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OBJECTIVE

Adipose tissue insulin resistance is one of the pathophysiological components of
type 2 diabetes. Herein we investigated: 1) adipose insulin resistance index
(Adipose-IR) (calculated as fasting insulin3 free fatty acids [FFAs]) in youth across
the spectrum of adiposity from normal weight to obese and the spectrum from
normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) to type 2
diabetes, 2) the relationship of Adipose-IR with physical and metabolic character-
istics, and 3) the predictive power of Adipose-IR for determining dysglycemia in
youth.

RESEARCH DESIGN AND METHODS

A total of 205 youth had fasting glucose, insulin, FFA, Adipose-IR, body composition,
visceral adipose tissue (VAT), leptin, and adiponectin evaluated.

RESULTS

Adipose-IR was 2.2-fold higher in obese NGT, 4.3-fold higher in IGT, and 4.6-fold
higher in type 2 diabetes compared with that in normal-weight peers (all P < 0.05).
Females with dysglycemia (IGT and type 2 diabetes) had higher Adipose-IR than their
male counterparts (P < 0.001). Adipose-IR correlated positively with total body and
visceral adiposity, fasting glucose, HOMA-IR, and leptin and negatively with
adiponectin. Receiver operating characteristic curve analysis yielded an optimal
cutoff for Adipose-IR of 9.3 mU/mL 3 mmol/L for determining dysglycemia with
80% predictive power.

CONCLUSIONS

Adipose-IR is a simple surrogate estimate that reflects pathophysiological alter-
ations in adipose tissue insulin sensitivity in youth, with progressive deterioration
from normal weight to obese and from NGT to IGT to type 2 diabetes. Adipose-IR
can be applied in large-scale epidemiological/observational studies of the natu-
ral history of youth-onset type 2 diabetes and its progression or reversal with
intervention strategies.
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Adipose tissue is an insulin-sensitive en-
docrine organ playing a pivotal role in
glucose and lipid metabolism by buff-
ering daily flux of fatty acids in the
postprandial period and by secreting
adipokines (1,2). The important role of
insulin in adipose tissue is to suppress
lipolysis and to promote glucose uptake
and lipogenesis, thereby regulating se-
cretion of free fatty acids (FFAs) into the
bloodstream (3). Accordingly, adipose
tissue insulin resistance is considered
one of the pathophysiological compo-
nents of type 2 diabetes (4). We recently
demonstrated that obese youth with
impaired glucose tolerance (IGT) com-
pared with their normoglycemic peers of
similar percentage body fat have dimin-
ished insulin suppression of lipolysis
together with lower adipose tissue in-
sulin sensitivity, measured with the
hyperinsulinemic-euglycemic clamp com-
bined with [2H5]glycerol tracer (5). More-
over, consistent with adult studies (6,7),
we have demonstrated that experimen-
tally induced increases in circulating FFA
concentrations in normal-weight and obese
youth rapidly induce peripheral insulin
resistance and b-cell lipotoxicity, mea-
sured by the clamp methodology (8,9).
Such observations in youth point to an
important roleof FFA in regulating insulin
sensitivity and b-cell function and the
critical function of adipose tissue insulin
sensitivity in maintaining normal circu-
lating FFA concentrations.
Although the clamp methodology

combined with tracers (either glycerol
or palmitate) is considered the most
accurate in vivo measurement of adipo-
cyte insulin resistance (10–12), it is not
feasible in large epidemiological, ob-
servational, or interventional studies.
Therefore, a surrogate index of adipose
tissue insulin resistance (Adipose-IR),
calculated as the product of fasting in-
sulin and fasting FFA concentrations (3),
has been used in adults to examine
adipocyte dysfunction in obesity, pre-
diabetes, and type 2 diabetes (13–15).
Gastaldelli et al. (15) recently showed
that Adipose-IR is increased twofold in
obese adults with NGT and IGT and
threefold in type 2 diabetes compared
with lean NGT. The pediatric literature
appears to be limited to two relevant
studies with inconsistent findings (16,17).
One study showed no differences in ad-
ipose insulin resistance measured by FFA
suppression from fasting to the clamp

steady-state hyperinsulinemia among
lean youth versus obese youth versus
youth with type 2 diabetes (16). The
other study, in a large pediatric obesity
clinic cohort of 962, obese youth age 7–
20 years exhibited progressive increases
in Adipose-IR from NGT to prediabetes
to type 2 diabetes, correlating positively
with BMI z score and adiposity (17).
This observation would suggest that
lean youth would have lower or better
adipose insulin resistance than obese
youthdcontrary to what was reported
in the former study (16). Against this
background of conflicting findings, addi-
tional investigations of adipose tissue
insulin resistance along the spectrum
of adiposity fromnormalweight to obese
and across glucose tolerance categories
are needed to confirm or refute the
sparse pediatric literature.

Therefore, the purpose of this study
was 1) to evaluate the Adipose-IR index in
youth from normal weight to obese and
from NGT to IGT to type 2 diabetes
categories, 2) to examine the relationship
ofAdipose-IRwithphysical andmetabolic
characteristics, and3) toestimate, for the
first time, the predictive power and the
optimal cutoff value of Adipose-IR for
determining dysglycemia in youth.

RESEARCH DESIGN AND METHODS

Participants
A total of 205 adolescents were exam-
ined (age 10 to,20 years, Tanner stages
IV and V, 99 African American and
106 American and white, and 70 male
and 135 female) from our National In-
stitutes of Health–funded K24 grant in-
vestigating childhood insulin resistance
(5,18–23). There were 49 who were
normal weight and 89 who were over-
weight/obese (15 overweight with BMI
$85th percentile for age and sex but
,95th and 74 obese with BMI$95th per-
centile) with NGT, 38 who were obese
with IGT, and 29 who were obese with
type 2 diabetes. From here on we will
refer to the overweight/obese group as
“obese” for simplicity. Glucose tolerance
status was determined with HbA1c and/
or a 2-h oral glucose tolerance test
(OGTT) (1.75 g glucose/kg [maximum
75 g]) (24). Healthy, normal-weight par-
ticipants had normal fasting glucose and
HbA1c and did not undergo a 2-h OGTT
(23). Participants with isolated impaired
fasting glucose (IFG) were excluded

because IGT and combined IFG and
IGT groups are characterized as having
insulin resistance, whereas those with
isolated IFG are not, while both have
impaired b-cell function (25). All obese
youth with type 2 diabetes were neg-
ative for GAD and insulinoma-associated
protein 2 autoantibody. They all had ade-
quate metabolic control, with a mean6 SE
HbA1c of 6.6 6 0.2% (range 4.7–8.3) and
diabetes duration of 8.1 6 1.8 months
(0–39). They were on treatment consisting
of lifestyle modification (n = 6), metfor-
min alone (n = 13), metformin together
with insulin (n = 7), and insulin alone
(n = 3). None received degludec or insu-
lin glargine 300 IU/mL. Participants were
recruited through newspaper advertise-
ments, flyers posted in the medical cam-
pus, city bus routes, and the outpatient
clinics in the Children’s Hospital of Pitts-
burgh Weight Management and Wellness
Center and the Division of Pediatric Endo-
crinology. The study was approved by the
institutional review board of the Univer-
sity of Pittsburgh, and written informed
parental consent and child assent were
obtained from all participants before
any research procedures in accordance
with the ethics guidelines of Children’s
Hospital of Pittsburgh.

Study Procedures and Fasting
Blood Samples
All procedures were performed at the
Pediatric Clinical and Translational Re-
search Center (PCTRC) of Children’s
Hospital of Pittsburgh. All participants
underwent medical history, physical
examination, and hematologic and bio-
chemical tests. Height and weight were
assessed to the nearest 0.1 cm and 0.1 kg,
respectively, and used to calculate BMI.
Pubertal development was assessed using
Tanner criteria (26). Body composition
was evaluated with DEXA for the mea-
surement of total body fat mass and
percent body fat. Abdominal total adi-
pose tissue (TAT), subcutaneous adipose
tissue (SAT), and visceral adipose tissue
(VAT) were assessed by either computed
tomography (CT) at L4-L5 intervertebral
space orMRI (27,28). The switch from CT
toMRI was imposed by the study section
during the competitive grant renewal.
However, there is a strong correlation (r=
0.89–0.95) and good agreement be-
tween CT and MRI for the measurement
of abdominal adipose tissue (29).
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Fasting blood samples were obtained
after a 10- to 12-h overnight fast for the
measurement of glucose, insulin, FFA,
HbA1c, lipid profile, leptin, and adiponec-
tin. In participants with type 2 diabetes,
metformin and long-acting insulin were
discontinued 48 h before study proce-
dures. Some of the participants in the
current study were included in previous
publications reporting data unrelated
to the current investigation (5,18–23).

Biochemical Measurements
Plasma glucose was determined by the
glucose oxidase method using a glucose
analyzer (Yellow Springs Instrument Co.,
Yellow Springs, OH) and insulin by a
commercially available human-specific
insulin radioimmunoassay kit (catalog
no. HI-14 K; Linco/Millipore, St. Charles,
MO). FFA concentration was determined
using enzymatic colorimetric methods
with a Wako (nonesterified fatty acids)
NEFA-HR test kit (FUJIFILM Wako Diag-
nostics, Osaka, Japan). In our laboratory,
intra- and interassay coefficients of var-
iation were 2.1% and 6.5% for FFA and
6.3% and 7.4% for insulin. Plasma lipid
concentrations were determined using
the standards of the Centers for Disease
Control and Prevention (18). Leptin and
adiponectin was measured using a com-
mercially available radioimmunoassay
kit (LINCO Research, Inc.). HbA1c was
measured by high-performance liquid
chromatography (Tosoh Medics, Inc., San
Francisco, CA).

Calculations
Adipose-IR, a surrogate index of adipose
tissue insulin resistance, was calculated
as fasting insulin 3 fasting FFA concen-
tration. To use this index, we used our
previously published data on whole-body
lipolysis, using [2H5]glycerol tracer, and
adipose tissue insulin sensitivity in obese
youth with NGT (n = 97) versus IGT (n =
41) (5). The correlation between adipose
tissue insulin sensitivity and Adipose-IR
in the latter cohort was r =20.605, P ,
0.0001. The HOMA of insulin resistance
(HOMA-IR) was calculated (HOMA Cal-
culator at https://www.dtu.ox.ac.uk/
homacalculator/download.php) as pre-
viously described (30).

Statistical Analysis
Univariate ANOVA using Bonferroni post
hoc test and x2 analyses was used to
compare Adipose-IR and physical and

metabolic characteristics across the
four groups of youth (normal weight
vs. obese with NGT, vs. IGT, and vs.
type 2 diabetes). ANCOVA was used to
adjust for sex, race, Tanner stage, BMI,
and VAT (or percent body fat). Spearman
correlation analysis as a nonparametric
measure was used to examine bivariate
relationships between Adipose-IR and
physical and metabolic characteristics.
Logistic regression analysis was per-
formed to estimate the odds ratio of
Adipose-IR for the determination of dys-
glycemia (IGT and type 2 diabetes com-
bined), with adjustment for sex, race,
Tanner stage, BMI, and VAT. Receiver
operating characteristic (ROC) curve
analysis was performed to assess the
predictive power of Adipose-IR for de-
termining dysglycemia and to identify an
optimal cutoff value based on the bal-
ance between sensitivity and specificity.
Data that did not meet normality as-
sumptions (BMI,HbA1c, triglyceride,HDL,
VLDL, total fat mass, percent body fat,
VAT, SAT, TAT, leptin, adiponectin, fast-
ing glucose, insulin and FFA, and Adipose-
IR) were log10 transformed; untrans-
formed data are presented for ease of
interpretation. Data are means 6 SEM
with P # 0.05.

RESULTS

Physical and Metabolic Characteristics
of Normal Weight Versus Obese
With NGT Versus IGT Versus
Type 2 Diabetes
There were no differences in age or race
among the four groups. More advanced
Tanner stages and more girls were among
obese youth with NGT, IGT and type 2
diabetes compared with normal-weight
peers (Table 1). There were no differ-
ences in BMI percentile, total fatmass, or
percent body fat among obese subjects
with NGT, IGT, and type 2 diabetes.
However, abdominal VAT was progres-
sively and significantly higher from nor-
mal weight to obese and from NGT to IGT
(no further increase in type 2 diabetes).
Obese youth with IGT had a worse lipid
profile, with significantly higher total
cholesterol, triglyceride, LDL, and VLDL
and lower HDL compared with normal-
weight and obese youth with NGT (Ta-
ble 1). Youth with type 2 diabetes had
significantly higher HbA1c and fasting
glucose concentrations compared with
all other groups. Obese youth with NGT,

IGT, and type 2 diabetes had significantly
higher leptin and lower adiponectin
concentrations compared with normal-
weight peers. HOMA-IR increased sig-
nificantly and progressively from normal
weight to obese and from NGT to IGT
and type 2 diabetes, with no difference
between the latter two groups (Table 1).
All statistical differences in lipid and
metabolic panel remained significant
after adjustment for sex, race, Tanner
stage, BMI, and VAT.

Adipose-IR in Youth
There was progressive increase in fasting
insulin from normal weight to obese and
from NGT to IGT and type 2 diabetes (Fig.
1A). Despite ;3.2-fold higher fasting
insulin in obese youth with IGT, fasting
FFA was higher compared with normal-
weight and obese youth with NGT (Fig.
1B). Consequently, Adipose-IR increased
from lean to obese and from NGT to IGT
to type 2 diabetes, being 2.2-fold higher
in obese youth with NGT, 4.3-fold higher
in IGT, and 4.6-fold higher in type 2
diabetes compared with normal weight
(Fig. 1C). These differences remained
significant after adjustment for VAT,
sex, race, Tanner stage, and BMI. Re-
placement of VAT with percent body fat
in the ANCOVA model did not change
the significant difference in Adipose-IR
across the groups. There was no differ-
ence in Adipose-IR between IGT versus
type 2 diabetes before or after adjust-
ment for the covariates. When the anal-
yses were performed separately in each
sex, there were similar patterns of pro-
gressive increases in Adipose-IR in both
males and females (Supplementary Fig. 1).

Sex-Specific Differences in Adipose-IR
In addition to the ANCOVA model with
adjustment for sex among the covari-
ates (VAT, race, Tanner stage, and BMI),
we compared differences in Adipose-IR
in males and females separately (Sup-
plementary Table 1). For thepurposes of
this analysis, we combined youth with
IGT and type 2 diabetes as a single group
of “dysglycemia” because IGT and type 2
diabetes represent a spectrum of dys-
glycemia, with IGT being a “virgin” state
of type 2 diabetes, and because there
was no difference in Adipose-IR be-
tween obese youth with IGT versus
type 2 diabetes (Fig. 1C). Adipose-IR
progressively increased from normal
weight to obese and from NGT to
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dysglycemia in both males and females
(Supplementary Table 1). Adipose-IR did
not differ significantly in normal-weight
and obese NGT males and females before

or after adjustment for the covariates.
However, obese females versus males
with dysglycemia had higher Adipose-IR
before and after adjustment for VAT, race,

Tanner stage, and BMI (20.286 2.04 vs.
11.716 2.63mU/mL3mmol/L, PANCOVA =
0.011) (Supplementary Table 1). Replace-
ment of VAT with percent body fat in the
ANCOVA model did not change the sig-
nificant difference in Adipose-IR between
males and females with dysglycemia.
When males and females were compared
in the IGT and type 2 diabetes groups
separately, Adipose-IR was 2.0-fold higher
in females versus males with IGT (19.316
2.28 vs. 9.51 6 2.01 mU/mL 3 mmol/L,
P = 0.011) and 1.7-fold higher in fe-
males versus males with type 2 dia-
betes (21.94 6 3.99 vs. 13.10 6 4.15
mU/mL3mmol/L, P = 0.103). There was
no difference in treatment modalities
between males and females, and adjust-
ment for diabetes treatment between
females and males did not change the
results.

Relationship of Adipose-IR With
Physical andMetabolic Characteristics
Adipose-IR correlated significantly and
positively with BMI, total fat mass,
percent body fat, abdominal adipose
tissue (visceral, subcutaneous, and to-
tal), total cholesterol, triglyceride, LDL,
VLDL, leptin, fasting glucose, and
HOMA-IR and negatively with HDL
and adiponectin (Table 2). Males and
females showed similar associations be-
tween total and abdominal adiposity
measures and Adipose-IR when ana-
lyzed separately (Supplementary Table
2).

Logistic Regression and ROC Curve
Analyses of Adipose-IR for the
Prediction of Dysglycemia
For the logistic regression analysis,
Adipose-IR was a significant predictor
of dysglycemia (IGT and type 2 diabetes
combined) independent of sex, race,
Tanner stage, BMI, and VAT, with an
odds ratio of 1.114 (B = 0.108 [95% CI
1.052–1.180], P , 0.0001). For a 1-unit
increase in Adipose-IR, the odds of hav-
ing dysglycemia increased by 11%. Ad-
ditionally, the ROC curve analysis of
Adipose-IR revealed an optimal cutoff
value of 9.3 mU/mL 3 mmol/L for pre-
dicting dysglycemia (71.6% sensitivity and
71.7% specificity), with ROC area under
the curve (AUC) of 0.800 (predictive
power 80%). The predictive power of
Adipose-IR was similar to that of fasting
insulin (ROC AUC 80%) and HOMA-IR

Figure 1—Fasting insulin (A), fasting FFA (B), and Adipose-IR (C) (fasting insulin 3 fasting FFA)
in normal-weight (NW) vs. obese (Ob) subjects with NGT vs. IGT vs. type 2 diabetes (T2D).
#P , 0.05 after adjustment for sex, race, Tanner stage, BMI, and VAT.
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(80%) but superior to that of HbA1c
(69%) and FFA (66%).

CONCLUSIONS

The current study, employing a simple
surrogate estimate of Adipose-IR using
fasting insulin and FFA concentrations,
reveals that 1) Adipose-IR increases pro-
gressively across the span of adiposity
from normal weight to overweight/
obese and along the spectrum of glucose
tolerance from NGT to IGT to type 2
diabetes; 2) Adipose-IR correlates di-
rectly with adiposity indices, including
total body and visceral adiposity, and
leptin; 3) the higher the Adipose-IR, the
worse the lipid profile; 4) Adipose-IR
correlates directly with fasting glucose
concentration and HOMA-IR and in-
versely with adiponectin; 5) there is a
significant sex difference in Adipose-IR in
youth with dysglycemia, being worse in
females; and 6) Adipose-IR is a significant
predictor of dysglycemia with an odds
ratio of 1.114 and an optimal cutoff value
of 9.3 mU/mL 3 mmol/L. Such observa-
tions would justify the use of Adipose-IR
to assess adipose tissue insulin sensi-
tivity (a pathophysiological component
of type 2 diabetes) in large-scale epi-
demiological/observational studies of
the natural history of youth-onset type
2 diabetes and in prevention/intervention
studies of the effectiveness of any in-
tervention in modifying the course of
adipose tissue insulin sensitivity in high-
risk youth.

Our cross-sectional observation of sig-
nificant increases in Adipose-IR in obese
youth with NGT, IGT, and type 2 diabetes
compared with that in normal-weight
youth supplements the adult literature
(13–15), in addition to confirming and
advancing the very limited pediatric lit-
erature (16,17). Hershkop et al. (17)
described in their multiethnic cohort
of 962 obese children and adolescents
that Adipose-IR increased from NGT to
prediabetes to type 2 diabetes (17) and
was positively associated with adiposity
indices and negatively with adiponectind
consistent with our findings. Unlike
ours, their study included prepubertal
youth in whom Adipose-IR was lower
compared with pubertal youth. Further,
their OGTT data demonstrated that
among the participants with NGT there
was an increase in Adipose-IR related
to an increase in 2-h glucose levels.
Thismay have been a result of the inverse
relationship of Adipose-IR with the oral
disposition index, implying that with de-
clining b-cell function and increasing 2-h
glucose concentrations even in the nor-
mal range, Adipose-IR deteriorates (17).
They also showed that Adipose-IR is a
strong determinant of FFA AUC during
the OGTT. Even though the two studies
show a similar trend of an increase in
Adipose-IR from NGT to prediabetes to
type 2 diabetes, the magnitude of the
increase is different between the two
studies: ;50% in the former and ;94%
in ours. This could be due to inclusion of
only IGT in our cohort versus IFG and IGT
in the former, especially given that it is
not known whether the alteration in
Adipose-IR is as severe in IFG as it is
in IGT. However, the observation by
Hershkop et al. (17) that, in participants
with NGT, the increase in Adipose-IR
related to an increase in 2-h glucose con-
centration would suggest that Adipose-
IR may be worse in IGT than IFG. The
same would be construed from their
finding of lower FFA suppression during
the OGTT with increasing 2-h glucose
concentrations (17). Our study did not
include OGTT. Pediatric as well as adult
studies are needed to examine adipose
tissue insulin sensitivity in IFG separate
from IGT to demonstrate whether adi-
pose tissue insulin resistance is worse in
IGT compared with IFG.

Besides confirming the sparse pediat-
ric literature, the current study advances
it in a few relevant ways, including the

examination of Adipose-IR in normal-
weight youth, demonstration of sex dif-
ferences in Adipose-IR, and the ROC
curve analyses of Adipose-IR for predic-
tion of dysglycemia. Our finding that
Adipose-IR is 2.2-fold higher in obese
youth with NGT versus normal-weight
peers suggests that an impairment
of adipose tissue insulin sensitivity is
already present in obese youth with
normoglycemia. This observation is con-
cordant with adult data of twofold
higher Adipose-IR in obese NGT versus
lean NGT (15) but inconsistent with a
previous pediatric study showing no
difference in baseline FFA concen-
trations and no difference in % FFA
suppression during a hyperinsulinemic-
euglycemic clamp between lean versus
obese youth (16). This discrepancy
might be due to different sample sizes
for lean and obese groups between the
two studies, potential heterogeneity of
the obese group with respect to glucose
tolerance in the latter study, or different
measurements of adipose insulin resis-
tance. The presence of impaired adipose
tissue insulin sensitivity in obese youth
with NGT, before any alteration in glu-
cose homeostasis, is concordant with
our previous research demonstrating
that abnormalities in insulin sensitivity
of glucose metabolism and b-cell dys-
function are also present in obese youth
with NGT (19,20).

Contrary to the significant increase in
Adipose-IR from NGT to IGT in the current
study and that reported previously in
pediatrics (17), obese adults with NGT
versus IGT had similar Adipose-IR (NGT
8.06 1.1mU/mL3mmol/L vs. IGT 9.26
0.7 mU/mL 3 mmol/L) (15). Such differ-
ing findings in youth and adults suggest
a distinct youth-adult contrast with re-
spect to insulin resistance associated
with lipid metabolism. This youth-adult
contrast could be interpreted from the
observation that obese youth with IGT
have;75–80% higher or worse Adipose-
IR compared with that reported in
adults (15). Although this is not a head-
to-head comparison of Adipose-IR be-
tween youth and adults, our present
finding of severe adipocyte insulin re-
sistance in obese youth with IGT is con-
sistent with our recent findings of 50%
lower hepatic and peripheral insulin
sensitivity with respect to glucose me-
tabolism in obese adolescents versus eq-
ually obese adults with IGT (31). Similar

Table 2—Associations between
Adipose-IR and physical and met-
abolic characteristics

Variable r P

BMI 0.559 ,0.0001

Total fat mass 0.529 ,0.0001

% body fat 0.510 ,0.0001

VAT 0.557 ,0.0001

SAT 0.576 ,0.0001

TAT 0.583 ,0.0001

Total cholesterol 0.296 ,0.0001

Triglyceride 0.461 ,0.0001

HDL 20.279 ,0.0001

LDL 0.242 0.001

VLDL 0.449 ,0.0001

Leptin 0.526 ,0.0001

Adiponectin 20.410 ,0.0001

Fasting glucose 0.193 0.006

HOMA-IR 0.812 ,0.0001
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observations were made in the Restoring
Insulin Secretion (RISE) study demon-
strating remarkable insulin resistance
of glucose metabolism in obese youth
with IGT and recent-onset type 2 diabe-
tes in comparison with equally obese
adults with IGT or recent-onset type 2
diabetes (32,33). Analysis of RISE banked
plasma samples for FFA concentrations
may allow for direct comparison be-
tween youth and adults with respect
to adipose tissue insulin sensitivity, shed-
ding light on the severity of adipose
tissue insulin resistance in youth and
potentially providing an explanation
for why the disease appears decades
earlier in youth.
The sex-specific analysis of Adipose-IR

in the current data reveals that obese
females versus males with dysglycemia
(IGT and type 2 diabetes) have ;73%
higherAdipose-IR,which is in linewith the
lower insulin sensitivity of glucose me-
tabolism (measured by hyperinsulinemic-
euglycemic clamp) in girls compared
with boys of similar BMI (34). It would
be critical to examine whether the more
severe Adipose-IR in females has any
pathophysiological implications with
respect to sex-related therapeutic re-
sponse. In the Treatment Options for
type 2 Diabetes in Adolescents and Youth
(TODAY) trial, metformin plus rosiglita-
zone was significantly more effective in
girls than boys in maintaining glycemic
control (HbA1c ,8%) (35). Moreover,
among girls, metformin plus rosiglita-
zone was significantly more effective
than metformin alone and metformin
plus lifestyle, whereas in boys, metfor-
min plus rosiglitazone was not more
effective than either metformin alone
or metformin plus lifestyle. It could be
speculated that obese girls with type 2
diabetes and severe Adipose-IR require
more potent insulin sensitizers, such as
rosiglitazone, to improve their global
insulin resistance and improve both glu-
cose and lipid metabolism compared
with boys.
Data are very limited with respect to

thepredictive ability of Adipose-IR (14) in
contrast to the widely used diabetes risk
indicators, such as HbA1c, fasting and 2-h
OGTT glucose concentrations, and math-
ematical indices of insulin sensitivity, for
determining prediabetes and type 2 di-
abetes in adults and youth (36,37). Our
ROC curve analysis together with logistic
regression provides novel data in the

pediatric literature and reveals a cutoff
value of 9.3 mU/mL 3 mmol/L for
Adipose-IR with a dysglycemia predic-
tive power of 80%. In our cohort, HOMA-
IR is similarly predictive of dysglycemia
(ROC AUC 80%). This could be due to
using fasting insulin in calculating both
HOMA-IR and Adipose-IR. On the other
hand, the predictive power of HbA1c (ROC
AUC 69%) or FFA (ROC AUC 66%) is much
less than that of either Adipose-IR or
HOMA-IR. Our logistic analysis further
confirms that Adipose-IR is a significant
predictor of dysglycemia independent of
sex, race, Tanner stage, BMI, and VAT.
Longitudinal studies of large cohorts are
needed to examine the validity of the
predictive power of Adipose-IR in pro-
gression to IGT or type 2 diabetes in
high-risk youth with NGT.

The strengths of the present investi-
gation include 1) the use of a simple
surrogate index of Adipose-IR, using fast-
ing insulin and FFA concentrations, hav-
ing verified it against adipose tissue
insulin sensitivity measured with [2H5]-
glycerol tracer in our subcohort (5); 2) a
thorough characterization of Adipose-IR
on a wide spectrum of weight status and
glucose tolerance, from normal weight
to obese and from NGT to IGT to type 2
diabetes, in a pediatric population; 3) a
first-time evaluation of the predictive
power of Adipose-IR for determining
dysglycemia in youth; 4) the balanced
representation of white and black youth;
and 5) the novel observation of sex-
related differences in Adipose-IR. Poten-
tial perceived limitations would be that
we included youth with type 2 diabetes
who were on different treatment moda-
lities (i.e., metformin, insulin, metformin
plus insulin, or lifestyle modification).
This could potentially act as a significant
confounder modulating lipolysis (38).
However, this diversity in therapy is in-
evitable because once a youth is diag-
nosed with type 2 diabetes, treatment is
initiated, and in a clinical setting thera-
peutic approaches are dictated by the
severity of hyperglycemia and provider
choices. As to the relatively modest
correlation (r = 20.605, P , 0.0001)
between Adipose-IR and adipose tissue
insulin sensitivity calculated from whole-
body lipolysis measured by glycerol
tracer (5), the correlation may have
been stronger if glycerol turnover data
were available in all 205 participants
of the present cohort instead of the

138 subjects in the prior publication.
Furthermore, glycerol turnover mea-
surement with stable isotope method-
ology is a much more sensitive measure
of whole-body lipolysis than FFA con-
centrations because FFA is reesterified
within adipose tissue while glycerol is
not and FFA oxidation and clearance can
vary depending on sex, obesity, and
glycemic status (10). It would also be
important to examine alterations in FFA
dynamics/suppression during the OGTT
besides a fasting-based index. Lastly,
our suggested cutoff value of Adipose-IR
for defining dysglycemia may not apply
to all children and adolescents. Large
pediatric cohorts with a variety of
weight status and with diverse ethnic
backgrounds should be investigated to
examine the validity of Adipose-IR for
predicting prediabetes and type 2 di-
abetes. Finally, the cross-sectional na-
ture of our evaluation does not allow us
to examine causal relationships be-
tween adipose tissue insulin resistance
and other significant pathogenic factors
of type 2 diabetes.

In summary, Adipose-IR is a simple
surrogate index that can be used in large-
scale pediatric epidemiological studies
where the applicability of tracer studies
is limited owing to feasibility, cost, and
labor intensiveness. It provides an easy
approach to investigate adipose tissue
insulin sensitivity, a key pathophysiolog-
ical component of type 2 diabetes, and it
can be used repeatedly in longitudinal
studies of the natural history of type 2
diabetes or in therapeutic intervention/
prevention trials targeting reversing the
trajectory of youth-onset type 2 diabetes.
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