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OBJECTIVE

Genetic risk scores (GRS) have been developed that differentiate individuals with
type 1 diabetes from thosewith other forms of diabetes and are starting to be used for
population screening; however,most studieswere conducted in European-ancestry
populations. This study identifies novel genetic variants associated with type 1
diabetes risk in African-ancestry participants and develops an African-specific GRS.

RESEARCH DESIGN AND METHODS

We generated single nucleotide polymorphism (SNP) data with the ImmunoChip
on 1,021 African-ancestry participants with type 1 diabetes and 2,928 control
participants. HLA class I and class II alleles were imputed using SNP2HLA. Logistic
regression models were used to identify genome-wide significant (P < 5.03 1028)
SNPs associated with type 1 diabetes in the African-ancestry samples and validate
SNPs associated with risk in known European-ancestry loci (P < 2.79 3 1025).

RESULTS

African-specific (HLA-DQA1*03:01-HLA-DQB1*02:01) and known European-
ancestry HLA haplotypes (HLA-DRB1*03:01-HLA-DQA1*05:01-HLA-DQB1*02:01,
HLA-DRB1*04:01-HLA-DQA1*03:01-HLA-DQB1*03:02) were significantly associ-
ated with type 1 diabetes risk. Among European-ancestry defined non-HLA risk
loci, six risk loci were significantly associated with type 1 diabetes in subjects of
African ancestry. An African-specific GRS provided strong prediction of type 1
diabetes risk (area under the curve 0.871), performing significantly better than a
European-based GRS and two polygenic risk scores in independent discovery and
validation cohorts.

CONCLUSIONS

Genetic risk of type 1 diabetes includes ancestry-specific, disease-associated
variants. The GRS developed here provides improved prediction of type 1 diabetes
in African-ancestry subjects and a means to identify groups of individuals who
would benefit from immune monitoring for early detection of islet autoimmunity.

Type 1 diabetes results from the autoimmune destruction of the pancreatic b-cells,
leading to absolute dependence on exogenous insulin to regulate blood glucose levels
(1). The incomplete concordance for type 1 diabetes in monozygotic (MZ, sharing
100% of DNA) twin pairs suggests that heritable factors account for;50% of risk for
type 1 diabetes, with the remainder due to unrecognized but likely nongenetic causes.
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On average, the incidence of type 1
diabetes is increasing ;2% per year in
the U.S., suggesting a growing disease
burden due to changing environment/
lifestyle factors on a genetically suscep-
tible background. Although European-
ancestry populations have historically
high rates of type 1 diabetes, in the
U.S. individuals of African and Hispanic
ancestry exhibit the most rapidly increas-
ing rates of type 1 diabetes; thus, type 1
diabetes impacts all ethnic groups with
regard to quality of life and increased
health care costs (2,3).
To date, studies of the genetics of

type 1 diabetes have largely focused on
European-ancestry populations, where
type 1 diabetes has high prevalence
and large sample sizes of individual
cases or multiple case families can be
obtained. Genome-wide association stud-
ies (GWAS) have identified more than
50 type 1 diabetes risk loci (4,5). Us-
ing the ImmunoChip, the Type 1 Dia-
betes Genetics Consortium (T1DGC)
genotyped over 25,000 European-
ancestry subjects with type 1 diabetes
and control subjects, revising the list of
most-associated single nucleotide poly-
morphisms (SNPs) from GWAS and re-
ducing the median number of putatively
causal SNPs in each locus from 28 to 8 (6).
These SNPs have recently been used to
create genetic risk scores (GRS) that can
identify individuals for which immune
monitoring for early detection of islet
autoimmunity is warranted (7–9) and
differentiate those individuals from sub-
jects with other forms of diabetes. A major
limitation of the current GRS, however, is
that they are based solely on results from
European-ancestry populations (10). The
prevalence of type 1 diabetes is increasing
in ethnic minorities (11), and type 2
diabetes is now more frequently diag-
nosed in youth (11), making it difficult
to differentiate between type 1 diabetes
and type 2 diabetes on clinical phenotype
alone. While islet autoantibodies and

fasting or stimulated C-peptide levels
along with GRS are useful tools to
augment a clinical diagnosis, the absence
of genetic information on risk in non-
European populations is a limitation
that may affect the accuracy and utility
of these tools in such populations.

Prior genetic analyses of type 1 di-
abetes risk in African-ancestry popula-
tions have suffered from small sample
size,with theonly significant associations
observed with HLA genes (12–14). Here,
we performed a comprehensive analysis
of ImmunoChip SNPs in African-ancestry
case and control subjects to discover
novel loci aswell asnovel variationwithin
known loci and develop an African-
ancestry type 1 diabetes GRS, with com-
parison with the European-ancestry GRS.

RESEARCH DESIGN AND METHODS

Study Samples
We obtained DNA samples and data from
666 type 1 diabetes case subjects and
596 control subjects of African ancestry
ascertained by the T1DGC (15), 255 case
subjects from the SEARCH for Diabetes
in Youth study (SEARCH) (16), 41 case
subjects from the Genetics of Kidneys
in Diabetes (GoKinD) study (17), and
59 case subjects and 42 control subjects
fromtheBarbaraDavisCenter (BDC) (18).
Samples were obtained from an addi-
tional 368 African-ancestry control sub-
jects from the Consortium for the
Longitudinal Evaluation of African Amer-
icans with Early Rheumatoid Arthritis
(CLEAR) (19), 801 control subjects
from the New York Control Population
(NYCP) from the Feinstein Institute for
Medical Research (20), 659 control sub-
jects from the University of Alabama at
Birmingham (UAB) (21), and 462 control
subjects from the University of California,
San Francisco (UCSF) (22). A summary of
study participants is provided in Supple-
mentary Table 1. DNA for the indepen-
dent replication group was obtained from
the University of Florida (type 1 diabetes =

61, control = 54, type2diabetes =30). DNA
from study participants was obtained
after receiving approval from relevant
institutional research ethics committees
and informed consent.

Genotyping and Data Quality Control
Genotyping was performed using the
ImmunoChip (Illumina), according to the
manufacturer’s protocols. The T1DGC,
SEARCH, GoKinD, NYCP, BDC, and UCSF
samples were genotyped at the Cen-
ter for Public Health Genomics, Univer-
sity of Virginia, Charlottesville, VA. The
CLEAR and UAB control samples were
genotyped at the Feinstein Institute for
Medical Research, Manhasset, NY. All
genotyping files were assembled at
the University of Virginia to cluster ge-
notypes using the Illumina Gentrain2
algorithm. All SNP genome positions
used human reference genome GRCh37.
Genotyping of the replication set of sam-
ples was performed at the University
of Florida Genetics Institute using a cus-
tom Affymetrix array combining genome-
wide coverage with full SNP content of
the ImmunoChip array.

Sample quality control measures in-
cluded call rate, heterozygosity, and
concordance between reported and
genotype-inferred sex. SNP quality con-
trol measures included restricting anal-
ysis to genotyping call rates $95%,
Hardy-Weinberg equilibrium in controls
(P . 10210), and removal of monomor-
phic SNPs. To avoid cryptic relatedness
that can confound association analyses,
the relationship inference method im-
plemented in KING (23) estimated kin-
ship coefficients between every pair of
study subjects based on ImmunoChip
genotypes. In those pairs of subjects
found to be related, one subject was
randomly removed to avoid bias.

Population Structure
All participants included in our study
self-reported as being of African an-
cestry. Reference samples from the
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International HapMap Project repre-
senting African, Asian, and European pop-
ulations were used to validate self-reported
ancestry via the principal component
(PC) projection method implemented in
KING (23). Prior to PC analysis, autosomal
SNPs were linkage disequilibrium (LD)
pruned (r2, 0.2) to reduce allelic correla-
tions between adjacent SNPs. PC analysis
was performed on HapMap control sam-
ples, followedbyprojection of our study
population onto the HapMap control
PC space (Supplementary Fig. 1). Study
participants that self-identified as being
of African ancestry and aligned with
African-ancestry HapMap samples in
the control space were analyzed. To
control for study differences and ensure
wematched case-control samples appro-
priately, after the initial quality con-
trol steps with HapMap samples, we
removed MHC region SNPs (chr6: 25,
294–34,665 kb). PC analysis was per-
formed on 2,928 control (unaffected)
individuals, followed by projection of
1,021 individuals with type 1 diabetes
(affected) onto the control PC space.
The first two PCs (PC1 and PC2) explained
the majority of variance in the African-
ancestry genotyping data and were in-
cluded as covariates in logistic regression
models.

Imputation
Prior to imputation, we aligned the
genotyped ImmunoChip SNPs to the
1000 Genomes Project reference panel
(phase 3, version 5) using flipping and
removing rules previously described (6).
After genotyped SNPs were aligned to
the reference panel, SHAPEIT (v2 r837)
was used to construct haplotype phas-
ing. Minimac3 (version 2.0.1) was used
to impute 49 million 1000 Genomes
SNPs into the ImmunoChip African-
ancestry data set.

Single SNP Association Analysis
Association analyses of SNPs with type
1 diabetes status were performed using
PLINK (24), with a logistic regression
model for each SNP as primary predictor,
adjusting for sex and two PCs (PC1 and
PC2) to control for biases of popula-
tion structure. Aminor allele frequency
(MAF) threshold of 5% (MAF $0.05)
was used to assess the impact of com-
mon SNPs. Statistical significance was
considered at a Bonferroni-corrected
significance threshold based upon

the number of SNPs analyzed, either
genome-wide (P # 5.0 3 1028) or in
“known loci” (P , 2.79 3 1025). Associ-
ation results for each SNP within a locus
were plotted using LocusZoom (25) with
the custom annotation option to mark the
European-ancestry 99% credible SNPs
(6). The genomic inflation factor, defined
by the ratio of the median of the em-
pirically observed distribution of the test
statistic to the expected median, was
calculated for an equivalent study
of 1,000 case subjects and 1,000 control
subjects (l1000) (26). There was little
evidence of systematic bias (l1000 =
1.08) after excluding SNPs in the 4-Mb
MHC region and in the INS locus.

Imputation of Classical HLA Alleles
Classical HLA alleles for all eight MHC
class I and II genes (HLA-A, HLA-B, HLA-C,
HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-
DPA1, and HLA-DPB1) were available
only in a subset of African-ancestry par-
ticipants, although some collections had
more limited HLA genotyping (e.g., only
HLA-DRB1 was available). We obtained
most probable HLA genotypes from
the high-density ImmunoChip SNP data
in the MHC from imputation using
SNP2HLA (27). Imputation was based
on the T1DGC SNP reference panel
that included 5,196 unrelated subjects
of diverse ancestry (4,323 European,
251 African, 608 Asian, and 14 “other”)
with both ImmunoChip and classical
HLA genotypes (28).

Imputation accuracy was assessed
using a subset of subjects previously
HLA-typed with a PCR-based sequence-
specific oligonucleotide probe system
(29,30). Fifty T1DGC participants were
selected, 92 of their relatives were re-
moved from the reference panel, and
HLA alleles were imputed in the 50 using
SNP2HLA and the reference panel of
the remaining 5,104 individuals (that
included 159 African-ancestry individ-
uals). Imputed HLA genotypes at each
of the eight classical HLA loci in these
50 subjects were compared with their
known HLA genotypes. Imputation ac-
curacy (r) for a given locus was calcu-
lated as previously described (27).
Briefly, dosage of each genotyped (known)
HLA allele was summed across all in-
dividuals and the summed genotype-
dosagewas divided by the total number
of observations (chromosomes), as de-
fined by

r ¼ ∑
N

i¼1

diðAi1Þ þ diðAi2Þ
2N

where di is the imputed dosage of an
allele in person i, and alleles Ai1 and Ai2
at a given locus (e.g., HLA-DRB1) are the
genotyped (true) HLA types for subject i.
A completely accurate imputation would
have a dosage of 1.0 for that allele.
The correlation between imputed and
genotyped dosages at each HLA locus
provided the estimate of imputation
performance.

HLA Association Analyses
The most probable classical HLA geno-
types (dosages) were used in all associ-
ation analyses. Subjects were excluded
from analysis of a given locus if the total
allele count across all possible alleles at
that locus was not equal to two alleles.
We defined rare HLA alleles as those
that occur fewer than 30 times in the
combined sample of case and control
subjects (MAF,2.5%). Imputation gen-
erated high-quality HLA allele genotypes
at 2-field accuracy; thus, statistical anal-
yses of HLA alleles were performed on
2-field imputation calls. When multiple,
rare 2-field alleles (allele count ,30)
were observed within the same 1-field
allelic stratum, the set of rare alleles
were combined and analyzed as a single
1-field allele. Association analysis of
type 1 diabetes with alleles for each
of the eight classical HLA genes was
conducted using logistic regression, ad-
justing for sex and two PCs as previously
described.

Conditional Analysis of Type 1
Diabetes–Associated HLA Class II
Haplotypes
HLA class II haplotypes (DRB1-DQA1-
DQB1) were inferred using phased ge-
notypes (27). Each haplotype was coded
as a biallelic variant, and association
analyses were conducted on “common”
haplotypes. Odds ratios (ORs) for haplo-
types were calculated in a logistic re-
gressionmodel adjusting for sex and two
PCs, defined by

logitðYÞ ¼ mþ a1PC1 þ a2PC2 þ a3Sex
þ bx

where x is the allele count for the
haplotype being tested and b is the

408 Ancestry-Specific GRS Diabetes Care Volume 42, March 2019

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/42/3/406/528500/dc181727.pdf by guest on 10 April 2024

http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc18-1727/-/DC1


additive effect of the haplotype. Statistical
significance was determined using a
likelihood ratio test, comparing the HLA
inclusive model with a reference model
containing only sex and two PCs.
Independent associations of HLA class

II haplotypes with type 1 diabetes status
were conducted by iteratively condition-
ing on the most significant haplotype
until no remaining haplotype met the
significance threshold (forward selec-
tion). Statistical significance was consid-
ered at a Bonferroni-corrected P value
with a family-wise error ratea = 0.05 and
correcting for the total number of hap-
lotypes at each round of conditional
analysis. All statistical analyses for asso-
ciation in the MHC region were per-
formed using R 3.3.1 (31).

SNP Selection That Defines the
African-Ancestry Type 1 Diabetes GRS
The African-ancestry GRS was based
upon SNPs significantly associated with
type 1 diabetes risk. Seven SNPs in the
GRS, including five that significantly cap-
ture the genetic contribution of the HLA
region and two from 11p15.5 (INS locus)
and 17q12 (IKZF3-ORMDL3-GSDMB lo-
cus), exhibited genome-wide significant
evidenceof association (P,5.031028).
The regression coefficients at each of the
seven SNPs were used as individual SNP
weights. A GRS for each individual was
computed as the weighted sum of allele
counts. Supplementary Table 7 provides
the SNPs, the effect allele and its fre-
quency, and weights (log(OR)) for the
seven SNPs to compute an African-
ancestry GRS for type 1 diabetes. We
have recently implemented this GRS
prediction procedure in the software
package KING (23).
The area under the curve (AUC) from

receiver operating characteristic (ROC)
analysis was computed for the African-
ancestry GRS by comparing the observed
type1diabetes status (case-control)with
that predicted from the GRS. To vali-
date performance of the African-ancestry
GRS, the data were randomly divided
into two subsets, 80% representing a
training set and the remaining 20% as
the test set; this process was repeated
1,000 times to generate empirical per-
formance metrics to provide a more
accurate cross-validation. Considering
there may be bias in performance of
the African-ancestry GRS as it is being
tested on the data that were used to

develop the GRS, we also tested it on
an independent set of African-ancestry
samples.

To assess the new GRS model, perfor-
mance of a European-ancestry GRS to
predict type 1 diabetes in the African-
ancestry population was compared to
the African-ancestry GRS. The European-
ancestry GRS is based upon our previous
report (6) that forms the basis of a re-
cently implemented type 1 diabetes GRS
(7). The DeLong test was used to com-
pare the AUC difference between the
two GRS models (32).

Performance of the GRS on prediction
of type 1 diabetes risk in the African-
ancestry population was also compared
with two polygenic risk score (PRS) mod-
els in a cross-validation procedure: a PRS
model that was generated using the
actual genotype data, and a PRS model
that was generated using the GWAS scan
summary statistics. Similar to the eval-
uation of the GRS, the cross-validation
data sets included a training subset con-
sisting of 80% of the samples and a test
subset consisting of the remaining 20%
of samples. We used the software pack-
age GCTA to build the PRS model in the
training set. For the summary-statistics-
based PRS, we first ran a logistic regres-
sion adjusting for sex and two PCs of
ancestry (four PCs were also investigated
for sensitivity analysis), and regression
coefficients at filtered SNPs (P value
cutoff varies at 1.0, 0.5, 0.05, 5 3
1024, 53 1026, and 53 1028 and LD r2

varies at 0.2, 0.4, 0.6, and 0.8) were used
to weight the genotype at the corre-
sponding SNP. For both PRS models,
a PRS was generated for each of the
samples in the test set using the PRS
model.

RESULTS

After data cleaning and quality control,
genotypes for 114,874 ImmunoChip
SNPs in 3,949 African-ancestry partici-
pants, consisting of 1,021 participants
with type 1 diabetes and 2,928 control
subjects, were available for analysis. This
study represents the largest study of
genetics of type 1 diabetes in African-
ancestry populations, with greater than
80% power to detect a SNP with OR
.2.00 for common variants (MAF
.0.05) at genome-wide significance
(P , 5.0 3 1028), a SNP with OR .1.90
with ImmunoChip-wide significance

(P , 4.3 3 1027), or a SNP with OR
.1.60 within known European-ancestry
loci (P , 0.001).

Impact of European-Ancestry SNPs
Associated with Type 1 Diabetes in
African-Ancestry Populations
Recent analyses in populations of Euro-
pean ancestry (6) identified 2,021 SNPs
in 50 regions of the genome significantly
associated with type 1 diabetes. In the
African-ancestry sample, 1,788 of these
SNPs were available for analysis. SNPs
in five of the European-ancestry regions,
chromosomes 2q33.2 (CTLA4), 6q22.32
(CENPW), 11p15.5 (INS), 12q13.2 (IKZF4-
RPS26-ERBB3), and 17q12 (IKZF3-
ORMDL3-GSDMB), attained significance
at P # 2.79 3 1025 (Bonferroni-
corrected P , 0.05) in African-ancestry
participants (Table 1 and Supplemen-
tary Table 2). It should be noted that
for majority of the regions, the most
significant SNP in the African-ancestry
population is not the same as that
identified in populations of European-
ancestry (6). As shown in Fig. 1, the most
significantly associated SNP in Euro-
pean ancestry (denoted by a star) is
often distant from the most associated
African-ancestry SNP and of minimal
significance in association with type 1
diabetes status in African-ancestry pop-
ulations. However, a subset of the
European-ancestry type 1 diabetes cred-
ible SNPs (denoted by triangles) also
shows strong evidence of association
in the African-ancestry population, allow-
ing us to further reduce the number of
candidate causal SNPs (Supplementary
Table 2).

In African-ancestry populations,
rs3842727 in the INS locus is the most
significantly associated non-HLA region
SNP (OR 1.53, P = 9.48 3 10214, 95% CI
1.37–1.72) (Table 1 and Fig. 1D). In
European-ancestry populations, the
INS promoter VNTR (variable number
of tandem repeats) polymorphism is
recognized as the non-HLA genetic
feature with the largest effect size on
type 1 diabetes risk, with the rs689
SNP perfectly “tagging” the INS VNTR.
However, in African-ancestry populations,
the most associated SNP is rs3842727,
and it is strongly correlated (r2 . 0.8)
with rs689 in both European-ancestry
and African-ancestry populations. The
direction of the observed allelic effect
of rs3842727 with increased type 1
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diabetes risk is consistent in both European-
and African-ancestry populations.
The 12q13.2 locus is a complex re-

gion with several plausible candidates
for type 1 diabetes susceptibility genes
(IKZF4, RPS26, and ERBB3) (4). A prior
GWAS in European-ancestry subjects
supported ERBB3, while subsequent
fine-mapping (6) supported the IKZF4-
RPS26 region. In the African-ancestry
samples, the rs705705 SNP near RPS26
has the strongest association with type 1
diabetes in 12q13.2 (OR 1.38, P = 1.353
1025, 95% CI 1.19–1.60). In contrast, the
rs2292239 SNP in ERBB3 that is strongly
supported in European-ancestry popula-
tions is not significantly associated with
type 1 diabetes (P = 0.83) in African-
ancestry samples. Of 22 SNPs in the
12q13.2 region strongly associated with
type 1 diabetes in European-ancestry
populations, only 14 were nominally
significant (P , 1.0 3 1024) in African-
ancestry population, and none of these
14 SNPs were located in ERBB3 (Fig. 1E
and Supplementary Table 2).
The 17q12 locus has numerous SNPs

associated with type 1 diabetes in
European-ancestry populations and
contains a cluster of plausible candi-
dates for association with type 1 di-
abetes (IKZF3,ORMDL3, andGSDMB) (6).
In African-ancestry participants, the
rs56380902 SNP (intronic in GSDMB) is
significantly associated with type 1 di-
abetes (OR 1.35, P = 1.443 1028, 95% CI
1.22–1.50), while the most significantly
associated SNP in this region in European-
ancestry populations (rs12453507) pro-
vides no evidence for association (P =
0.11). Of the 111 SNPs in the region that
are associated with type 1 diabetes in
European-ancestry populations, only
7 are significantly associated (P ,

2.79 3 1025) in African-ancestry partic-
ipants. These results reduce the type 1
diabetes risk region from ;210 kb to a
14.63-kb interval centered on GSDMB
(Fig. 1F and Supplementary Table 2).

HLA Association With African-
Ancestry Type 1 Diabetes
Imputation to obtain most likely HLA
alleles from the ImmunoChip in partic-
ipants of African-ancestry yielded uni-
formly high imputation accuracy (r) for
1-field (2-digit) classical HLA alleles
(ranging from r = 0.93 for HLA-DPB1
to r . 0.99 for HLA-DQA1, HLA-DQB1,
HLA-DPA1, and HLA-C) (Supplementary
Tables 3 and 4). None of the eight HLA
loci deviated significantly from Hardy-
Weinberg equilibrium expectations in
controls.

HLA haplotypes significantly asso-
ciated with type 1 diabetes in the African-
ancestry population are HLA-DRB1*03:
01-HLA-DQA1*05:01-HLA-DQB1*02:01
(OR 3.91, P = 2.6 3 10278), HLA-DRB1*
04:01-HLA-DQA1*03:01-HLA-DQB1*03:02
(OR 5.36, P = 2.4 3 10229), HLA-
DRB1*04:05-HLA-DQA1*03:01-HLA-DQB1*
03:02 (OR 6.75, P = 1.8 3 10240), and
African-specific haplotypes HLA-DRB1*
03:02-HLA-DQA1*04:01-HLA-DQB1*04:02
(OR 0.14, P = 4.4 3 10226) and HLA-
DRB1*15:03-HLA-DQA1*01:02-HLA-DQB1*
06:02 (OR 0.13, P = 7.1 3 10247). For all
common, imputed HLA classical alleles
and haplotypes, their associations with
type 1 diabetes are provided in Table 2
and Supplementary Table 5.

The region containing HLA genes is
known for extensive LD, such that specific
alleles at multiple loci are frequently
coinherited, making it difficult to assess
independent contributions of alleles and
haplotypes to type 1 diabetes risk. Condi-

tional analyses identified 15 HLA class
II haplotypes associated independently
with type 1 diabetes (Supplementary
Table 6), including the African-derived
risk haplotypes HLA-DRB1*09:01-HLA-
DQA1*03:01-HLA-DQB1*02:01 (OR 5.75,
P = 2.5 3 10234) and HLA-DRB1*07:01-
HLA-DQA1*03:01-HLA-DQB1*02:01 (OR
4.69, P = 6.4 3 10215).

HLA class I alleles significantly asso-
ciated with risk of type 1 diabetes are
HLA-A*24:02 (OR 2.17, P = 9.83 1029),
HLA-B*15:10 (OR 2.21, P = 7.83 10210),
and HLA-C*03:04 (OR 1.87, P = 1.2 3
10210). The African-specific allele, HLA-
B*57:03, was protective against risk of
type 1 diabetes (OR 0.44, P = 1.33 1025)
(Supplementary Table 5).

Type 1 Diabetes GRS in African-
Ancestry Populations
We assessed the performance of a pre-
viously described European-ancestry
type 1 diabetes GRS (7) in the African-
ancestry population. The European-
ancestry GRSmodel consisted of 30 SNPs
derived from the T1DGC (6,33) that were
most associated with type 1 diabetes in
European populations and were poly-
morphic in African-ancestry populations
(5 in the HLA region and 25 others). The
European-ancestry GRS applied to African-
ancestry samples had an AUC of 0.798,
reflecting the overlap (even if not statis-
tically significant) in regions of the genome
associated with type 1 diabetes risk. The
African-ancestry type 1 diabetes GRS
includedonly sevenSNPs (five inHLA region,
one for INS, and one in the IKZF3-ORMDL3-
GSDMB region) yet had an AUC of 0.871
(Fig. 2), providing a significant (P, 2.23
10216) improvement in prediction of type 1
diabetes from the European-ancestry GRS
based upon the two AUCs. The AUC of

Table 1—African-ancestry ImmunoChip SNP associations in European-ancestry type 1 diabetes loci

Chr Position (bp) Marker
Candidate
gene(s) Allele

Allele frequency

OR (95% CI) P
EUR credible SNP
(OR; allele) (6)Case Control

2q33.2 204722752 rs926169 CTLA4 T 0.41 0.36 1.28 (1.15–1.42) 8.96 3 10206 rs231775 (1.19; G)

6p21.32 32626272 rs9273363 MHC A 0.49 0.13 5.48 (4.80–6.27) 4.61 3 102138 rs9273363 (5.37; A)

6q22.32 126712247 rs1578060 CENPW C 0.19 0.13 1.42 (1.23–1.64) 2.16 3 10206 rs1538171 (1.12; G)

10q23.31 90187924 rs10788599 RNLS G 0.14 0.17 0.69 (0.59–0.80) 1.07 3 10206 rs12416116 (0.85; A)

11p15.5 2184848 rs3842727 INS T 0.39 0.26 1.53 (1.37–1.72) 9.48 3 10214 rs689 (1.18; T)

12q13.2 56435504 rs705705 IKZF4 C 0.18 0.12 1.38 (1.19–1.60) 1.35 3 10205 rs705705 (1.25; C)

17q12 38066372 rs56380902 IKZF3, ORMDL3,
GSDMB

C 0.52 0.44 1.35 (1.22–1.50) 1.44 3 10208 rs12453507 (1.11; G)

bp, base pair; Chr, chromosome.
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0.871 is equivalent to the AUC from a
more rigorous validation procedure in
the African-ancestry samples, where 80%
of the data are used for training the GRS
model and the other 20% for predicting
type 1 diabetes risk, which results in an
average AUC of 0.870 with 1,000 rounds

of cross-validation. To validate the
GRS, we applied it to an independent
African-ancestry cohort consisting of
61 type 1 diabetes case subjects and
54 control subjects. The AUC for type 1
diabetes risk prediction was 0.779. We
further showed discrimination of subjects

with type 1 diabetes (n = 63) from subjects
with type 2 diabetes (n = 30) with AUC =
0.787.

Type 1 Diabetes GRS Versus PRS
We compared the performance of
our proposed type 1 diabetes GRS and

Figure 1—Regional type 1 diabetes association plots for non-HLA risk loci identified in African Americans. LocusZoom plots for 2q33.2 (A); 6q22.32 (B);
10q23.31, observed association (rs10788599) is in close proximity (;152 kb) but independent from reported intronic SNP (rs12416116) in European-
ancestry populations (C); 11p15.5 (D); 12q13.2 (E); and 17q12 (F) (25). The most significant type 1 diabetes–associated SNP at each locus is plotted
(purple). Each symbol on the plot represents a single SNP included in the type 1 diabetes association test (African-ancestry participants); the symbol
color corresponds to the degree of LD, with the most significant SNP colored purple. The most significant type 1 diabetes–associated SNP reported
in the study by Onengut-Gumuscu et al. (6) is indicated with a yellow-colored star with the exception of 12q13.2, where rs705705 is the index SNP
for both populations, indicated with a purple diamond. Type 1 diabetes 99% credible SNPs identified in European-ancestry populations that passed
quality control in African-ancestry data are marked with triangles, and all other SNPs are marked with a circle.
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two PRSs in the African-ancestry pop-
ulation using the exact training and
testing data sets in a cross-validation
procedure. The average AUC for the
GRS in 100 cross-validations is 0.867,
the average AUC for the genotype-
based PRS is 0.808, and the average
AUC for the summary-statistics-based
PRS ranges from 0.797 to 0.837 (AUC
is maximized at P value cutoff 5 3 1028

and r2 = 0.2). The maximum PRS AUC of
0.837 is not particularly sensitive to our
logistic regression model; e.g., when we
adjusted four PCs instead of two PCs, the
maximum AUC changed to 0.838. The
ROC curves of GRS, genotype-based PRS,
minimal PRS, and maximal PRS in one
cross-validation data set are shown in
Supplementary Fig. 2.

CONCLUSIONS

Identification of individuals at increased
genetic risk for type 1 diabetes can
enhance diagnostic and management
practices by targeting at-risk children
that could benefit from screening for
presence of islet autoantibodies that
are highly predictive of disease onset.
This strategy has been implemented in
the Fr1da study (34) and the prospec-
tive TEDDY (The Environmental Determi-
nants of Diabetes in the Young) cohort
(9). A critical component of understand-
ing who is at high genetic risk for type 1
diabetes is the application of a GRS with
high sensitivity and specificity (the pre-
dictive values will always be low, given
the low population prevalence of type 1
diabetes). The majority of individuals

who develop type 1 diabetes that
have been characterized, to date, are
children of European ancestry, but it is
now apparent that individuals of other
ancestries (2) as well as adults (35) are
developing or being better ascertained
as having type 1 diabetes at an increa-
sing rate. A critical question is whether a
type 1 diabetes GRS developed in Eu-
ropean-ancestry populations, with age
at onset ,16 years, performs well in
other populations.

Despite extensive genetic research
in type 1 diabetes, data frompopulations
of non-European ancestry and adult-
onset disease remain limited. In this
report, we have assembled and geno-
typed the largest collection of African-
ancestry type 1 diabetes cases studied

Table 2—Association of MHC class II haplotypes with type 1 diabetes in unrelated African-ancestry individuals contrasted
with Caucasian families from the T1DGC

DRB1 DQA1 DQB1 Count Control AF Case AF
Unadjusted

OR OR P

Erlich et al. 2008 (29)

Control EU Case EU OR

01:01 01:01 05:01 218 0.026 0.032 1.24 1.15 0.37 0.09 0.066 0.71

01:02 01:01 05:01 288 0.040 0.026 0.65 0.66 6.7 3 1023 0.01 0.007 0.66

03:01 05:01 02:01 984 0.075 0.268 4.5 3.91 2.6 3 10278 0.125 0.341 3.64

03:02 04:01 04:02 378 0.062 0.008 0.13 0.14 4.4 3 10226** d d d

04:01 03:01 03:01 83 0.010 0.012 1.16 0.84 0.50 0.039 0.014 0.35

04:01 03:01 03:02 215 0.012 0.072 6.4 5.36 2.4 3 10229 0.045 0.281 8.39

04:04 03:01 03:02 122 0.010 0.031 3.1 2.60 1.1 3 1026 0.032 0.05 1.59

04:05 03:01 03:02 231 0.013 0.076 6.07 6.75 1.8 3 10240 0.002 0.025 11.37

07:01 02:01 02:02 584 0.081 0.056 0.68 0.66 1.5 3 1024 d d d

07:01 03:01 02:01 155 0.012 0.043 3.86 4.41 7.4 3 10218** d d d

08:04 04:01 03:01 229 0.037 0.008 0.22 0.25 7 3 10211** d d d

08:04 05:01 03:01 61 0.010 0.002 0.2 0.23 5.9 3 1024 d d d

09:01 03:01 02:01 326 0.024 0.092 4.17 4.87 3.4 3 10239** 0 0.002 d

10:01 01:01 05:01 144 0.023 0.006 0.28 0.29 1.0 3 1026 0.007 0.003 0.49

11:01 01:02 05:02 67 0.010 0.005 0.5 0.54 0.06 d d d

11:01 01:02 06:02 228 0.038 0.003 0.09 0.096 5.7 3 10219 d d d

11:01 05:01 03:01 295 0.047 0.010 0.2 0.18 7.5 3 10219 0.065 0.012 0.18

11:02 05:01 03:01 292 0.044 0.017 0.38 0.42 2.3 3 1027 0.004 0.002 0.37

12:01 01:01 05:01 221 0.033 0.015 0.44 0.49 1.4 3 1024 d d d

13:01 01:03 06:03 241 0.037 0.014 0.37 0.35 7.2 3 1029 0.059 0.008 0.13

13:02 01:02 05:01 178 0.026 0.014 0.52 0.57 5.6 3 1023 d d d

13:02 01:02 06:04 140 0.016 0.024 1.5 1.43 0.06 0.026 0.022 0.87

13:02 01:02 06:09 224 0.031 0.023 0.75 0.79 0.17 0.003 0 0

13:03 02:01 02:01 63 0.010 0.003 0.3 0.35 4.3 3 1023** d d d

13:03 05:01 03:01 94 0.014 0.005 0.37 0.36 4.8 3 1024 0.01 0.001 0.08

15:01 01:02 06:02 167 0.028 0.002 0.07 0.055 9.9 3 10220 0.12 0.004 0.03

15:03 01:02 06:02 699 0.115 0.015 0.11 0.13 7.1 3 10247** d d d

16:02 01:02 05:02 82 0.011 0.009 0.8 0.93 0.80 0.001 0.001 0.74

Only haplotypes with total allele count .60, and allele frequency (AF) in case or control groups at least 1% or higher, are presented. OR estimates
and P values generated by logistic regression, adjusting for two PCs and sex. Control AF, African-ancestry HLA haplotype frequency in subjects
without type 1 diabetes. Case AF, African-ancestry HLA haplotype frequency in subjects with type 1 diabetes. Control EU, control HLA
haplotype frequency from affected family-based control (AFBAC) method based upon haplotypes not transmitted to an affected child in families.
Case EU, case HLA haplotype frequency from the AFBAC method based upon transmitted haplotype from a parent to a child with type 1 diabetes
in families. **African ancestry–specific association with type 1 diabetes.

412 Ancestry-Specific GRS Diabetes Care Volume 42, March 2019

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/42/3/406/528500/dc181727.pdf by guest on 10 April 2024

http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc18-1727/-/DC1


to date, conducted association analy-
ses at autoimmune disease loci using
the ImmunoChip, developed an African-
ancestry type 1 diabetes GRS, and
compared its prediction with an
European-ancestry type 1 diabetes
GRS. The African-ancestry population
provided concordant findings for some
loci (e.g., HLA), revealed alternative risk
alleles at other loci (e.g., RNLS) (Fig. 1C),
and reduced the number of candidate
causal variants for functional studies
at other, disease-associated but genet-
ically complex regions (12q13.2 and
17q12). At loci implicated in type 1 di-
abetes risk in European-ancestry popu-
lations, there was consistency in effect
size and direction of effect of associated
SNPs in African-ancestry populations,
even when the smaller sample size
in African-ancestry population did not
achieve statistical significance (Table 1).
Our large collection of African-ancestry
case and control subjects supports the
impact of HLA class II–associated risk
alleles and haplotypes on type 1 diabe-
tes risk that parallels those observed in
European-ancestry populations (29). In
addition to HLA class II genes, we iden-
tified new significant associations for
HLA-A, HLA-B, and HLA-C alleles with
type 1 diabetes in African-ancestry pop-
ulations (Table 2). We note that, as is
the case with SNP imputation, common
HLA alleles will be imputed at a greater
accuracy and caution is necessary in

interpreting results from less common
HLA alleles and haplotypes.

GRS, an emerging approach to inte-
grating the complex genetic architecture
of human disease risk, are typically cre-
ated through the summation of genome-
wide significant SNP genotypes and their
effect sizes into a single number that
differentiates case from control status.
Performance of a GRS depends upon the
proportion of the SNPs included in the
score to the total genetic risk, as well as
any population-specific content. Type 1
diabetes, with;50% of risk attributed to
genetic factors, is unique among complex
human genetic diseases in that the ma-
jority of genetic risk is now known (6) in
European-ancestry populations, suggest-
ing that a type 1 diabetes GRS can be used
in clinical practice to improve classifica-
tion and treatment in those with over-
lapping features of type 1 diabetes and
monogenic or type 2 diabetes, as has
been demonstrated for a European-
ancestry GRS (7,8). However, in the current
study we found that such a European-
ancestry type 1 diabetes GRS performs
significantly less well than an African-
ancestry type 1 diabetes GRS when ap-
plied to African-ancestry populations. A
recent report on the performance of an
African-ancestry GRS in type 2 diabetes,
composed of 22 SNPs related to b-cell
dysfunction and insulin resistance, pro-
vides an increased (although not signif-
icant) risk prediction for disease (36),

perhaps due to the relatively small
amount of genetic variation in type 2
diabetes risk captured by the SNPs
chosen. In the context of type 1 diabetes,
the identification of individuals at high
genetic risk can be used to offer targeted
population screening for the presence
of islet autoantibodies (9). While no cur-
rent intervention is available to slow or
stop progression of islet autoimmunity to
clinical type 1 diabetes, this information
can improve surveillance, management,
and education of individuals and families
and provide protection from diabetic ke-
toacidosis (37).

In conclusion, genetic analyses of type
1 diabetes in African-ancestry partici-
pants highlights the consistency of re-
gional genomic associations with disease
risk across populations, and yet the
population-specific nature of SNP as-
sociations within these chromosomal
regions influences the performance of
genetic risk models. These results suggest
that population-specific GRS can provide
significantly improved prediction and op-
portunities for targeted interventions in
individuals at risk for type 1 diabetes.
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