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High-Coverage Targeted
Lipidomics Reveals Novel Serum
Lipid Predictors and Lipid
Pathway Dysregulation
Antecedent to Type 2 Diabetes
Onset in Normoglycemic Chinese
Adults
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OBJECTIVE

Comprehensive assessment of serum lipidomic aberrations before type 2 diabetes
mellitus (T2DM) onset has remained lacking in Han Chinese. We evaluated changes
in lipid coregulation antecedent to T2DM and identified novel lipid predictors for
T2DM in individuals with normal glucose regulation (NGR).

RESEARCH DESIGN AND METHODS

In the discovery study, we tested 667 baseline serum lipids in subjects with incident
diabetes and propensity score—-matched control subjects (n = 200) from a pro-
spective cohort comprising 3,821 Chinese adults with NGR. In the validation study,
we tested 250 lipids in subjects with incident diabetes and matched control subjects
(n = 724) from a pooled validation cohort of 14,651 individuals with NGR covering
five geographical regions across China. Differential correlation network analyses
revealed perturbed lipid coregulation antecedent to diabetes. The predictive value
of a serum lipid panel independent of serum triglycerides and 2-h postload glucose
was also evaluated.

RESULTS

At the level of false-discovery rate <0.05, 38 lipids, including triacylglycerols (TAGs),
lyso-phosphatidylinositols, phosphatidylcholines, polyunsaturated fatty acid
(PUFA)-plasmalogen phosphatidylethanolamines (PUFA-PEps), and cholesteryl
esters, were significantly associated with T2DM risk in the discovery and validation
cohorts. A preliminary study found most of the lipid predictors were also
significantly associated with the risk of prediabetes. Differential correlation
network analysis revealed that perturbations in intraclass (i.e., non—-PUFA-TAG and
PUFA-TAGS) and interclass (i.e., TAGs and PUFA-PEps) lipid coregulation preexisted
before diabetes onset. Our lipid panel further improved prediction of incident
diabetes over conventional clinical indices.

CONCLUSIONS

These findings revealed novel changes in lipid coregulation existing before diabetes
onset and expanded the current panel of serum lipid predictors for T2DM in
normoglycemic Chinese individuals.
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Lipid Profiles Predict Risk of Diabetes

Diabetes has become a major cause of
death and disability worldwide (1). The
prevalence of diabetes in China has more
than quadrupled in recent decades (2,3).
An estimated 10.9% of Chinese adults
had diabetes and 35.7% had prediabetes
in 2013 (3). Identification of biomarkers
or novel pathway dysregulation predic-
tive of diabetes denotes an area of in-
tense research interest.

The advent of omics in recent decades
offers clinicians an additional avenue to
examine disease-relevant metabolite
changes with an unprecedented reso-
lution and coverage (4). Metabolomics
captures changes of both endogenous
and exogenous origins (5) and thus
confers further insights to the intricate
pathophysiology of diseases such as
diabetes, for which phenotypic mani-
festations integrate both genetic and
environmental inputs (4).

Lipidomics has emerged as an inde-
pendent subfield of metabolomics, and a
growing number of studies have inves-
tigated the relationship of dysregulation
in lipid metabolism and pathogenesis of
type 2 diabetes mellitus (T2DM) (6-16). A
lipid biomarker panel comprising triacyl-
glycerols (TAGs) of lower total carbon
number and carbon double bonds was
found to associate with an increased
risk of diabetes in the Framingham
Heart Study (FHS) cohort (9). Odd-
chain TAGs, after adjustment for total
TAGs, were shown to inversely correlate
with diabetes risk in the Prevencion con
Dieta Mediterranea (PREDIMED) trial
cohort (17). Recent studies have also
linked lyso-phosphatidylcholine (LPC),
phosphatidylcholine (PC), phosphatidyl-
ethanolamine (PE), and diacylglycerol
(DAG) with increased diabetes risk
(10,14,17), whereas sphingomyelins, a
major class of mammalian sphingolipids,
were associated with decreased risk of
diabetes (11,12,17). In addition, changes
in acylcarnitines (18,19) and fatty acids
(13) have also been reported to associate
with diabetes risk.

Most previous studies on human blood
(serum/plasma) did not achieve a satis-
factory lipidomic coverage to render
investigation of lipid pathway dysregu-
lation (9,11,20). A recent omics study
used only one internal standard to mea-
sure 207 plasma lipids, which could
considerably compromise quantitative
accuracy (17). Given the immense com-
plexities of the human serum lipidome,

limited lipidomic coverage may hinder
an unbiased evaluation of the subtle
lipid pathway perturbations essentially
underlying T2DM onset. In the current
study, we used a high-coverage tar-
geted lipidomics approach constructed
principally on high-performance lipid
chromatography coupled to multiple
reaction monitoring (HPLC-MRM), which
simultaneously confers accurate quan-
titation and extensive coverage of es-
sential lipid classes central to the
homeostasis of endogenous lipid metab-
olism (21).

Moreover, preceding lipidomics stud-
ies were predominantly conducted
using a mixture of individuals with nor-
mal glucose regulation (NGR) orimpaired
glucose regulation (IGR) at baseline (17),
making it difficult to dissect whether
these identified lipid changes are har-
bingers of early dysglycemia or dysgly-
cemia preceded these lipid changes (15).
A comprehensive evaluation of lipidomic
changes in individuals with NGR could
therefore identify new markers and path-
ways that define early T2DM pathogen-
esis and possibly improve prediction of
incident T2DM beyond clinical risk
factors.

Herein, we extensively investi-
gated serum lipidome changes in two
prospective Chinese cohorts using a
nested case-control design. Our aims
were to 1) evaluate incipient lipidome
patterns of diabetes existing before dys-
glycemia, 2) uncover lipid markers that
could improve prediction of T2DM
beyond clinical risk factors, and 3) sys-
tematically investigate lipid pathway dys-
regulation in the prodromal stage of
diabetes.

RESEARCH DESIGN AND METHODS

Study Population

The discovery cohort is a prospective,
community-based cohort initiated in
Jiading district, Shanghai, China, in
2010. Cohort design and characteristics
were previously reported in detail else-
where (22-23). Briefly, 10,569 subjects
aged =40 years were invited by tele-
phone or door-to-door visits, and 10,375
were enrolled at the baseline survey.
Participants with diabetes or IGR at
baseline were excluded from the analy-
sis. After a mean follow-up of 4.4 years,
among 3,821 eligible subjects with NGR
at baseline, 189 developed diabetes.
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Owing to funding constraints, our pilot
study cohort comprised 100 randomly
selected case subjects with diabetes and
100 sex-matched NGR control subjects
chosen using propensity score matching
(PSM) (24) with a logistic model that
includes age, BMI, and fasting plasma
glucose (FPG).

The validation cohort comprising
55,062 individuals was randomly se-
lected from 5 of 25 centers of the
REACTION (Risk Evaluation of cAncers
in Chinese diabetic Individuals: a IONgi-
tudinal) study, a nationwide population-
based prospective cohort of 259,657
individuals (aged =40 years) enrolled
between 2011 and 2012 (25-28). The
five centersincluded two cohorts (Jiangxi
and Hubei) from the central region, and
three cohorts (Guizhou, Gansu, and Si-
chuan) from the western region of
China. Participants with diabetes or IGR at
baseline were excluded from the analy-
sis. During a follow-up of 3.8 vyears,
among 14,651 subjects defined as NGR
based on an oral glucose tolerance test
(75 g) at baseline, 364 developed di-
abetes. Two serum samples were not
available at baseline, thus 362 individuals
with diabetes and 362 NGR individuals
were included into the validation study
using the same selection and matching
methods as described above for the
discovery cohort (Supplementary Fig. 1).

Furthermore, in a preliminary study to
test whether the lipid predictors for di-
abetes were also significantly associated
with the risk of developing IGR from NGR,
87 participants who developed IGR and
87 who remained NGR during follow-
up were randomly selected from the
Shanghai cohort.

Ethical Approval

The study protocol was approved by the
Institutional Review Board of Ruijin Hos-
pital affiliated to the Shanghai Jiao-Tong
University School of Medicine. All par-
ticipants provided written informed
consent.

Definition of Diabetes and IGR

In both discovery and validation studies
at baseline and follow-up visits, all par-
ticipants underwent a 75-g oral glucose
tolerance test, and plasma glucose was
obtained at 0 h and 2 h during the test.
Blood specimens were processed within
2 h of blood collection at the field center,
and sera were shipped by airon dryice to
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the central laboratory located at Shang-
hai Institute of Endocrine and Metabolic
Diseases, which is certified by the College
of American Pathologists (26).

Incident diabetes was defined as FPG
=126 mg/dL, or 2-h postload plasma
glucose (2hPG) =200 mg/dL, or self-
reported previous diagnosis of diabetes
by physicians and the use of antidiabetic
medications. IGR was defined as FPG
levels between 100 and 125 mg/dL,
and 2hPG levels between 140 and
199 mg/dL in participants without prior
diabetes diagnosis.

Lipidomics Analyses

Serum lipid profiles were measured by
a high-coverage targeted lipidomics
approach constructed principally on HPLC-
MRM. Lipids were extracted from se-
rum (20 wl) using a modified Bligh
and Dyer extraction procedure (double
rounds of extraction) and dried in
the SpeedVac under OH mode. All lip-
idomic analyses were performed on
an Exion LC-system coupled with a
QTRAP 6500 PLUS system (Sciex), and
individual lipids from various classes
were quantitated relative to their re-
spective internal standards, as de-
scribed previously (29-31). Additional
details, including quantitative accuracy,
calibration, and annotation, are pro-
vided in section 2 of the Supplementary
Data.

Statistical Analyses
Concentrations for individual lipids (mol/L)
were log-transformed and standard-
ized to z scores. Because association
of lipids with diabetes risk can differ
based on acyl chain length and unsatu-
ration degree (9,17), lipids were grouped
and further analyzed based on carbon
atom and double bond numbers (Sup-
plementary Data sections 1.3 and 1.4).
To identify lipids predictors, odds
ratios (ORs) of developing T2DM per
log-transformed SD increase in each lipid
species were calculated by conditional
logistic regression models, after adjust-
ing for age, BMI, smoking and drinking
status, education, family history of di-
abetes, physical activity, systolic blood
pressure (SBP), and FPG. The P value was
corrected for multiple testing via false-
discovery rate (FDR) using the Benjamini-
Hochberg method. Lipids that showed
significant associations with incident dia-
betes (P value <0.05 and FDR <0.05) in

both discovery and validation cohorts
were further tested in a preliminary
IGR study.

To identify independent predictors,
serum triglycerides (TGs) and 2hPG,
which showed significant differences be-
tween case subjects and control subjects
at baseline, were further adjusted in
conditional logistic regression models.
The predictive values for incident diabe-
tes of the identified lipids panel were
evaluated in discovery cohort and vali-
dation cohort. Model performance was
presented as receiver operating charac-
teristic (ROC) curves. The Delong test was
used for comparing areas under the ROC
curves (Supplementary Data section 1.5).

R package MEGENA was used to build
correlation networks from differen-
tially correlated lipid pairs. Differen-
tial correlation was calculated using
R package DGCA. Only lipid pairs with
differential correlation (empirical P <
0.05) were included for analyses (see
Supplementary Data section 1.6 for details).

All statistical analyses were performed
using SAS 9.3 (SAS Institute) and R 3.4.2
software. Two-sided P < 0.05 was con-
sidered as statistically significant.

RESULTS

Baseline Characteristics of the
Discovery and Validation Cohorts

In the discovery cohort, in addition to
sex, age, BMI, and FPG matched under
PSM, baseline fasting HDL cholesterol,
LDL cholesterol, insulin level, SBP,
family history of diabetes, and lifestyle
factors including smoking, drinking,
physical activity, and education status
in case subjects and control subjects
were also well-matched. In the discovery
cohort, case subjects showed higher levels
of 2hPG and fasting TG (Table 1). In the
validation cohort, case subjects had a
significantly higher SBP and fasting TGs
than control subjects (Table 1).

Lipid Profiling

A total of 667 lipid species (of a targeted
library screening >800 lipids) spanning
24 individual lipid classes was identified
and quantitated in the serum lipidome of
the discovery study (n = 200), after re-
moving peaks without satisfactory signal-
to-noise ratios (<<3). Statistical analyses
revealed 122 candidate lipids for
segregating subjects with incident dia-
betes from healthy control subjects

Lu and Associates

(Supplementary Data section 1.2). Based
on results from the discovery cohort, we
used a streamlined method comprising
a subset of 250 lipids of outstanding
interest to analyze the serum lipidomes
of the validation cohort (n = 724)
(Supplementary Fig. 2).

Lipid Profiles and Diabetes

In multivariable logistic regression
analysis, a panel of 38 lipids (FDR
<0.05 and P < 0.05) emerged significant
between case subjects and control sub-
jects in the discovery and validation
cohorts after adjusting for age, sex, BMI,
FPG, smoking status, drinking status, edu-
cation, physical activity, family history of
diabetes, and SBP (Fig. 1). The panel con-
tained 34 TAGs spanning across a compre-
hensive range of total carbon atom
numbers (C44—C58) and unsaturation de-
gree (n [C = C] = 0-8) that were consistently
associated with an increased risk of T2DM.
In addition, short-chain cholesteryl ester
(CE14:0), diunsaturated PCs (PC34:3),
and lyso-phosphatidylinositol (LP1)16:1
were positively associated with risk of
T2DM (Fig. 1). However, polyunsaturated
plasmalogen PE (i.e., PE38:4p [18:0p/
20:4]) was negatively associated with
risk of incident diabetes (Fig. 1).

We systematically looked for lipid pat-
terns associated with diabetes risk that are
dependent on carbon atom numbers and
double bonds from the various lipid classes
investigated. Statistically significant
changes (P < 0.05) based on carbon
atom numbers and unsaturation degree
were observed only for TAGs. The discov-
ery cohort was chosen for this aim due to
its comprehensive coverage of the serum
lipidome in both the carbon atom numbers
and double bonds (Supplementary Fig. 2).
We found that all serum TAGs examined,
regardless of carbon atom numbers (C44—
C60) and double bonds (n [C = C] = 0-9),
were positively associated (P < 0.05) with
diabetes risk (Fig. 2A, filled red shapes).
After adjusting for total TAGs, however,
only TAGs with low carbon atom numbers
(C48-50) and low double bond numbers (n
[C=C]=2-3) weressignificantly (P < 0.05)
associated with elevated diabetes risk
(filled red shapes), while TAGs of higher
carbon atom numbers (C54-60) or higher
double bond numbers (n [C = C] = 4)
became inversely associated (P < 0.05)
with diabetes risk (Fig. 2B, filled green
shapes). In accordance with Razquin et al.
(17), odd-chain TAGs (C53, C55) were
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Table 1—Baseline characteristics of the nested case-control subjects selected from the discovery and validation cohorts

Discovery Validation

Case subjects Control subjects Case subjects Control subjects

(n = 100) (n = 100) P value (n = 362) (n = 362) P value
Age, years 59.8 + 8.0 58.8 + 8.4 0.38 57.9 = 89 57.2 = 8.9 0.29
Male sex 36 (36.0) 36 (36.0) 1.00 125 (34.5) 125 (34.5) 1.00
BMI, kg/m? 252 + 33 250 £ 29 0.70 24.0 £ 3.7 23.8 = 3.4 0.30
High school or above education 28 (28.0) 18 (18.0) 0.13 132 (36.5) 124 (34.3) 0.38
Current cigarette smoking 19 (19.0) 20 (20.0) 1.00 65 (18.0) 61 (16.9) 0.96
Current alcohol drinking 8 (8.0) 9 (9.0) 0.60 39 (10.8) 34 (9.4) 0.93
Physically active during leisure time 11 (11.0) 17 (17.0) 0.31 62 (17.1) 54 (14.9) 0.73
Family history of diabetes 14 (14.0) 5 (5.0) 0.05 50 (13.8) 33 (9.1) 0.11
SBP, mmHg 142.1 = 18.9 139.5 = 18.9 0.34 129.6 = 19.4 126.2 = 19.3 0.02
DBP, mmHg 839 * 9.6 82.7 £ 9.7 0.36 76.8 £ 11.0 76.3 £ 10.7 0.53
FPG, mg/dL 92.5 * 8.0 92.7 £ 6.9 0.84 96.8 £ 7.6 96.1 £ 7.6 0.21
2hPG, mg/dL 113.1 £ 20.9 102.4 £ 20.8 0.0004 1143 £ 19.1 112.2 = 18.6 0.13
Fasting HDL cholesterol, mg/dL 50.6 = 12.6 52.5 * 125 0.27 50.8 = 17.0 52.7 £ 15.0 0.11
Fasting LDL cholesterol, mg/dL 129.4 + 33.2 124.0 = 27.5 0.21 101.7 = 31.9 103.6 *= 30.0 0.40
Fasting TGs, mg/dL 107.1 (83.8-150.4) 92.9 (68.0-128.2) 0.01 100.8 (69.9-145.9) 88.7 (64.7-127.1)  0.0004

Data are mean = SD or median (interquartile) for the continuous variables, or number (%) for categorical variables. DBP, diastolic blood pressure.

inversely associated (P < 0.05) with di-
abetes (filled green shapes) risk after
adjusting for total TAGs.

Lipid Profiles and IGR

Next, we investigated the association
of the lipid panel in Fig. 1 with the de-
velopment of IGR in a preliminary study
of 87 individuals who developed IGR
and 87 individuals who remained NGR
duringthe 4.4-year follow-up, randomly
selected from the discovery cohort
(Supplementary Fig. 1). We found
that 26 of 38 identified lipids showed
significant associations (P < 0.05) with
the risk of IGR (Supplementary Fig. 3).
Most identified TAGs, as well as CE14:0
and PC34:3, were also positively associ-
ated with risk of IGR, whereas PE38:4p
(18:0p/20:4) was negatively associated
with IGR (Supplementary Fig. 3).

Independent Lipid Markers and
Predictive Value
To identify independent lipid predictors
for diabetes, lipids were included one-by-
one into the conditional logistic regres-
sion model with further adjustment for
TG and 2hPG. Of 38 lipids, 6 reached
nominal significance (P < 0.05): LPI16:1,
PC34:3, PE38:4p (18:0p/20:4), TAG50:2
(16:2), TAG51:0 (17:0), and TAG54:7
(22:6) (Fig. 3A).

We then assessed the predictive value
of these six identified lipids using ROC

curve analyses. Matching factors were
removed from the reference model. In
the discovery cohort, combining our
lipid panel with the reference (Ref)
model increased the C statistic from
0.664 (Ref) to 0.764 (Ref + lipids)
(P = 0.004) and from 0.710 (Ref +
2hPG) to 0.781 (Ref + 2hPG + lipids)
(P =0.016) (Fig. 3B and Supplementary
Table 1). In the validation cohorts,
when the lipids were added to the
established risk prediction models of
diabetes, discrimination was signifi-
cantly improved. The addition of these
six lipids increased the C statistic from
0.693 (Ref) to 0.717 (Ref + lipids) (P =
0.037) and from 0.698 (Ref + 2hPG) to
0.722 (Ref + 2hPG + lipids) (P = 0.028)
(Fig. 3B and Supplementary Table 1).
Models using penalized logistic regres-
sion yielded similar results (Supplementary
Fig. 4 and Supplementary Table 2).

Differential Correlation Network
Analysis

To systematically evaluate the perturbed
lipid coregulation underlying diabetes
development, we performed multiscale
embedded correlation analysis based on
the validation cohorts. Multiscale em-
bedded correlation networks illustrate
differential correlation between various
lipids in subjects with incident diabetes
relative to control subjects (Fig. 4). Three
notable modules (Fig. 4, lower panel)

were identified from the global net-
works via multiscale clustering analysis
as part of MEGENA (Supplementary Data
section 1.6). Module | illustrates that
polyunsaturated fatty acid (PUFA)-—
plasmalogen phosphatidylethanolamine
(PUFA-PEp; i.e., PE40:5p [22:5]) (Fig. 4,
purple hub, bolded) became negatively
correlated with several TAGs (orange-red)
in incident diabetes relative to control
(pink lines, 0/-), indicating that PUFA-PEp
became negatively coregulated with TAGs
specifically in incident diabetes. Module
Il comprises predominantly non—PUFA-
TAGs (n [C = C] = 3) radiating from
TAG48:1 (16:1) and TAG44:1 (16:0) as
central hubs, whereas module Ill consti-
tutes PUFA-TAGs (n [C = C] = 3) with
TAG56:5 (18:2) as the central hub. Each
TAG pair was connected by bright green
lines (+/++), indicating that individual
non—-PUFA-TAGs in module Il and PUFA-
TAGs in module Il became increasingly
coregulated within the respective modules
in subjects with incident diabetes relative
to control subjects. Module Il and module
Il therefore cumulatively showed that intra-
class coregulation of serum TAGs became
increasingly segregated on the basis of fatty
acyl unsaturation in subjects with incident
diabetes relative to control subjects. Taken
together, differential correlation networks
revealed that even before diabetes onset,
perturbations in intraclass (i.e., non—
PUFA-TAG and PUFA-TAGs) and interclass
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Lipid Discovery Validation

OR (95% CI) P FDR OR (95% CI) P FDR
CE-14:0 —_— 0.002 0.032 —_— 0.012 0.045
LPI16:1 —— 0.007 0.048 — 0.010 0.042
PC34:3 —— 0.006 0.046 — 0.011 0.044
PE38:4p(18:0p/20:4)  -»— 0.002 0.032 —e— 0.008  0.040
TAG48:1(16:0) —— 0.003 0.033 —— 0.003 0.025
TAG48:1(16:1) —_—— 0.002 0.032 —_— 0.004 0.027
TAG48:2(16:0) ——— 0.001 0.032 e 0.011 0.042
TAG48:2(16:1) — 0.002 0.032 — 0.001 0.020
TAG48:2(18:1) —— 0.005 0.042 — 0.007 0.038
TAG48:3(16:1) ——— <0.001 0.030 —— 0.014 0.050
TAG50:0(18:0) —— 0.004 0.038 —— 0.005 0.030
TAG50:1(16:0) — 0.005 0.040 —_— 0.002 0.021
TAG50:1(16:1) —— 0.002 0.032 — 0.002 0.021
TAG50:1(18:0) —— 0.003 0.036 —— 0.002 0.021
TAG50:2(16:0) —_— 0.001 0.032 — 0.013 0.047
TAG50:2(16:1) —— 0.001 0.032 —— 0.001 0.020
TAG50:2(16:2) —_—— 0.003 0.036 ——— <0.001 0.020
TAG50:2(18:1) — 0.002 0.032 —— 0.004 0.026
TAG50:3(16:0) —_— <0.001 0.030 — 0.014 0.050
TAG50:3(16:1) ———— <0.001 0.030 ——— 0.012 0.045
TAG50:3(16:2) ——— <0.001 0.030 —_—— 0.001 0.020
TAG51:0(17:0) —_—— 0.005 0.043 —_—— 0.001 0.020
TAG51:2(17:0) — 0.001 0.032 —_— 0.004 0.027
TAG51:3(17:1) — 0.003 0.033 S 0.001 0.020
TAG53:2(19:0) — 0.002 0.032 —— 0.004 0.027
TAG53:3(16:0) —— 0.001 0.032 —_— 0.013 0.047
TAG54:3(16:0) —_—— 0.003 0.036 —_— 0.010 0.042
TAG54:4(16:0) —_— <0.001 0.030 e S 0.007 0.037
TAG54:4(16:1) —— 0.002 0.032 S 0.008 0.040
TAG54:5(16:0) —— 0.001 0.032 —— 0.001 0.020
TAG54:5(16:1) —— 0.001 0.032 S 0.003 0.023
TAG54:6(20:4) —_—— 0.005 0.041 —_— 0.010 0.041
TAG54:7(20:4) — 0.007 0.048 s — 0.002 0.020
TAG54:7(22:6) —_— 0.001 0.032 — <0.001 0.020
TAG55:6(19:3) ————— 0.001 0.032 —— 0.002 0.021
TAG56:5(18:1) —_—— 0.004 0.038 —_— 0.007 0.038
TAG56:5(22:4) —— 0.002 0.032 —_—— 0.002 0.021
TAG56:6(22:5) —_— 0.002 0.032 —_— 0.003 0.023

1 2 3 09 12 15
Odds Ratio Odds Ratio

Figure 1—Lipid profiling and risk of incident diabetes. Multivariable-adjusted ORs per one SD increment and 95% Cl of lipid species that emerged
significant (FDR <<0.05) in the discovery (left panel, n = 200) and validation (right panel, n = 724) cohorts. The multivariate model is adjusted for age, sex,
BMI, smoking status, drinking status, education, physical activity, family history of diabetes, FPG, and SBP. After adjustment for multiple testing, 38 lipid
species were consistently found to associate with incidence of diabetes.

(i.e., TAGs and PUFA-PEps) lipid coregu-
lation already existed.

CONCLUSIONS

In this prospective study, using a high-
coverage targeted HPLC-MRM lipidomics
approach, we presented serum lipid pre-
dictors for T2DM in a discovery cohort
and replicated the findings in separate
prospective cohorts of normoglycemic
Chinese adults. We showed that these
lipids substantially improved T2DM pre-
diction beyond conventional clinical risk
factors. Moreover, our results uncovered
that intraclass coregulation among TAGs
of differing carbon atom numbers and
unsaturation degree and the correlation

between PUFA-PEps and TAGs were al-
tered in antecedent diabetes before the
initiation of glucose perturbance. To our
knowledge, this is the largest and most
comprehensive lipidomics study investi-
gating the association between lipid pro-
files and risk of developing diabetes in
individuals with NGR at baseline.

Our study contributed a systematic
evaluation of serum lipid profile changes
predictive of incident diabetes in indi-
viduals with NGR. Among the 38 lipids
illustrated, 34 species belong to the class
of TAGs. We identified far more TAGs
associated with increased risk of T2DM
than other studies, including FHS (9),
European Prospective Investigation in-
to Cancer and Nutrition (EPIC) (10), and

PREDIMED (17) (Supplementary Table 3),
which may be due to the differences in
population characteristics, analytical
platform used, and variables adjusted
in statistical models. Remarkably, all
TAGs identified were associated with
increased risk of diabetes. Our results
partially corroborated the previous ob-
servations that TAGs of lower carbon
atom numbers and fewer double bonds
were associated with increased risk of
diabetes. TAGs of higher carbon atom
numbers and more double bonds were,
however, found to associate with de-
creased risk of diabetes in the FHS cohort
(9). This discrepancy could be partially
explained by the differences in the study
design, including only NGR at baseline in
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Figure 2—Relationship between diabetes risk and total number of carbon atoms and degree of acyl
chain saturation of various lipid classes. Multivariable-adjusted ORs per one SD increment and
P values of TAG species grouped by carbon atom numbers and double bond numbers in the
discovery cohort. The multivariate model is adjusted for age, sex, BMI, smoking status, drinking
status, education, physical activity, family history of diabetes, FPG, and SBP. A: TAGs in each group
were summed, log-transformed, and standardized before conditional logistic regression analysis.
B: Sum of each TAG group was further normalized to the total TAG content.

the current study versus both NGR
and IGR in FHS, and other cohort epide-
miological features, including ethnicity-
related genetic and lifestyle variations.
Interestingly, after adjustment for total
measured TAGs, we observed a compa-
rable pattern to Rhee et al. (9) that
long-chain PUFA-TAGs were inversely corre-
lated with risk of diabetes, while shorter
and more saturated TAGs were associated

with increased risk. These observations
imply that given a constant total TAG
load, compositional changes in specific
subtypes of TAGs are associated with
differential risk of diabetes. In particular,
preceding studies (9,17) and our work
have consistently reported that in both
Caucasian and Chinese cohorts, long-
chain polyunsaturated and/or odd-chain
TAGs are inversely associated with

Diabetes Care Volume 42, November 2019

diabetes risk, whereas short-chain and
saturated TAGs are associated with ele-
vated diabetes risk.

Our preliminary IGR study revealed
that the panel of 38 lipids displayed
associations with the risk of diabetes
and IGR in the same direction, suggesting
that our identified lipid predictors are
effective in revealing incipient diabetes
even before the onset of dysglycemia. It
is worth mentioning that early metabolic
disturbances might be already presentin
individuals classified as normal in terms
of glycemia. Compared with preceding
studies that included IGR at baseline, our
reported predictors already have added
pathophysiological value in diabetes pre-
diction relative to matched normoglyce-
mic control subjects.

A novel and possibly pathologically
important observation from our corre-
lation network analyses is the associa-
tion between serum PUFA-PEps and the
perturbed coregulation between PUFA-
TAGs versus non—PUFA-TAGs, in sub-
jects with incident diabetes relative to
control subjects, which confer useful
lipid-centric insights on the etiology
of diabetes. Plasmalogen phospholipids
denote essential components of mam-
malian cellular membranes by virtue of
their distinct biophysical and biochem-
ical properties, and previous works had
shown that the levels of diacyl PEs are
closely adjusted to counter fluctuations
in cellular contents of PEps to maintain
an overall steady level of total PEs (32,33).
Synthesized in the peroxisomes, cells de-
ficient in PEps were reported to exhibit
aberrations in peroxisome assembly that
drastically reduced the number of perox-
isomes, albeit a causal link has yet to be
elucidated (32). Peroxisomes are excep-
tionally dynamic organelles that adapt
their number, morphology, and activity
in response to physiological needs and
nutritional status, which play crucial
rolesinfatty acid oxidation by their unique
ability to consume very-long-chain fatty
acids (VLCFAs) and branched-chain fatty
acids (BRCFAs) (equivalent to odd-chain
fatty acids in mammals) that cannot be
B-oxidized by the mitochondria (34). Our
observations therefore point to a possi-
bility of attenuated peroxisomal fatty
acid oxidation in incident diabetes that
may be associated with reduction in
PUFA-PEps, which could subsequently
skew the compositional profiles of serum
TAGs toward species comprising VLCFAs
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Figure 3—Multivariate logistic regression models of selected lipid panel for diabetes risk prediction in discovery and validation cohorts. A: Plot of ORs per
one SDincrement and 95% Cls of lipid species that emerged significant (P < 0.05) in the discovery (left panel, n = 200) and validation (right panel, n=724)
cohorts. The lipids included LP116:1, PC34:3, PE38:4p (18:0p/20:4), TAG50:2 (16:2), TAG51:0 (17:0), and TAG54:7 (22:6). The multivariate model is
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Plots of area under the curves in the discovery cohort and validation cohort. The reference model included smoking status, drinking status, education,
physical activity, family history of diabetes, SBP, and serum TGs. Subsequent models included combinations of the basic clinical variables, plus 2hPG, as

well as identified lipid predictors as indicated.

and BRCFAs (i.e., long-chain TAGs and
odd-chain TAGs) that may account for
their inverse correlation with diabetes
risk compared with the remaining TAGs.
Nonetheless, the precise causal links be-
tween these observations await further
mechanistic elucidation, and whether re-
duction in PUFA-PEps and altered compo-
sition of the TAG pool denote cumulating
or compensatory events of diabetes onset
remains an interesting open question.
Another main clinical finding of the
current study is that a selected panel of
six lipids substantially improved T2DM

prediction beyond that achieved using
conventional risk factors in individuals
classified as NGR based on an oral glucose
tolerance test. We wish to emphasize
the pathological relevance of our identi-
fied lipids with regard to incipient diabe-
tes, because prediction was performed
relative to normoglycemic individuals
at baseline. These metabolite predic-
tors may be particularly useful because
traditional risk factors, such as blood
glucose, may not serve as effective
predictors of incident diabetes in such
healthy individuals compared with those

withIGR. Indeed, arecent study based on
the FHS Offspring cohort conducted on
individuals with normal fasting glucose at
baseline also revealed that a metabolite
panel appreciably improved T2DM risk
prediction over traditional clinical factors
(15).

The major strengths in our current study
lie in our adopted analytical approaches as
well as the well-characterized study co-
horts. Our targeted lipidomics approach
constructed upon HPLC-MRM, with specific
quantitative internal standards catered
to each lipid class, allows unambiguous
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Figure 4—Multiscale embedded correlation network analysis illustrates the differential correlation between various PCs, PEs, and TAGs in control
subjects and subjects with incident diabetes. Only lipid pairs with significant differential correlations (empirical P < 0.05) are included. Sign/sign
indicates the direction and strength of the correlation in control/incident diabetes, and the number that follows indicates the number of lipid pairs in
the global networks exhibiting this pattern of change. For instance, the bright green line +/++ 152 in the upper legend of the global networks indicates
that correlation between two connected lipid pairs was positive (+) in control subjects, and the correlation became even more strongly positive (++)
in those with incident diabetes. A total of 152 lipid pairs connected by bright green lines in the global network displayed this pattern of change (+/++).
Three modules identified from multiscale clustering analysis—(I) PUFA-PEps and TAGs, (II) PUFA-PEps and non—PUFA-TAGs, and (lll) PUFA-PEps and
PUFA-TAGs—are separately illustrated in the lower panel.
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identification and accurate quantitation of
serum lipids to unveil subtle changes un-
derlying prodromal disease stage. Our
targeted approach is also high coverage,
which extensively covers several key lipid
classes essentially controlling the overall
homeostatic balance of endogenous lipid
metabolism, rendering possible the system-
atic evaluation of lipid pathway coregula-
tion via multiscale embedded correlation
analyses. In terms of the study cohorts, our
discovery and multicenter-derived valida-
tion cohorts spanned six different regions of
China, which are expected to better rep-
resent the general population and increase
the credibility and clinical significance
of the findings. It is noteworthy that in
addition to our novel lipid predictors and
pathway dysregulation underlying ante-
cedent diabetes put forth in this study,
numerous of our identified lipid predictors
also coincided with those reported
(Supplementary Table 3) in the overseas
Singapore Chinese (LPI16:1) (14), the
FHS (TAG44:1 [16:0], TAG44:1 [16:1],
TAG48:1 [16:0], TAG48:1 [16:1], and
TAG50:0 [18:0]) (9), and the PREDIMED
trial (TAG) (17). Acylcarnitines did not
emerge as relevant lipids associated with
incident diabetes as reported in a pre-
vious study (18), which might be related
to our study population being normo-
glycemic at baseline.

Our study, however, also has several
limitations. First, the duration of follow-
up is only 4 years, which limits the
predictive potential of our identified
lipid panel to a relatively narrow time
window. Second, food consumption hab-
its may influence the baseline levels of
circulating lipids and were not controlled
in the current model because diet in-
formation from participants is lacking.
Third, because BMI and age were PSM for
the case subjects and control subjects,
discrimination by the reference model
must therefore be driven by the other
included risk factors (e.g., family history,
TGs), and it is thus likely that the pre-
dictive value may have been affected by
PSM. Fourth, we recognize that insulin
resistance and insulin secretion are
not evaluated in these cohorts. Fifth,
all participants in this study were
Chinese, and further work is needed
to determine whether our findings can
be extrapolated to other races and
ethnicities.

In conclusion, our foregoing data un-
derscore the potential importance of

lipid metabolism early in the pathogen-
esis of diabetes and suggest that lipid
profiles could effectively improve diabe-
tes risk assessment in normoglycemic
Chinese populations beyond that
achieved by conventional clinic indices.
Furthermore, we put forth a concep-
tual framework that perturbed peroxi-
somal oxidation of VLCFAs and BRCFAs
associated with a reduction in PUFA-PEps
may possibly give rise to an altered
composition of TAGs essentially under-
lying the pathogenesis of dyslipidemia
that precedes the development of overt
diabetes.

Acknowledgments. The authors thank the staff
and participants of the REACTION Study for
their important contributions.

Funding. This study was supported by the
Ministry of Science and Technology of China under
Award Numbers 2016YFC1305600, 2016YFC1305202,
2016YFC1304904, 2017YFC1310700, 2018YFC1311705,
and 2018YFC1311800; the National Natural
Science Foundation of China under Award
Numbers 81621061, 81670795, 81622011, and
81561128019; the National Key R&D Program of
China under Award Numbers 2018YFA0506900
and 2018YFA0506902; the Shanghai Science and
Technology Commission under Award Number
YDZX20173100004881; and the Strategic Priority
Research Program of the Chinese Academy of
Sciences under Award Numbers XDB13000000
and XDA12030200.

The sponsors had no role in the design or
conduct of the study.
Duality of Interest. No potential conflicts of
interest relevant to this article were reported.
Author Contributions. J.L. and S.M.L. con-
tributed to interpreting the data and writing the
manuscript. J.L.,, S.M.L.,, Y.B., G.N., and G.S.
conceived and designed the study. Q.W., LS.,
Y.H., L.C., and X.T. contributed to data acquisi-
tion. B.L., X.W., and K.P. performed data pro-
cessing and analysis. M.L., S.\W., Y.X., M.X., Y.B.,
and W.W. revised the manuscript. G.N., G.S., and
W.W. are the guarantors of this work and, as
such, had full access to all the data in the study
and take responsibility for the integrity of the
data and the accuracy of the data analysis.

References

1. GBD 2015 Child Mortality Collaborators. Global,
regional, national, and selected subnational levels of
stillbirths, neonatal, infant, and under-5 mortality,
1980-2015: a systematic analysis for the Global
Burden of Disease Study 2015 [published correction
appears in Lancet 2017;389:el]. Lancet 2016;
388:1725-1774

2. Xu'Y, Wang L, He J, et al.; 2010 China Non-
communicable Disease Surveillance Group. Prev-
alence and control of diabetes in Chinese adults.
JAMA 2013;310:948-959

3. WangL, GaoP, Zhang M, et al. Prevalence and
ethnic pattern of diabetes and prediabetes in
China in 2013. JAMA 2017;317:2515-2523

Lu and Associates

4. SasKM, Karnovsky A, Michailidis G, Pennathur
S. Metabolomics and diabetes: analytical and
computational approaches. Diabetes 2015;64:
718-732

5. Llam SM, Wang Y, Li B, Du J, Shui G.
Metabolomics through the lens of precision cardio-
vascular medicine. J Genet Genomics 2017;44:127—
138

6. Guasch-Ferré M, Hruby A, Toledo E, et al.
Metabolomics in prediabetes and diabetes: a sys-
tematic review and meta-analysis. Diabetes Care
2016;39:833-846

7. ChienK, CaiT, Hsu H, et al. A prediction model
for type 2 diabetes risk among Chinese people.
Diabetologia 2009;52:443-450

8. Schulze MB, Weikert C, Pischon T, et al. Use of
multiple metabolic and genetic markers to
improve the prediction of type 2 diabetes:
the EPIC-Potsdam Study. Diabetes Care 2009;
32:2116-2119

9. Rhee EP, Cheng S, Larson MG, et al. Lipid
profiling identifies a triacylglycerol signature of
insulin resistance and improves diabetes pre-
diction in humans. J Clin Invest 2011;121:1402—
1411

10. Drogan D, Dunn WB, Lin W, et al. Untargeted
metabolic profiling identifies altered serum me-
tabolites of type 2 diabetes mellitus in a pro-
spective, nested case control study. Clin Chem
2015;61:487-497

11. Floegel A, Stefan N, Yu Z, et al. Identification
of serum metabolites associated with risk of
type 2 diabetes using a targeted metabolomic
approach. Diabetes 2013;62:639-648

12. Fall T, Salihovic S, Brandmaier S, et al. Non-
targeted metabolomics combined with genetic
analyses identifies bile acid synthesis and phos-
pholipid metabolism as being associated with
incident type 2 diabetes. Diabetologia 2016;59:
2114-2124

13. Wiirtz P, Tiainen M, Makinen VP, et al.
Circulating metabolite predictors of glycemia
in middle-aged men and women. Diabetes Care
2012;35:1749-1756

14. Lu Y, Wang Y, Zou L, et al. Serum lipids in
association with type 2 diabetes risk and prev-
alence in a Chinese population. J Clin Endocrinol
Metab 2018;103:671-680

15. Merino J, Leong A, Liu CT, et al. Metabolomics
insights into early type 2 diabetes pathogenesis
and detection in individuals with normal fasting
glucose. Diabetologia 2018;61:1315-1324

16. Wang-Sattler R, Yu Z, Herder C, et al. Novel
biomarkers for pre-diabetes identified by me-
tabolomics. Mol Syst Biol 2012;8:615

17. Razquin C, Toledo E, Clish CB, et al. Plasma
lipidomic profiling and risk of type 2 diabetes in
the PREDIMED trial. Diabetes Care 2018;41:
2617-2624

18. Sunl, LiangL, Gao X, et al. Early prediction of
developing type 2 diabetes by plasma acylcarni-
tines: a population-based study. Diabetes Care
2016;39:1563-1570

19. Qiu G, Zheng Y, Wang H, et al. Plasma
metabolomics identified novel metabolites as-
sociated with risk of type 2 diabetes in two
prospective cohorts of Chinese adults. Int J
Epidemiol 2016;45:1507-1516

20. FerranniniE, Natali A, Camastras, et al. Early
metabolic markers of the development of
dysglycemia and type 2 diabetes and their

20z Idy €0 uo 1sanb Aq 4pd 00106 1LOP/ELG8ZS/LL LT/ L L/2/IPd-BI0ILE/DIBD/LLIOO JIBYIIBA|IS EPE// )Y WOl papeojumoq


http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-0100/-/DC1
http://care.diabetesjournals.org

Lipid Profiles Predict Risk of Diabetes

physiological significance. Diabetes 2013;62:
1730-1737

21. Lam SM, Tian H, Shui G. Lipidomics, en route
to accurate quantitation. Biochim Biophys Acta
Mol Cell Biol Lipids 2017;1862:752-761

22. Chen Y, Lu J, Huang Y, et al. Association of
previous schistosome infection with diabetes
and metabolic syndrome: a cross-sectional study
in rural China. J Clin Endocrinol Metab 2013;98:
E283-E287

23. Peng K, Lin L, Wang Z, et al. Short sleep
duration and longer daytime napping are asso-
ciated with non-alcoholic fatty liver disease in
Chinese adults. J Diabetes 2017;9:827-836

24. Parsons L. Performing a 1:N case-control match
on propensity score. In Proceedings of the 29th
Annual SAS Users Group International Conference,
Montreal, Canada, 2004. Cary, NC, SAS Institute.
Available from: https://support.sas.com/resources/
papers/proceedings/proceedings/sugi29/165-29
.pdf. Accessed 15 January 2019

25. Lin L, Lu J, Chen L, et al.; REACTION Study
Group. Glycemic status and chronic kidney

disease in Chinese adults: Findings from the
REACTION study. J Diabetes 2017;9:837-845
26. BiY, LuJ, Wang W, et al. Cohort profile: risk
evaluation of cancers in Chinese diabetic indi-
viduals: a longitudinal (REACTION) study. J Di-
abetes 2014;6:147-157

27. Lu J, Bi Y, Wang T, et al. The relationship
between insulin-sensitive obesity and cardiovas-
cular diseases in a Chinese population: results of
the REACTION study. Int J Cardiol 2014;172:388—
394

28. Lu J, He J, Li M, et al. Predictive value of
fasting glucose, postload glucose, and hemoglo-
bin A;. on risk of diabetes and complications in
Chinese adults. Diabetes Care 2019;42:1539-
1548

29. Lam SM, Tong L, Duan X, Petznick A, Wenk
MR, Shui G. Extensive characterization of human
tear fluid collected using different techniques
unravels the presence of novel lipid amphiphiles.
J Lipid Res 2014;55:289-298

30. Shui G, Guan XL, Low CP, et al. Toward one
step analysis of cellular lipidomes using liquid

Diabetes Care Volume 42, November 2019

chromatography coupled with mass spectrom-
etry: application to Saccharomyces cerevisiae
and Schizosaccharomyces pombe lipidomics.
Mol Biosyst 2010;6:1008-1017

31. Shui G, Cheong WF, Jappar IA, et al.
Derivatization-independent cholesterol analysis
in crude lipid extracts by liquid chromatography/
mass spectrometry: applications to a rabbit
model for atherosclerosis. J Chromatogr A
2011;1218:4357-4365

32. Zoeller RA, Raetz CR. Isolation of animal cell
mutants deficient in plasmalogen biosynthesis
and peroxisome assembly. Proc Natl Acad Sci
U S A 1986;83:5170-5174

33. Dorninger F, Brodde A, Braverman NE, et al.
Homeostasis of phospholipids - the level of
phosphatidylethanolamine tightly adapts to
changes in ethanolamine plasmalogens. Biochim
Biophys Acta 2015;1851:117-128

34. Fransen M, Lismont C, Walton P. The peroxisome-

mitochondria connection: how and why? Int J
Mol Sci 2017;18:1126

20z Idy €0 uo 1sanb Aq 4pd 00106 1LOP/ELG8ZS/LL LT/ L L/2/IPd-BI0ILE/DIBD/LLIOO JIBYIIBA|IS EPE// )Y WOl papeojumoq


https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/165-29.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/165-29.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/165-29.pdf

