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Increasing Maternal Glycemia in
Pregnancy Is Associated With
Worsening Childhood Glucose
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The initial purpose of the Hyperglyce-
mia and Adverse Pregnancy Outcome
(HAPO) study was to examine the asso-
ciations of increasing degrees of un-
treated maternal glycemia, less severe
than overt diabetes, with adverse preg-
nancy and neonatal outcomes and bring
a unified approach to the diagnosis of
gestational diabetes mellitus (GDM).
The HAPO study (1) demonstrated

linear increases in the risk of the primary
outcomes of neonatal birth weight, cord
C-peptide .90th percentile, neonatal
hypoglycemia, and primary cesarean de-
livery with increasing maternal glycemia
on a one-step 75-g 2-h oral glucose
tolerance test (OGTT). The secondary
outcomes including neonatal skinfold
thicknesses .90th percentile, preterm
delivery, preeclampsia, and shoulder
dystocia had similar associations. In
two long-term offspring follow-up stud-
ies published in this issue of Diabetes
Care (2,3), risks of adverse outcomes
related to this continuum of maternal
glycemia in pregnancy are now demon-
strated to persist into early adolescence.
The long-term risk of maternal hyper-

glycemia to the offspring exposed in
utero has been an ongoing concern for
decades. In 1954, Pedersen (4) proposed

that excessive glucose in mothers with
diabetes is available for trans-placental
passage, resulting in fetal hyperinsuline-
mia and excess fat accretion. In his
Banting lecture, Norbert Freinkel (5) pro-
posed the concept that fetal exposures
to altered levels of maternal fuels,
after organogenesis, may result in long-
range adverse anatomical and metabolic
changes in the offspring, which he called
“fuel-mediated teratogenesis.” A related
“fetal programming” hypothesis pro-
posed by Barker and Osmond (6) holds
that nutritional (and other environmen-
tal) exposures during critical develop-
mental windows may induce changes
in tissue development and function
that contribute to long-term chronic
disease risk. Based on studies in animal
models and in human tissues, such long-
term effects may be mediated through
epigenetic changes in the b-cells, liver,
and insulin target tissues, along with
hypothalamic appetite signaling, the
gut microbiome, plasma metabolites,
and other factors (7,8). However, reviews
and systematic analyses of human data
(9–12) have demonstrated inconsistent
long-term offspring outcomes, which
may be due to variable adjustment for
important confounders such as maternal

and paternal BMI and glycemia (9,13),
the inability to ascertain effects of GDM
treatment (12), and the study of special
populations with high prevalence of
type 2 diabetes and GDM, which might
not be generalizable (14). Thus, there is a
critical knowledge gap regarding long-
term health outcomes in the offspring
of women with gradations of glucose
intolerance in pregnancy.

The two articles herein examine the
associations of untreated maternal plasma
glucose on the one-step 75-g OGTT at
24–32weeks of gestationwithmarkers of
glucose metabolism in 4,160 racially/
ethnically diverse offspring at 10–14
years of age (2,3). The article by Lowe
et al. (2) focuses on untreated maternal
GDM (based on post hoc International
Association of the Diabetes and Preg-
nancy Study Groups/World Health Or-
ganization criteria) (15,16) as theprimary
exposure, with comprehensive markers
of offspring metabolic outcomes includ-
ing impaired fasting glucose (IFG); im-
paired glucose tolerance (IGT); 75-g
OGTT glucose values at 0, 30 min, 1 h,
and 2 h; A1C; type 2 diabetes; insulin
sensitivity (Matsuda index [IS]) and se-
cretion (insulinogenic index); and the
oral disposition index (oDI), a measure
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of b-cell compensation for insulin resis-
tance and a strong predictor of type 2
diabetes (17). The article by Scholtens
et al. (3) examines associations be-
tween in utero exposure to maternal
glucose across the spectrum, both con-
tinuous associations of maternal glucose
and categorical associations across five
maternal ranges for glucose, and off-
spring markers of glucose metabolism.
In the article by Lowe et al. (2), off-

spring of mothers with GDM had higher
prevalence of IGT; higher 30-min, 1-h,
and 2-h glucose during OGTT; and re-
duced IS and oDI compared with children
of mothers without GDM. GDM in moth-
ers was not associated with IFG or type
2 diabetes in offspring. In the article
by Scholtens et al. (3), the authors dem-
onstrate strong positive associations
between maternal continuous and cat-
egorical glycemia status with offspring
75-g OGTT glucose, A1C, IGT, and IFG,
along with inverse associations with IS
andoDI.Maternal fasting plasma glucose
(FPG) was positively associated with off-
spring FPG, IFG, and A1C and inversely
associated with offspring IS. Moreover,
maternal 1-h and 2-h glucose levels were
positively associatedwith offspring IGT,
A1C, and glucose levels during OGTT
and inversely related to offspring IS and
oDI. Strengthening the findings, mul-
tiple models were presented to address
potential confounders, including field
center (a proxy for race/ethnicity); child
age, sex, pubertal status, and family his-
tory of diabetes in a first-degree rela-
tive; maternal factors (e.g., age, height,
blood pressure, parity, smoking, and
drinking); and both maternal BMI and
child BMI z score. Notably, adjustments
for maternal BMI, child BMI, and family
history of diabetes did not alter the
associations. Recognizing that associa-
tions may differ by pubertal status (18),
the authors stratified by Tanner stage.
While many of the continuous associa-
tions of maternal and child outcome were
significant upon stratification by Tanner 1,
Tanner 2–3, and Tanner 4–5, the authors
note that statistical models were not
powered for all of the associations.
These studies indicate strong contin-

uous associations between maternal
glycemia in pregnancy and long-term
effects on offspring glycemia, insulin
sensitivity, and b-cell function. As a note
of caution, the studies found effects on
offspring risk of IGT and in some

analyses IFG but did not show a signif-
icant increase in risk of type 2 diabetes
with increasing maternal hyperglycemia.
However, type 2 diabetes is rare in
children, and the study was likely un-
derpowered to look at this outcome.
Still, in youth, these diagnostic categories
are fluid. A recent study from Galderisi
et al. (19) showed that 65% of adoles-
cents (mean age 12.7 years) with IGT at
baseline reverted to normal glucose tol-
erance at follow-up (mean 2.9 years), but
notably 8% did progress to type 2 di-
abetes during this short time period.
While these associations do not prove
causality, they do give cause for concern.
In the search for markers that identify
children at risk for abnormal glucose
metabolism, maternal glycemia in utero
may be among the earliest. Of impor-
tance, the nature of these associations
shows that risks are continuous and
may argue for broader use of the one-
step 75-g OGTT to diagnose GDM to
identify children with higher risks of
abnormal glucose metabolism in early
adolescence.

Further studies are needed to evalu-
ate whether treatment of women with
higher glucose levels in pregnancy will
reduce or reverse abnormal glucose
metabolism in offspring. The optimal
time period(s) to intervene to reduce
offspring metabolic risk needs further
study (i.e., treatment of pregnant mothers,
treatment of affected infants, children,
or youth, or a multifaceted approach).
Other possible mechanisms should be
studied to assess their possible contri-
bution to offspring metabolic outcomes
in relation to maternal hyperglyce-
mia, including shared genetics, shared
environmentdsimilar diets and exercise
patterns as well as chemical exposures
(20)dand paternal effects (21,22). Still,
with childhood obesity, metabolic dis-
ease, and type 2 diabetes being chal-
lenging conditions to treat successfully,
any interventions that may prevent
their emergence should be strongly
considered by professional societies
and clinicians. Finally, the continuum
of increasing offspring metabolic risk
associated with maternal hyperglycemia
raises thequestion:Whatmaternalglucose
thresholds on the one-step 75-g OGTT
should we use to identify offspring who
are at greatest risk? Studies of cost-ben-
efit and health economic impact will be
necessary to answer this question.

The HAPO Follow-up Study (HAPO
FUS) data presented in this issue of
Diabetes Care (2,3) provides an addi-
tional strong argument for the need
to derive and use diagnostic glucose
levels in pregnancy based on the available
science rather than history or common
usage.
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