors arise or when transitions in care occur) or whether the current Suggested citation: American Diabetes Association. 12. Older adults: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019;42 (Suppl. 1):S139–S147 © 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license. regimen is too complex for the patient's self-management ability. Particular attention should be paid to complications that can develop over short periods of time and/or would significantly impair functional status, such as visual and lower-extremity complications. Please refer to the American Diabetes Association (ADA) consensus report "Diabetes in Older Adults" for details (2). #### NEUROCOGNITIVE FUNCTION #### Recommendation **12.3** Screening for early detection of mild cognitive impairment or dementia and depression is indicated for adults 65 years of age or older at the initial visit and annually as appropriate. B Older adults with diabetes are at higher risk of cognitive decline and institutionalization (6,7). The presentation of cognitive impairment ranges from subtle executive dysfunction to memory loss and overt dementia. People with diabetes have higher incidences of all-cause dementia, Alzheimer disease, and vascular dementia than people with normal glucose tolerance (8). The effects of hyperglycemia and hyperinsulinemia on the brain are areas of intense research. Clinical trials of specific interventions including cholinesterase inhibitors and glutamatergic antagonists—have not shown positive therapeutic benefit in maintaining or significantly improving cognitive function or in preventing cognitive decline (9). Pilot studies in patients with mild cognitive impairment evaluating the potential benefits of intranasal insulin therapy and metformin therapy provide insights for future clinical trials and mechanistic studies (10-12). The presence of cognitive impairment can make it challenging for clinicians to help their patients reach individualized glycemic, blood pressure, and lipid targets. Cognitive dysfunction makes it difficult for patients to perform complex self-care tasks, such as glucose monitoring and adjusting insulin doses. It also hinders their ability to appropriately maintain the timing and content of diet. When clinicians are managing patients with cognitive dysfunction, it is critical to simplify drug regimens and to involve caregivers in all aspects of care. Poor glycemic control is associated with a decline in cognitive function (13), and longer duration of diabetes is associated with worsening cognitive function. There are ongoing studies evaluating whether preventing or delaying diabetes onset may help to maintain cognitive function in older adults. However, studies examining the effects of intensive glycemic and blood pressure control to achieve specific targets have not demonstrated a reduction in brain function decline (14,15). Older adults with diabetes should be carefully screened and monitored for cognitive impairment (2) (see Table 4.1 for depression and cognitive screening recommendations). Several organizations have released simple assessment tools, such as the Mini-Mental State Examination (16) and the Montreal Cognitive Assessment (17), which may help to identify patients requiring neuropsychological evaluation, particularly those in whom dementia is suspected (i.e., experiencing memory loss and decline in their basic and instrumental activities of daily living). Annual screening for cognitive impairment is indicated for adults 65 years of age or older for early detection of mild cognitive impairment or dementia (4,18). Screening for cognitive impairment should additionally be considered in the presence of a significant decline in clinical status, inclusive of increased difficulty with self-care activities, such as errors in calculating insulin dose, difficulty counting carbohydrates, skipping meals, skipping insulin doses, and difficulty recognizing, preventing, or treating hypoglycemia. People who screen positive for cognitive impairment should receive diagnostic assessment as appropriate, including referral to a behavioral health provider for formal cognitive/neuropsychological evaluation (19). #### **HYPOGLYCEMIA** #### Recommendation 12.4 Hypoglycemia should be avoided in older adults with diabetes. It should be assessed and managed by adjusting glycemic targets and pharmacologic interventions. B Older adults are at higher risk of hypoglycemia for many reasons, including insulin deficiency necessitating insulin therapy and progressive renal insufficiency. In addition, older adults tend to have higher rates of unidentified cognitive deficits, causing difficulty in complex selfcare activities (e.g., glucose monitoring, adjusting insulin doses, etc.). These cognitive deficits have been associated with increased risk of hypoglycemia, and, conversely, severe hypoglycemia has been linked to increased risk of dementia (20). Therefore, it is important to routinely screen older adults for cognitive dysfunction and discuss findings with the patients and their caregivers. Hypoglycemic events should be diligently monitored and avoided, whereas glycemic targets and pharmacologic interventions may need to be adjusted to accommodate for the changing needs of the older adult (2). Of note, it is important to prevent hypoglycemia to reduce the risk of cognitive decline (20) and other major adverse outcomes. Intensive glucose control in the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes study (ACCORD MIND) was not found to benefit brain structure or cognitive function during follow-up (14). In the Diabetes Control and Complications Trial (DCCT), no significant longterm declines in cognitive function were observed, despite participants' relatively high rates of recurrent severe hypoglycemia (21). To achieve the appropriate balance between glycemic control and risk for hypoglycemia, it is important to carefully assess and reassess patients' risk for worsening of glycemic control and functional decline. # TREATMENT GOALS #### Recommendations - 12.5 Older adults who are otherwise healthy with few coexisting chronic illnesses and intact cognitive function and functional status should have lower glycemic goals (such as A1C < 7.5% [58 mmol/mol]), while those with multiple coexisting chronic illnesses, cognitive impairment, or functional dependence should have less stringent glycemic goals (such as A1C <8.0–8.5% [64–69 mmol/mol]). C - 12.6 Glycemic goals for some older adults might reasonably be - relaxed as part of individualized care, but hyperglycemia leading to symptoms or risk of acute hyperglycemia complications should be avoided in all patients. C - 12.7 Screening for diabetes complications should be individualized
in older adults. Particular attention should be paid to complications that would lead to functional impairment. C - **12.8** Treatment of hypertension to individualized target levels is indicated in most older adults. C - 12.9 Treatment of other cardiovascular risk factors should be individualized in older adults considering the time frame of benefit. Lipid-lowering therapy and aspirin therapy may benefit those with life expectancies at least equal to the time frame of primary prevention or secondary intervention trials. E The care of older adults with diabetes is complicated by their clinical, cognitive, and functional heterogeneity. Some older individuals may have developed diabetes years earlier and have significant complications, others are newly diagnosed and may have had years of undiagnosed diabetes with resultant complications, and still other older adults may have truly recent-onset disease with few or no complications (22). Some older adults with diabetes have other underlying chronic conditions, substantial diabetes-related comorbidity, limited cognitive or physical functioning, or frailty (23,24). Other older individuals with diabetes have little comorbidity and are active. Life expectancies are highly variable but are often longer than clinicians realize. Providers caring for older adults with diabetes must take this heterogeneity into consideration when setting and prioritizing treatment goals (25) (Table 12.1). In addition, older adults with diabetes should be assessed for disease treatment and selfmanagement knowledge, health literacy, and mathematical literacy (numeracy) at the onset of treatment. See Fig. 6.1 for patient- and disease-related factors to consider when determining individualized glycemic targets. A1C is used as the standard biomarker for glycemic control in all patients with diabetes but may have limitations in patients who have medical conditions that impact red blood cell turnover (see Section 2 "Classification and Diagnosis of Diabetes" for additional details on the limitations of A1C) (26). Many conditions associated with increased red blood cell turnover, such as hemodialysis, recent blood loss or transfusion, or erythropoietin therapy, are commonly seen in older adults with functional limitations, which can falsely increase or decrease A1C. In these instances, plasma blood glucose and fingerstick readings should be used for goal setting (**Table 12.1**). # Healthy Patients With Good Functional Status There are few long-term studies in older adults demonstrating the benefits of intensive glycemic, blood pressure, and lipid control. Patients who can be expected to live long enough to reap the benefits of long-term intensive diabetes management, who have good cognitive and physical function, and who choose to do so via shared decision making may be treated using therapeutic interventions and goals similar to those for younger adults with diabetes (**Table 12.1**). As with all patients with diabetes, diabetes self-management education and ongoing diabetes self-management support are vital components of diabetes care for older adults and their caregivers. Self-management knowledge and skills should be reassessed when regimen changes are made or an individual's functional abilities diminish. In addition, declining or impaired ability to perform diabetes self-care behaviors may be an indication for referral of older adults with diabetes for cognitive and physical functional assessment using age-normalized evaluation tools (3,19). # Patients With Complications and Reduced Functionality For patients with advanced diabetes complications, life-limiting comorbid illnesses, or substantial cognitive or functional impairments, it is reasonable to set less intensive glycemic goals (**Table 12.1**). Factors to consider in individualizing glycemic goals are outlined in **Fig. 6.1**. These patients are less likely to benefit from reducing the risk of microvascular complications and more likely to suffer serious adverse effects from hypoglycemia. However, patients with poorly controlled diabetes may be subject to acute complications of diabetes, including dehydration, poor wound healing, and hyperglycemic hyperosmolar coma. Glycemic goals at a minimum should avoid these consequences. #### Vulnerable Patients at the End of Life For patients receiving palliative care and end-of-life care, the focus should be to avoid symptoms and complications from glycemic management. Thus, when organ failure develops, several agents will have to be downtitrated or discontinued. For the dying patient, most agents for type 2 diabetes may be removed (27). There is, however, no consensus for the management of type 1 diabetes in this scenario (28). See END-OF-LIFE CARE below, for additional information. #### **Beyond Glycemic Control** Although hyperglycemia control may be important in older individuals with diabetes, greater reductions in morbidity and mortality are likely to result from control of other cardiovascular risk factors rather than from tight glycemic control alone. There is strong evidence from clinical trials of the value of treating hypertension in older adults (29,30). There is less evidence for lipid-lowering therapy and aspirin therapy, although the benefits of these interventions for primary prevention and secondary intervention are likely to apply to older adults whose life expectancies equal or exceed the time frames of the clinical trials. ### LIFESTYLE MANAGEMENT #### Recommendation 12.10 Optimal nutrition and protein intake is recommended for older adults; regular exercise, including aerobic activity and resistance training, should be encouraged in all older adults who can safely engage in such activities. B Diabetes in the aging population is associated with reduced muscle strength, poor muscle quality, and accelerated loss of muscle mass, resulting in sarcopenia. Diabetes is also recognized as an independent risk factor for frailty. Frailty is characterized by decline in physical performance and an increased risk of poor . | Table 12.1—Framework for considering treatment goals for | onsidering treatment g | | glycemia, blood pressure, and dyslipidemia in older adults with diabetes (2) | er addits with diabetes (2) | | | |--|--|----------------------|--|------------------------------------|----------------|--| | Patient characteristics/
health status | Rationale | Reasonable A1C goal‡ | Fasting or preprandial
glucose | Bedtime glucose | Blood pressure | Lipids | | Healthy (few coexisting chronic illnesses, intact cognitive and functional status) | Longer remaining
life expectancy | <7.5% (58 mmol/mol) | 90–130 mg/dL
(5.0–7.2 mmol/L) | 90–150 mg/dL
(5.0–8.3 mmol/L) | <140/90 mmHg | Statin unless
contraindicated or
not tolerated | | Complex/intermediate (multiple coexisting chronic illnesses* or 2+ instrumental ADL impairments or mild-tomoderate cognitive impairment) | Intermediate remaining life expectancy, high treatment burden, hypoglycemia vulnerability, fall risk | <8.0% (64 mmol/mol) | 90–150 mg/dL
(5.0–8.3 mmol/L) | 100–180 mg/dL
(5.6–10.0 mmol/L) | <140/90 mmHg | Statin unless
contraindicated
or not tolerated | | Very complex/poor health (LTC or end-stage chronic illnesses** or moderate-to- severe cognitive impairment or 2+ ADL dependencies) | Limited remaining life
expectancy makes
benefit uncertain | <8.5%† (69 mmol/mol) | 100–180 mg/dL
(5.6–10.0 mmol/L) | 110–200 mg/dL
(6.1–11.1 mmol/L) | <150/90 mmHg | Consider likelihood of benefit with statin (secondary prevention more so than primary) | The patient characteristic categories are general frequent higher glucose ö but many patients may have five lung disease, chronic kidney disease requiring dialysis, achievable without recurrent or severe hypoglycemia or undue treatment depression concepts. Not every patient will clearly fall into a particular category. Consideration of patient and caregiver preferences is an important aspect of treatment individualization. Additionally, a to an (69 mmol/mol) equates more they may expose patients to of 8.5% poor wound healing. ADL, activities of daily living. blood pressure, and dyslipidemia in older adults with diabetes. not recommended as impairment of functional status and from glycosuria, dehydration, hyperglycemic hyperosmolar syndrome, and be set for an considering treatment goals for glycemia, #A lower A1C goal cause significant symptoms or This represents a consensus framework for uncontrolled metastatic cancer, patient's health status and values and the acute risks estimated average emphysema, falls, burden. health outcomes due to physiologic vulnerability to clinical, functional, or psychosocial stressors. Inadequate nutritional intake, particularly inadequate protein intake, can increase the risk of sarcopenia and frailty in older adults. Management of frailty in diabetes includes optimal nutrition with adequate protein intake combined with an exercise program that includes aerobic and resistance training (31,32). ### PHARMACOLOGIC THERAPY #### Recommendations - 12.11 In older adults at increased risk of hypoglycemia, medication classes with low risk of hypoglycemia are preferred. B - 12.12 Overtreatment of diabetes is common in older adults and should be avoided. B - 12.13 Deintensification (or simplification) of complex regimens is recommended to reduce the risk of hypoglycemia, if it can be achieved within the individualized A1C target. B Special care is required in prescribing and monitoring pharmacologic therapies in older adults (33). See
Fig. 9.1 for general recommendations regarding antihyperglycemia treatment for adults with type 2 diabetes and Table 9.1 for patient- and drug-specific factors to consider when selecting antihyperglycemia agents. Cost may be an important consideration, especially as older adults tend to be on many medications. See Tables 9.2 and 9.3 for median monthly cost of noninsulin glucose-lowering agents and insulin in the U.S., respectively. It is important to match complexity of the treatment regimen to the self-management ability of an older patient. Many older adults with diabetes struggle to maintain the frequent blood glucose testing and insulin injection regimens they previously followed, perhaps for many decades, as they develop medical conditions that may impair their ability to follow their regimen safely. Individualized glycemic goals should be established (Fig. 6.1) and periodically adjusted based on coexisting chronic illnesses, cognitive function, and functional status (2). Tight glycemic control in older adults with multiple medical conditions is considered overtreatment Fig. 12.1—Algorithm to simplify insulin regimen for older patients with type 2 diabetes. eGFR, estimated glomerular filtration rate. *Basal insulins: glargine U-100 and U-300, detemir, degludec, and human NPH. **See Table 12.1. \(\frac{1}{2}\) Mealtime insulins: short-acting (regular human insulin) or rapidacting (lispro, aspart, and glulisine). \(\frac{1}{2}\) Premixed insulins: 70/30, 75/25, and 50/50 products. Adapted with permission from Munshi and colleagues (39,55,56). and is associated with an increased risk of hypoglycemia: unfortunately. overtreatment is common in clinical practice (34-38). Deintensification of regimens in patients taking noninsulin glucose-lowering medications can be achieved by either lowering the dose or discontinuing some medications, so long as the individualized A1C target is maintained. When patients are found to have an insulin regimen with complexity beyond their self-management abilities, lowering the dose of insulin may not be adequate. Simplification of the insulin regimen to match an individual's self-management abilities in these situations has been shown to reduce hypoglycemia and disease-related distress without worsening glycemic control (39-41). Figure 12.1 depicts an algorithm that can be used to simplify the insulin regimen (39). Table 12.2 provides examples of and rationale for situations where deintensification and/or insulin regimen simplification may be appropriate in older adults. ### Metformin Metformin is the first-line agent for older adults with type 2 diabetes. Recent studies have indicated that it may be used safely in patients with estimated glomerular filtration rate ≥30 mL/min/1.73 m² (42). However, it is contraindicated in patients with advanced renal insufficiency and should be used with caution in patients with impaired hepatic function or congestive heart failure due to the increased risk of lactic acidosis. Metformin may be temporarily discontinued before procedures, during hospitalizations, and when acute illness may compromise renal or liver function. #### Thiazolidinediones Thiazolidinediones, if used at all, should be used very cautiously in those with, or at risk for, congestive heart failure and those at risk for falls or fractures. # **Insulin Secretagogues** Sulfonylureas and other insulin secretagogues are associated with hypoglycemia and should be used with caution. If used, shorter-duration sulfonylureas, such as glipizide, are preferred. Glyburide is a longer-duration sulfonylurea and contraindicated in older adults (43). # Incretin-Based Therapies Oral dipeptidyl peptidase 4 (DPP-4) inhibitors have few side effects and minimal hypoglycemia, but their costs may be a barrier to some older patients. DPP-4 inhibitors do not increase major adverse cardiovascular outcomes (44). Glucagon-like peptide 1 (GLP-1) receptor agonists are injectable agents, which require visual, motor, and cognitive skills for appropriate administration. They may be associated with nausea, vomiting, and diarrhea. Also, weight loss with GLP-1 receptor agonists may not be desirable in some older Table 12.2-Considerations for treatment regimen simplification and deintensification/deprescribing in older adults with diabetes (39,55) | Patient characteristics/ health status | Reasonable A1C/
treatment goal | Rationale/considerations | When may regimen simplification be required? | When may treatment deintensification/ deprescribing be required? | |--|---|--|--|--| | Healthy (few coexisting chronic illnesses, intact cognitive and functional status) | A1C <7.5%
(58 mmol/mol) | Patients can generally perform complex tasks to maintain good glycemic control when health is stable During acute illness, patients may be more at risk for administration or dosing errors that can result in hypoglycemia, falls, fractures, etc. | If severe or recurrent hypoglycemia occurs in patients on insulin therapy (even if A1C is appropriate) If wide glucose excursions are observed If cognitive or functional decline occurs following acute illness | If severe or recurrent hypoglycemia occurs in patients on noninsulin therapies with high risk of hypoglycemia (even if A1C is appropriate) If wide glucose excursions are observed In the presence of polypharmacy | | Complex/intermediate (multiple coexisting chronic illnesses or 2+ instrumental ADL impairments or mild-to- moderate cognitive impairment) | A1C <8.0%
(64 mmol/mol) | Comorbidities may affect self-management abilities and capacity to avoid hypoglycemia Long-acting medication formulations may decrease pill burden and complexity of medication regimen | If severe or recurrent hypoglycemia occurs in patients on insulin therapy (even if A1C is appropriate) If unable to manage complexity of an insulin regimen If there is a significant change in social circumstances, such as loss of caregiver, change in living situation, or financial difficulties | If severe or recurrent hypoglycemia occurs in patients on noninsulin therapies with high risk of hypoglycemia (even if A1C is appropriate) If wide glucose excursions are observed In the presence of polypharmacy | | Community-dwelling patients receiving care in a skilled nursing facility for short-term rehabilitation | Avoid reliance on A1C Glucose target: 100–200 mg/dL (5.55–11.1 mmol/L) | Glycemic control is important for recovery, wound healing, hydration, and avoidance of infections Patients recovering from illness may not have returned to baseline cognitive function at the time of discharge Consider the type of support the patient will receive at home | If treatment regimen increased in complexity during hospitalization, it is reasonable, in many cases, to reinstate the prehospitalization medication regimen during the rehabilitation | If the hospitalization for
acute illness resulted in
weight loss, anorexia,
short-term cognitive
decline, and/or loss of
physical functioning | | Very complex/poor health
(long-term care or end-
stage chronic illnesses or
moderate-to-severe
cognitive impairment or
2+ ADL dependencies) | A1C <8.5%
(69 mmol/)† | No benefits of tight glycemic control in this population Hypoglycemia should be avoided Most important outcomes are maintenance of cognitive and functional status | If on an insulin regimen and the patient would like to decrease the number of injections and fingerstick blood glucose monitoring events each day If the patient has an inconsistent eating pattern | If on noninsulin agents with a high hypoglycemia risk in the context of cognitive dysfunction, depression, anorexia, or inconsistent eating pattern If taking any medications without clear benefits | | Patients at end of life | Avoid hypoglycemia
and symptomatic
hyperglycemia | Goal is to provide comfort
and avoid tasks or
interventions that cause
pain or discomfort Caregivers are important
in providing medical care
and maintaining quality of
life | If there is pain or discomfort caused by treatment (e.g., injections or fingersticks) If there is excessive caregiver stress due to treatment complexity | If taking any medications
without clear benefits in
improving symptoms
and/or comfort | Treatment regimen simplification refers to changing strategy to decrease the complexity of a medication regimen, e.g., fewer administration times, fewer fingerstick readings, decreasing the need for calculations (such as sliding scale insulin calculations or insulin-carbohydrate ratio calculations). Deintensification/deprescribing refers to decreasing the dose or frequency of administration of a treatment or discontinuing a treatment altogether. ADL, activities of daily living. †Consider adjustment of A1C goal
if the patient has a condition that may interfere with erythrocyte life span/turnover. patients, particularly those with cachexia. In patients with established atherosclerotic cardiovascular disease, GLP-1 receptor agonists have shown cardiovascular benefits (44). # Sodium-Glucose Cotransporter 2 Inhibitors Sodium—glucose cotransporter 2 inhibitors are administered orally, which may be convenient for older adults with diabetes; however, long-term experience in this population is limited despite the initial efficacy and safety data reported with these agents. In patients with established atherosclerotic cardiovascular disease, these agents have shown cardiovascular benefits (44). #### Insulin Therapy The use of insulin therapy requires that patients or their caregivers have good visual and motor skills and cognitive ability. Insulin therapy relies on the ability of the older patient to administer insulin on their own or with the assistance of a caregiver. Insulin doses should be titrated to meet individualized glycemic targets and to avoid hypoglycemia. Once-daily basal insulin injection therapy is associated with minimal side effects and may be a reasonable option in many older patients. Multiple daily injections of insulin may be too complex for the older patient with advanced diabetes complications, life-limiting coexisting chronic illnesses, or limited functional status. Figure 12.1 provides a potential approach to insulin regimen simplification. ## Other Factors to Consider The needs of older adults with diabetes and their caregivers should be evaluated to construct a tailored care plan. Impaired social functioning may reduce their quality of life and increase the risk of functional dependency (45). The patient's living situation must be considered as it may affect diabetes management and support needs. Social and instrumental support networks (e.g., adult children, caretakers) that provide instrumental or emotional support for older adults with diabetes should be included in diabetes management discussions and shared decision making. Older adults in assisted living facilities may not have support to administer their own medications, whereas those living in a nursing home (community living centers) may rely completely on the care plan and nursing support. Those receiving palliative care (with or without hospice) may require an approach that emphasizes comfort and symptom management, while de-emphasizing strict metabolic and blood pressure control. # TREATMENT IN SKILLED NURSING FACILITIES AND NURSING HOMES #### Recommendations - **12.14** Consider diabetes education for the staff of long-term care facilities to improve the management of older adults with diabetes. E - 12.15 Patients with diabetes residing in long-term care facilities need careful assessment to establish glycemic goals and to make appropriate choices of glucoselowering agents based on their clinical and functional status. E Management of diabetes in the long-term care (LTC) setting (i.e., nursing homes and skilled nursing facilities) is unique. Individualization of health care is important in all patients; however, practical guidance is needed for medical providers as well as the LTC staff and caregivers (46). Training should include diabetes detection and institutional quality assessment. LTC facilities should develop their own policies and procedures for prevention and management of hypoglycemia. ## Resources Staff of LTC facilities should receive appropriate diabetes education to improve the management of older adults with diabetes. Treatments for each patient should be individualized. Special management considerations include the need to avoid both hypoglycemia and the complications of hyperglycemia (2,47). For more information, see the ADA position statement "Management of Diabetes in Long-term Care and Skilled Nursing Facilities" (46). #### **Nutritional Considerations** An older adult residing in an LTC facility may have irregular and unpredictable meal consumption, undernutrition, anorexia, and impaired swallowing. Furthermore, therapeutic diets may inadvertently lead to decreased food intake and contribute to unintentional weight loss and undernutrition. Diets tailored to a patient's culture, preferences, and personal goals may increase quality of life, satisfaction with meals, and nutrition status (48). #### Hypoglycemia Older adults with diabetes in LTC are especially vulnerable to hypoglycemia. They have a disproportionately high number of clinical complications and comorbidities that can increase hypoglycemia risk: impaired cognitive and renal function, slowed hormonal regulation and counterregulation, suboptimal hydration, variable appetite and nutritional intake, polypharmacy, and slowed intestinal absorption (49). Oral agents may achieve similar glycemic outcomes in LTC populations as basal insulin (34,50). Another consideration for the LTC setting is that, unlike the hospital setting, medical providers are not required to evaluate the patients daily. According to federal guidelines, assessments should be done at least every 30 days for the first 90 days after admission and then at least once every 60 days. Although in practice the patients may actually be seen more frequently, the concern is that patients may have uncontrolled glucose levels or wide excursions without the practitioner being notified. Providers may make adjustments to treatment regimens by telephone, fax, or in person directly at the LTC facilities provided they are given timely notification of blood glucose management issues from a standardized alert system. The following alert strategy could be considered: - Call provider immediately: in case of low blood glucose levels (≤70 mg/dL [3.9 mmol/L]). - 2. Call as soon as possible: a) glucose values between 70 and 100 mg/dL (3.9 and 5.6 mmol/L) (regimen may need to be adjusted), b) glucose values greater than 250 mg/dL (13.9 mmol/L) within a 24-h period, c) glucose values greater than 300 mg/dL (16.7 mmol/L) over 2 consecutive days, d) when any reading is too high for the glucometer, or e) the patient is sick, with vomiting, symptomatic hyperglycemia, or poor oral intake. #### **END-OF-LIFE CARE** #### Recommendations - 12.16 When palliative care is needed in older adults with diabetes, strict blood pressure control may not be necessary, and withdrawal of therapy may be appropriate. Similarly, the intensity of lipid management can be relaxed, and withdrawal of lipid-lowering therapy may be appropriate. E - 12.17 Overall comfort, prevention of distressing symptoms, and preservation of quality of life and dignity are primary goals for diabetes management at the end of life. E The management of the older adult at the end of life receiving palliative medicine or hospice care is a unique situation. Overall, palliative medicine promotes comfort, symptom control and prevention (pain, hypoglycemia, hyperglycemia, and dehydration), and preservation of dignity and quality of life in patients with limited life expectancy (47,51). A patient has the right to refuse testing and treatment, whereas providers may consider withdrawing treatment and limiting diagnostic testing, including a reduction in the frequency of fingerstick testing (52). Glucose targets should aim to prevent hypoglycemia and hyperglycemia. Treatment interventions need to be mindful of quality of life. Careful monitoring of oral intake is warranted. The decision process may need to involve the patient, family, and caregivers, leading to a care plan that is both convenient and effective for the goals of care (53). The pharmacologic therapy may include oral agents as first line, followed by a simplified insulin regimen. If needed, basal insulin can be implemented, accompanied by oral agents and without rapid-acting insulin. Agents that can cause gastrointestinal symptoms such as nausea or excess weight loss may not be good choices in this setting. As symptoms progress, some agents may be slowly tapered and discontinued. Different patient categories have been proposed for diabetes management in those with advanced disease (28). 1. A stable patient: continue with the patient's previous regimen, with a - focus on the prevention of hypoglycemia and the management of hyperglycemia using blood glucose testing, keeping levels below the renal threshold of glucose. There is very little role for A1C monitoring and lowering. - 2. A patient with organ failure: preventing hypoglycemia is of greater significance. Dehydration must be prevented and treated. In people with type 1 diabetes, insulin administration may be reduced as the oral intake of food decreases but should not be stopped. For those with type 2 diabetes, agents that may cause hypoglycemia should be downtitrated. The main goal is to avoid hypoglycemia, allowing for glucose values in the upper level of the desired target - 3. A dying patient: for patients with type 2 diabetes, the discontinuation of all medications may be a reasonable approach, as patients are unlikely to have any oral intake. In patients with type 1 diabetes, there is no consensus, but a small amount of basal insulin may maintain glucose levels and prevent acute hyperglycemic complications. # References - 1. Centers for Disease Control and Prevention. National Diabetes Statistics Report [Internet], 2017. Available from https://www.cdc.gov/ diabetes/data/statistics/statistics-report.html. Accessed 20 September 2018 - 2. Kirkman MS, Briscoe VJ, Clark N, et al. Diabetes in older adults. Diabetes Care 2012;35: 2650-2664 - 3. Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M. Psychosocial care for people with diabetes: a position statement of the American Diabetes Association. Diabetes Care 2016;39:2126-2140 - 4. Institute of Medicine of the National Academies. Cognitive Aging: Progress in Understanding and Opportunities for Action [Internet], 2015. Available from http://nationalacademies.org/
hmd/Reports/2015/Cognitive-Aging.aspx. Accessed 20 September 2018 - 5. Kimbro LB, Mangione CM, Steers WN, et al. Depression and all-cause mortality in persons with diabetes mellitus: are older adults at higher risk? Results from the Translating Research Into Action for Diabetes Study. J Am Geriatr Soc 2014; 62:1017-1022 - 6. Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetessystematic overview of prospective observational studies. Diabetologia 2005;48:2460-2469 7. Roberts RO, Knopman DS, Przybelski SA, et al. Association of type 2 diabetes with brain atrophy - and cognitive impairment. Neurology 2014;82: 1132-1141 - 8. Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L. Uncontrolled diabetes increases the risk of Alzheimer's disease: a populationbased cohort study. Diabetologia 2009;52: 1031-1039 - 9. Ghezzi L, Scarpini E, Galimberti D. Diseasemodifying drugs in Alzheimer's disease. Drug Des Devel Ther 2013:7:1471-1478 - 10. Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 2012;69:29-38 - 11. Freiherr J, Hallschmid M, Frey WH 2nd, et al. Intranasal insulin as a treatment for Alzheimer's disease: a review of basic research and clinical evidence. CNS Drugs 2013;27:505-514 - 12. Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P. Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer's disease. Discov Med 2013; 16:277-286 - 13. Yaffe K, Falvey C, Hamilton N, et al. Diabetes. glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol 2012;69:1170-1175 - 14. Launer LJ, Miller ME, Williamson JD, et al.; ACCORD MIND investigators. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomized open-label substudy. Lancet Neurol 2011;10:969-977 - 15. Murray AM, Hsu F-C, Williamson JD, et al.; Action to Control Cardiovascular Risk in Diabetes Follow-On Memory in Diabetes (ACCORDION MIND) Investigators. ACCORDION MIND: results of the observational extension of the ACCORD MIND randomised trial. Diabetologia 2017;60: 69-80 - 16. Cummings JL, Frank JC, Cherry D, et al. Guidelines for managing Alzheimer's disease: part I. Assessment. Am Fam Physician 2002; 65:2263-2272 - 17. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695-699 - 18. Moreno G, Mangione CM, Kimbro L, Vaisberg E; American Geriatrics Society Expert Panel on Care of Older Adults with Diabetes Mellitus. Guidelines abstracted from the American Geriatrics Society guidelines for improving the care of older adults with diabetes mellitus: 2013 update. J Am Geriatr Soc 2013;61:2020- - 19. American Psychological Association. Guidelines for the Evaluation of Dementia and Age-Related Cognitive Change [Internet], 2011. Available from http://www.apa.org/practice/ guidelines/dementia.aspx. Accessed 20 September 2018 - 20. Feinkohl I, Aung PP, Keller M, et al.; Edinburgh Type 2 Diabetes Study (ET2DS) Investigators. Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 2014;37:507-515 - 21. Jacobson AM, Musen G, Ryan CM, et al.; Diabetes Control and Complications Trial/ Epidemiology of Diabetes Interventions and Complications Study Research Group. Long- term effect of diabetes and its treatment on cognitive function. N Engl J Med 2007;356: 1842–1852 - 22. Selvin E, Coresh J, Brancati FL. The burden and treatment of diabetes in elderly individuals in the U.S. Diabetes Care 2006;29:2415–2419 - 23. Bandeen-Roche K, Seplaki CL, Huang J, et al. Frailty in older adults: a nationally representative profile in the United States. J Gerontol A Biol Sci Med Sci 2015;70:1427–1434 - 24. Kalyani RR, Tian J, Xue Q-L, et al. Hyperglycemia and incidence of frailty and lower extremity mobility limitations in older women. J Am Geriatr Soc 2012;60:1701–1707 - 25. Blaum C, Cigolle CT, Boyd C, et al. Clinical complexity in middle-aged and older adults with diabetes: the Health and Retirement Study. Med Care 2010;48:327–334 - 26. NGSP. Factors that Interfere with HbA1cTest Results [Internet], 2018. Available from http://www.ngsp.org/factors.asp. Accessed 20 September 2018 - 27. Sinclair A, Dunning T, Colagiuri S. *IDF Global Guideline For Managing Older People With Type 2 Diabetes*. International Diabetes Federation, Brussels, Belgium, 2013 - 28. Angelo M, Ruchalski C, Sproge BJ. An approach to diabetes mellitus in hospice and palliative medicine. J Palliat Med 2011;14: 83–87 - 29. Beckett NS, Peters R, Fletcher AE, et al.; HYVET Study Group. Treatment of hypertension in patients 80 years of age or older. N Engl J Med 2008;358:1887–1898 - 30. de Boer IH, Bangalore S, Benetos A, et al. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care 2017;40:1273–1284 - 31. Sinclair AJ, Abdelhafiz A, Dunning T, et al. An international position statement on the management of frailty in diabetes mellitus: summary of recommendations 2017. J Frailty Aging 2018; 7:10–20 - 32. Castro-Rodríguez M, Carnicero JA, Garcia-Garcia FJ, et al. Frailty as a major factor in the increased risk of death and disability in older people with diabetes. J Am Med Dir Assoc 2016; 17:949–955 - 33. Valencia WM, Florez H. Pharmacological treatment of diabetes in older people. Diabetes Obes Metab 2014;16:1192–1203 - 34. Andreassen LM, Sandberg S, Kristensen GBB, Sølvik UØ, Kjome RLS. Nursing home patients with diabetes: prevalence, drug treatment and glycemic control. Diabetes Res Clin Pract 2014; 105:102–109 - 35. Lipska KJ, Ross JS, Miao Y, Shah ND, Lee SJ, Steinman MA. Potential overtreatment of diabetes mellitus in older adults with tight glycemic control. JAMA Intern Med 2015;175:356–362 - 36. Thorpe CT, Gellad WF, Good CB, et al. Tight glycemic control and use of hypoglycemic medications in older veterans with type 2 diabetes and comorbid dementia. Diabetes Care 2015; 38:588–595 - 37. McAlister FA, Youngson E, Eurich DT. Treatment deintensification is uncommon in adults with type 2 diabetes mellitus: a retrospective cohort study. Circ Cardiovasc Qual Outcomes 2017;10:e003514 - 38. Arnold SV, Lipska KJ, Wang J, Seman L, Mehta SN, Kosiborod M. Use of intensive glycemic management in older adults with diabetes mellitus. J Am Geriatr Soc 2018;66:1190–1194 - 39. Munshi MN, Slyne C, Segal AR, Saul N, Lyons C, Weinger K. Simplification of insulin regimen in older adults and risk of hypoglycemia. JAMA Intern Med 2016;176:1023–1025 - 40. Sussman JB, Kerr EA, Saini SD, et al. Rates of deintensification of blood pressure and glycemic medication treatment based on levels of control and life expectancy in older patients with diabetes mellitus. JAMA Intern Med 2015;175: 1942–1949 - 41. Abdelhafiz AH, Sinclair AJ. Deintensification of hypoglycaemic medications-use of a systematic review approach to highlight safety concerns in older people with type 2 diabetes. J Diabetes Complications 2018;32:444–450 - 42. Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA 2014;312:2668–2675 - 43. American Geriatrics Society 2015 Beers Criteria Update Expert Panel. American Geriatrics Society 2015 updated Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc 2015;63:2227–2246 - 44. Davies MJ, D'Alessio DA, Fradkin J. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018;41:2669–2701 - 45. Laiteerapong N, Karter AJ, Liu JY, et al. Correlates of quality of life in older adults with diabetes: the Diabetes & Aging Study. Diabetes Care 2011;34:1749–1753 - 46. Munshi MN, Florez H, Huang ES, et al. Management of diabetes in long-term care and skilled nursing facilities: a position statement of the American Diabetes Association. Diabetes Care 2016;39:308–318 - 47. Sinclair A, Morley JE, Rodriguez-Mañas L, et al. Diabetes mellitus in older people: position statement on behalf of the International Association of Gerontology and Geriatrics (IAGG), the European Diabetes Working Party for Older People (EDWPOP), and the International Task Force of Experts in Diabetes. J Am Med Dir Assoc 2012:13:497–502 - 48. Dorner B, Friedrich EK, Posthauer ME. Practice paper of the American Dietetic Association: individualized nutrition approaches for older adults in health care communities. J Am Diet Assoc 2010;110:1554–1563 - 49. Migdal A, Yarandi SS, Smiley D, Umpierrez GE. Update on diabetes in the elderly and in nursing home residents. J Am Med Dir Assoc 2011;12:627–632.e2 - 50. Pasquel FJ, Powell W, Peng L, et al. A randomized controlled trial comparing treatment with oral agents and basal insulin in elderly patients with type 2 diabetes in long-term care facilities. BMJ Open Diabetes Res Care 2015; 3:e000104 - 51. Quinn K, Hudson P, Dunning T. Diabetes management in patients receiving palliative care. J Pain Symptom Manage 2006;32:275–286 - 52. Ford-Dunn S, Smith A, Quin J. Management of diabetes during the last days of life: attitudes of consultant diabetologists and consultant palliative care physicians in the UK. Palliat Med 2006;20:197–203 - 53. Mallery LH, Ransom T, Steeves B, Cook B, Dunbar P, Moorhouse P. Evidence-informed guidelines for treating frail older adults with type 2 diabetes: from the Diabetes Care Program of Nova Scotia (DCPNS) and the Palliative and Therapeutic Harmonization (PATH) program. J Am Med Dir Assoc 2013;14:801–808 - 54. Laiteerapong N, Iveniuk J, John PM, Laumann EO, Huang ES. Classification of older adults who have diabetes by comorbid
conditions, United States, 2005-2006. Prev Chronic Dis 2012;9:E100 55. Munshi MN, Slyne C, Segal AR, Saul N, Lyons C, Weinger K. Liberating A1C goals in older adults may not protect against the risk of hypogycemia. J Diabetes Complications 2017;31:1197–1199 56. Leung E, Wongrakpanich S, Munshi MN. Diabetes management in the elderly. Diabetes Spectr 2018;31:245–253