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OBJECTIVE

Altered plasma amino acid levels have been implicated as markers of risk for
incident type 2 diabetes; however, amino acids are also related to established
diabetes risk factors. Therefore, potential for confounding and the impact from
competing risks require evaluation.

RESEARCH DESIGN AND METHODS

We prospectively followed 2,519 individuals with coronary artery disease but
without diabetes. Mixed Gaussian modeling identified potential for confounding.
Confounding, defined as a change in effect estimate (‡10%), was investigated by
comparing amino acid–incident diabetes risk in a Coxmodel containing age and sex
with that inmodels adjusted for potential confounders (BMI, estimated glomerular
filtration rate, HDL cholesterol, triacylglycerol, C-reactive protein), which were
further adjusted for plasma glucose, competing risks, and multiple comparisons
(false discovery rate = 0.05, Benjamini-Hochbergmethod). Finally, component-wise
likelihood-based boosting analysis including amino acids and confounders was
performed and adjusted for competing risks in order to identify an optimal submodel
for predicting incident diabetes.

RESULTS

The mean age of the source population was 61.9 years; 72% were men. During a
median follow-up of 10.3 years, 267 incident cases of diabetes were identified. In
age- and sex-adjusted models, several amino acids, including the branched-chain
amino acids, significantly predicted incident diabetes. Adjustment for confounders,
however, attenuated associations. Further adjustment for glucose and multiple
comparisons rendered only arginine significant (hazard ratio/1 SD 1.21 [95% CI
1.07–1.37]). The optimal submodel included arginine and asparagine.

CONCLUSIONS

Adjustment for relevant clinical factors attenuated the amino acid–incident diabetes
risk. Although these findings do not preclude the potential pathogenic role of
other amino acids, they suggest that plasma arginine is independently associated
with incident diabetes. Both arginine and asparagine were identified in an optimal
model for predicting new-onset type 2 diabetes.

Identifying early metabolic alterations remains paramount in efforts to understand
better the pathophysiology of type 2 diabetes and to develop preventive strategies
(1). Type 2 diabetes is characterized by impaired insulin-mediated glucose homeostasis
and compromised pancreatic insulin secretion capacity (2). Research investigating the
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etiology of type 2 diabetes has increas-
ingly focused on the interaction between
impaired glucose homeostasis, insulin
resistance, lipid metabolism, and obesity
(2–4). These factors are thought to induce
the metabolic dysfunction reflected by
abnormal circulating levels of glucose,
lipids, proteins, and other classes of me-
tabolites, including amino acids (5).
Metabolomics-based studies have pro-

liferated in the past decade in an attempt
to gain insight into the underlying path-
ophysiology of type 2 diabetes (6). Nu-
merous studies using both targeted and
untargeted approaches have reported al-
terations in circulating amino acid levels
in patients with prevalent and incident
diabetes. Studies suggest that elevated
levels of branched-chain amino acids
(BCAAs) (isoleucine, leucine, and valine),
and to a lesser extent aromatic amino
acids (AAAs) (phenylalanine and tyrosine),
are associated with obesity and insulin
resistance, as well as established and in-
cident diabetes (6–11). Alanine (Ala), pro-
line (Pro), glutamate (Glu), and aspartate
(Asp) have also been positively associated
with type 2 diabetes, whereas glycine
(Gly), glutamine (Gln), and asparagine
(Asn) seem to be inversely related to the
disease (8,12).
Despite abundant research linking al-

terations in circulating amino acid levels
to various obesity-related mechanisms
and diabetes (10,11,13–18), their poten-
tial as independent biomarkers reflecting
the etiology and pathogenesis of type 2
diabetes is yet to be fully realized. The
inherent challenge of evaluating amino
acids as independent risk markers can be
explained in part by the interrelatedness
of plasma amino acids and their associ-
ation with several well-established risk
factors, including elevated plasma glu-
cose, dyslipidemia, and obesity. Such
associations suggest that the relation
between plasma amino acids (indepen-
dent variable) and incident diabetes
(outcome) is likely to be affected by con-
founders, defined simply as variables
associated with both the independent
variable and the outcome (19). Failure
to adjust appropriately for confounders
means the crude independent variable–
outcome association will be a biased es-
timate of the true association (20).
Throughout the literature on amino

acids and incident type 2 diabetes, how-
ever, lipid parameters are not consis-
tently included as covariates (17,21).

Studies also tend to focus on fasting
cohorts only (17,21,22), despite limited
evidence to do so. Several established
diabetes risk markers, including lipids,
BMI, and insulin sensitivity, have been
shown to be correlated with plasma
amino acid levels (23), fulfilling the def-
inition of a potential confounder. Yet,
their role as actual confounders is rarely
evaluated. Finally, as several risk factors
formortality are also risk factors for type2
diabetes, bias may occur from the com-
peting risk of death in longitudinal studies.

We aimed to investigate amino acids
as independent risk factors with various
adjustments for potential confounders,
assess whether the competing risk of
death is a source of bias, and use
a model-selection approach to identify
the best-fitting model.

RESEARCH DESIGN AND METHODS

Study Population
As described in detail elsewhere (24), the
source population for this study included
4,164 adults who underwent elective
coronary angiography at two Norwegian
university hospitals between 2000 and
2004 (clinical trial reg. no. NCT00354081,
clinicaltrials.gov/). Collection of demo-
graphic, clinical, and biochemical char-
acteristics at baseline has beendescribed
previously (24). Participants were diag-
nosedwith coronary artery disease (CAD)
if coronary angiography revealed at least
one significant stenosis (defined as$50%
luminal narrowing in the main coronary
arteries or major side branches). Venous
blood samples were obtained during
a clinical examination before or immedi-
ately after coronary angiography. The
study fulfilled the principles of the Dec-
laration of Helsinki and was approved by
the regional Committee for Medical and
Health Research Ethics (approval no.
2010/1880) and the Norwegian Data Pro-
tectionAuthority.All participantsprovided
written informed consent.

From the source cohort of 4,164
adults, 496 individuals with medication-
confirmed or a self-reported diagnosis of
diabetes at baseline were excluded from
these prospective analyses. In addition,
42 individuals with missing HbA1c records
and 1,107 individuals with HbA1c $6.5%
($48 mmol/mol), fasting plasma glucose
(FPG) $7.0 mmol/L, or non-FPG $11.1
mmol/L were also excluded because of
the possible presence of prediabetes or
undiagnosed type 2 diabetes. Thus, 2,519

individuals were deemed eligible for the
prospective follow-up analyses.

Identification of Subjects With Incident
Type 2 Diabetes
Information on incident diabetes was
collected until 31 December 2014. The
majority of new cases of type 2 di-
abetes were identified through linkage
to the Norwegian Prescription Database
(www.norpd.no), a national registry con-
taining data on all drugs dispensed at
outpatient pharmacies in Norway. Partic-
ipants were classified as having incident
type 2 diabetes upon receiving their first
prescription for an oral glucose-lowering
drug or insulin (Anatomical Therapeutic
Chemical Classification System codeA10).
Incident diabetes was also identified ac-
cording to ICD-10codes (specifically codes
E11–E14; www.who.int/classifications/
icd/en/) on participants’ discharge sum-
maries after admission to a Norwegian
hospital. Hospital data were obtained
from the Cardiovascular Disease in
Norway (CVDNOR) project (https://
cvdnor.w.uib.no) (25). We also obtained
from self-reports additional informa-
tion identifying cases of new-onset
type 2 diabetes, whichwe verified using
plasma glucose measurements during
in-trial follow-up of the original source
cohort (2000–2005) (24). The median
(interquartile range [IQR]) follow-up
time from blood sampling to incident
diabetes diagnosis was 10.3 years (9.1–
11.6).

Biochemical Analyses
Participants who reported no intake of
food or beverages during the 6 h before
sampling were considered to be fasting.
All plasma and serum samples were stored
at 280°C until analyses were performed
at Bevital Laboratory (www.bevital.no).
Plasma concentrations of all amino acids
were measured by using gas chromatog-
raphy–tandem mass spectrometry (26),
with the exception of arginine (Arg), which
was analyzed by using liquid chromatog-
raphy–tandem mass spectrometry (27).
The lower limits of detection and coef-
ficients of variability have been reported
elsewhere (26,27). Estimated glomerular
filtration rate (eGFR), HbA1c, serum lip-
oproteins, and C-reactive protein (CRP)
were calculated or measured as previ-
ously described (28). We used the up-
dated HOMA-2 to estimate both insulin
resistance and b-cell function based on
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serum C-peptide in a subgroup of fasting
participants (n = 607) (29).

A Priori Identification of Potential
Confounders
We identified potential confounders
linked to plasma amino acid levels in the
literature (7–9,11,17,21). The identified
confounderswere largely established, clin-
ically relevant risk factors for type 2
diabetes (BMI, eGFR, HDL cholesterol, tri-
acylglycerol [TAG], CRP) or surrogate mea-
suresof type2diabetes (e.g., hyperglycemia,
which indicates cellular insulin resistance).

Statistical Definition of Confounding
For this study, we empirically con-
firmed potential confounders using the
change-in-estimate (CIE) criterion (30).
The CIE criterion defines confounders as
variables for which the percentage differ-
ence between the values of the regression
estimate before and after adjustment is
equal to or larger than aprespecified value.

Statistical Analyses
Variables were reported as count (per-
centage), mean (SD), or median (IQR),
as appropriate. Skewed variables were
transformed according to the Tukey lad-
der of powers (square root, ln, 1/square
root, and inverse transformations). The
aim was to linearize relationships, reduce
heteroscedasticity, maintain power, and
reduce the type I error rate. Missing
amino acid data (all ,5%) were deter-
mined through mean imputation. We
used the R packages mixed Gaussian
model and qgraph to visualize the rela-
tions between amino acids and potential
confounders as weighted adjacencies.
The amino acid–associated hazard for
incident diabetes was assessed in a crude
Cox model (with age and sex), to which
potential confounders and then plasma
glucose were added. All models included
an indicator variable for fasting. Con-
founding was defined as a 10% CIE.
Estimates from Cox regression were com-
pared with estimates from the method
described by Fine and Gray (31) in order
to assess whether the competing risk of
death affected the estimates (32). The
P values were adjusted for multiple com-
parisons at a false discovery rate (FDR)
of 0.05 (Benjamini-Hochberg method).
Finally, we applied a variable selection
model (CoxBoost package in R) with all
amino acids and potential confounders
using component-wise likelihood-based
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boosting (33), with death as a competing
risk.Wedid not penalize confounders and
reestimated the model to check for ad-
justment from unselected key confound-
ers; we estimated amino acids with
penalized partial likelihood. We first iden-
tified the optimal penalty, then we iden-
tified the optimal number of steps through
k-fold cross-validation (k = 10). All tests
were two-tailed, and the significance level
was set to 0.05. Statistical analyses were
performed by using STATA version 15
(StataCorp LLC; www.stata.com) and R
version 3.3.0 for Mac (www.R-project.org).

RESULTS

Participants With and Without Type 2
Diabetes at Baseline
Among the sourcepopulation (n=4,164),
1,645 participants had confirmed or

suspected prediabetes or undiagnosed
type 2diabetes.We refer to themhere as

the prevalent diabetes group. Compared

toparticipants identifiedasdiabetes-free

at baseline, participants in the prevalent

diabetes group had higher BMI, lower

HDL cholesterol levels, and elevated TAG

and plasma glucose levels (Table 1).

Participants in the prevalent diabetes

group also had a higher prevalence of

diagnosed hypertension and used more

loop diuretics and ACE inhibitors. The

baselineaminoacidprofile of those in the

prevalent diabetes group also differed

from the profile of those in the diabetes-

free group, including lower plasma con-

centrations of Gly and Gln and higher

concentrations of Glu and the BCAAs

(Table 1).

Diabetes-Free Participants and
Incident Diabetes
Of the 2,519 diabetes-free participants
at baseline, 1,841 (73.1%) were men;
their mean age was 61.3 years (SD 10.4)
and mean BMI was 26.3 kg/m2 (SD 3.6).
During a median of 10.3 years of follow-
up (IQR 9.1–11.6), a total of 267 cases
of incident diabetes (10.6%) were iden-
tified. The group with incident diabetes
had higher BMI, lower HDL cholesterol
levels, and higher TAG and plasma glu-
cose levels at baseline than the groupwho
remained diabetes-free during follow-
up (Table 1). They also had a higher
prevalence of CAD and hypertension
and a higher rate of medication use,
including aspirin, statins, b-blockers,
loop diuretics, and ACE inhibitors. The
amino acid profile of those with incident

Figure 1—Association of baseline plasma amino acid concentrationswith incident type 2 diabetes. Observations for 2,519 individuals, 267 ofwhomhad incident
diabetes; 464mortality events occurred.Hazard ratioswere obtainedbyusingCox regression and adjusting for age and sex (model 1); age, sex, eGFR,
BMI, HDL cholesterol, TAG, and CRP (model 2); model 2 factors plus plasma glucose (model 3); andmodel 3 factors plusmortality (model 4). Red circles and lines
indicate BCAAs; blue circles and lines indicate AAAs; black circles and lines indicate other amino acids. Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartic
acid; Gln, glutamine; Glu, glutamic acid; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Orn, ornithine; Phe, phenylalanine; Pro, proline;
Ser, serine; tCys, total cysteine; Trp, tryptophan; Tyr, tyrosine; Val, valine.
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diabetes also differed significantly from
that of those who remained diabetes-
free at follow-up and included lower
concentrations of Gly, Gln and Asn and
higher concentrations of Glu, Asp, BCAAs,
and AAAs (Table 1).

Potential Confounders and Amino
Acids
The widespread associations between
the amino acids and factors related to
diabetes risk demonstrated the poten-
tial for confounding, which we visualized
through the use of a network plot
(Supplementary Fig. 1). Other potential
confounders, such as prevalence of CAD,
hypertension, andprescribedmedications,
displayed no association with baseline
plasma amino acid concentrations (data
not shown) and were excluded from the
network plot. Associations between
amino acids and glucose homeostasis par-
ameters (FPG, HbA1c, serum insulin and
C-peptide, b-cell function, and insulin re-
sistance) for a subset of participants are
presented in Supplementary Table 1. The
strongest overall associationswith glucose
homeostasis parameters were observed
for the BCAAs and AAAs.

AminoAcids, Incident Type 2Diabetes,
and Confounding
We identified numerous amino acids as
significant predictors of type 2 diabetes
in age- and sex-adjusted Cox analyses
(model 1) (Fig. 1). Additional adjustment
for eGFR, BMI, HDL cholesterol, TAG, and

CRP (model 2) attenuated most associ-
ations. Further adjustment for plasma
glucose (model 3) left only Arg, Asn, and
Pro as significant predictors of incident
diabetes. The competing risk of death
(model 4) did not affect the estimates.
Adjustment for multiple tests with the
FDR at 0.05 left only Arg as a significant
independent predictor of type 2 diabetes
risk. Effect size estimates for each amino
acid in relation to incident diabetes
across the four models are provided
in Supplementary Table 2.

Identifying an Optimal Multivariable
Model
We identified the optimal submodel as
a competing risk model with plasma glu-
cose, glucose*age interaction, BMI, HDL
cholesterol, TAG, Arg, and Asn (Table 2).
Sex and eGFR were reintroduced because
they were considered obligate, but they
did not alter the estimates. Plasma Arg
showed a positive but plasma Asn a neg-
ative association with the cumulative inci-
dence of type 2 diabetes, as shown in Fig. 2.

CONCLUSIONS

In this study, interrelations between
plasma amino acids and established
risk factors for type 2 diabetes seemed
to confound the prediction of incident
type 2 diabetes developing over a me-
dian follow-up of 10.3 years. Our obser-
vations underscore the need to include
these covariateswhen investigating amino

acids as independent predictors of in-
cident diabetes. Using a multivariable,
competing risk–boosting analysis (33),
we identified an optimal model for in-
cident type 2 diabetes risk as one that
included Arg and Asn along with plasma
glucose, glucose*age interaction, BMI,
HDL cholesterol, and TAG.

Cross-sectional evaluationof the source
population at baseline demonstrated sig-
nificant differences in plasma amino acid
levels between participants with con-
firmed or suspected type 2 diabetes or
prediabetes and those who do not have
diabetes. Our observations are consistent
with those of others who demonstrated
alterations in amino acid levels among
overweight and insulin-resistant subjects,
and those with prediabetes and overt
diabetes (7,10,11,13). Network analysis
demonstrated extensive associations be-
tween plasma amino acids and factors
related to diabetes risk, indicating that
potential for confounding was the rule
rather than the exception. Like previous
observations (7–9,21), our age- and sex-
adjusted Cox regression model dem-
onstrated that numerous amino acids,
including BCAAs, AAAs, Arg, Ala, Gln, Asn,
Glu, Asp, and Gly, were significant pre-
dictors of incident type 2 diabetes. After
adjusting for eGFR, BMI, HDL cholesterol,
TAG,andCRP,however,mostassociations
were rendered statistically nonsignificant.
Further adjustment for plasma glucose
identified only Arg as an independent
predictor of new-onset diabetes, above
the expected FDR.

Our optimal model for predicting in-
cident diabetes retained Arg and Asn
along with plasma glucose, glucose*age
interaction, BMI, HDL cholesterol, and
TAG. Although Arg is positively related
to incident type 2 diabetes, we observed
its inverse relation to prevalent diabetes
(data not shown). Previous studies dem-
onstrated that oral antidiabetes medica-
tions such as metformin are associated
with a reduction of urea cycle metabo-
lites, including Arg (34).We observed the
same trend among individuals with estab-
lished type 2 diabetes who were taking
metformin (Supplementary Fig. 2). The
biologically plausible mechanisms linking
Arg and Asn to diabetes risk are less
known. Isolated studies have suggested
that Asn is inversely associated with future
diabetes (35).Ameta-analysisbyGuasch-
Ferré et al. (21) demonstrated that Arg
was positively associated with risk for

Table 2—Optimal model for risk of incident type 2 diabetes obtained by CoxBoost
with competing risk*

Variable SHR

95% CI

z P . zLower Upper

Age 1.00 0.84 1.21 0.04 0.97

Sex 0.93 0.67 1.29 20.43 0.67

eGFR 1.16 0.98 1.38 1.71 0.09

Plasma glucose 1.96 1.75 2.19 11.90 $0.001

Age*plasma glucose 1.20 1.08 1.33 3.39 0.001

BMI 1.64 1.45 1.85 7.99 $0.001

HDL 0.84 0.72 0.98 22.25 0.02

TAG 1.27 1.10 1.47 3.19 0.001

Arg 1.30 1.14 1.49 3.99 $0.001

Asn 0.80 0.70 0.91 23.42 0.001

Competing-risk regression was based on 2,519 observations, with incident diabetes as a failure
to event (PE = 1; n = 267) and mortality incidence as a competing event (CR = 2; n = 464) (Wald
x2[10] = 311.42; log pseudolikelihood =21,842.1068; probability. x2 = 0.0000). CR, competing
risk (mortality incidence); PE, primary end point (incident diabetes); SHR, standardized
subdistribution hazard (risk of incident diabetes related to selected variable, given that
participant has not died). *Optimal steps (n = 7) with optimal penalty of 86 and the
unpenalized obligatory predictors of age and sex.
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type 2 diabetes. In vitro experiments sug-
gest a role for Arg in aggregating insulin.
Investigation of heat-induced aggrega-
tion of protein solutions showed that
Arg may have a potentially promoting
effect (36), whereas other investiga-
tions of bovine insulin suggest an in-
hibitory role (37). Our finding that Arg
was independently related to risk for
type 2 diabetes might reflect an effect
promoting insulin aggregation. This may
support hypotheses linking diabetes de-
velopment to peptide aggregation and
the formation of toxic amyloid fibrils at
pancreatic islet b-cells (2,38). However,
we did not observe associations between
Arg or Asn and serum insulin, C-peptide,
b-cell function, or other clinically rele-
vant parameters such as inflammation
(CRP). Although the mechanisms linking
Arg and Asn to incident diabetes are not
clear, our findings suggest that these
amino acids could be involved in the early
development of type 2 diabetes, inde-
pendent of established risk factors.
Multivariable regression analyses

confirmed that all amino acids except

Arg were subject to confounding by es-
tablished risk factors. These confounding
effects are not surprising, given that
risk markers such as BMI and lipids
correlate with most plasma amino acids
(23). Indeed, it is these associations
that probably reduce the potential for
amino acids to predict diabetes and
may explain why including amino acids
has not substantially improved clinical
models (8,11,12). The nonstandardized
approach to adjusting for potential con-
founders may undermine the validity and
reliability of previous research linking
amino acids to diabetes. Although age,
sex, and BMI seem to be adjusted for
regularly (17,21), adjustment for lipid
and glucose parameters is much less
consistent (17,21). Acknowledging the
extensive interplay between amino
acids, established risk factors, and un-
derlying physiological processes, our
findings suggest that it is imperative
to consistently include confounders
when evaluating amino acids as in-
dependent predictors of type 2 diabetes.
We did not identify an impact of death

as a competing risk. In our opinion,
however, this cannot be generalized
because of differences between cohorts,
particularly with regard to duration of
follow-up and mortality rates. As with
any observational study, it is also impor-
tant to acknowledge that causality can-
not be inferred from statistical methods
alone. Nor do our observations allow for
conclusions precluding a possible role
of other amino acids such as BCAAs in
the pathogenesis type 2 diabetes (39).

This work has a number of strengths,
including the large sample size, prospec-
tive design, and long follow-up. Data
allowing incident type 2 diabetes to
beconfirmedwascollected fromnational
health registries to which reporting is
mandatory for all drug prescriptions and
hospital admissions in Norway. It is pos-
sible, however, that some cases of new-
onset type 2 diabetes may have been
missed during follow-up. We adopted a
data-driven approach to confounders.
Further, we applied objective criteria
to identify the optimal submodel. Taken
together, these steps should significantly

Figure 2—Association of plasmaArg (left) and plasmaAsn (right)with cumulative incidence of type 2 diabetes. Data represent observations from2,519
participants. The model included plasma glucose, competing risks, and fasted status.
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reduce bias, although we cannot rule out
influence from residual confounding. Un-
fortunately, our study design did not allow
us to identify individuals who had incident
type 1 diabetes; the low prevalence of this
condition, however, probably minimizes
any potential effect on our results (40).
The study participants were all referred
to a hospital for elective coronary angio-
graphy, and the majority had CAD, limit-
ing the generalizability of our findings.
Last, the original source study was not de-
signed to investigate incident diabetes,
and samples were obtained from the ma-
jority of participants when they were in
a nonfasting state.
In conclusion, after adjusted analyses,

the associated hazard for type 2 diabetes
was severely attenuated for most amino
acids, including BCAAs. Only Arg was an
independent predictor of future diabetes
after adjusting for multiple comparisons,
but Arg and Asn were selected for in-
clusion in an optimal predictive model.
Adjusting for established metabolic and
clinical risk factors was crucial for reach-
ing a conclusion about the independence
of the associations.
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