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OBJECTIVE

The goal of this studywas to determinewhether plasma levels of advanced glycation
end products (AGE) and oxidation products (OP) predict the incidence of cardiovas-
cular disease (CVD) in type 2 diabetes.

RESEARCH DESIGN AND METHODS

Five specific AGE (methylglyoxal hydroimidazolone, carboxymethyl lysine, carboxy-
ethyl lysine, 3-deoxyglucosone hydroimidazolone, and glyoxal hydroimidazolone)
and two OP (2-aminoadipic acid and methionine sulfoxide [MetSO]) were measured
at baseline in two intensive glucose-lowering studies: 1) a subcohort of the Vet-
erans Affairs Diabetes Trial (VADT) (n = 445) and 2) a nested case-control subgroup
from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study (n = 271).

RESULTS

Increased levels of several AGE and OP were associated with older age, decreased
kidney function, previous CVD, and longer diabetes duration, but not with hemoglo-
bin A1c. In the VADT, increased risk of incident CVD events (n = 107) was associated
with lowerMetSOafter adjusting for age, race/ethnicity, sex, prior CVDevent, kidney
function, treatment assignment, and diabetes duration (hazard ratio [HR] 0.53; 95%
CI 0.28–0.99;P = 0.047). Individuals with both lowMetSO and high 3-deoxyglucosone
hydroimidazolone concentrations were at highest risk for CVD (HR 1.70; P = 0.01). In
the ACCORD study, those with incident CVD events (n = 136) had lower MetSO (by
14%; P = 0.007) and higher glyoxal hydroimidazolone and carboxymethyl lysine (by
18% and 15%, respectively; P = 0.04 for both); however, only the difference inMetSO
remained significant after adjustment for prior CVD event (P = 0.002).

CONCLUSIONS

Lower levels of MetSO and higher levels of select AGE are associated with increased
incident CVD and may help account for the limited benefit of intensive glucose
lowering in type 2 diabetes.

Cardiovascular diseases (CVD) are the major cause of mortality in patients with type 2
diabetes (T2D). Despite a well-established role for chronic hyperglycemia in CVD risk
(1), intensive glycemic control for up to 6 years at best modestly reduces the devel-
opment of CVD in people with longstanding T2D (2–4). These incongruent results raise
the possibility that vascular changes resulting from years of chronic hyperglycemia
might lessen the effect of intensive glucose lowering in these studies.
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Advanced glycation end products
(AGE) and related oxidative end products
(OP) are reactive intermediates of chronic
hyperglycemia with proteins, lipids, and
nucleic acids, resulting in long-lasting
modification of these substrates (5–7).
The formation of AGE and OP is inter-
twined; increased AGE may lead to oxi-
dative stress (8) and, vice versa, reactive
oxygen species (ROS) may facilitate AGE
formation (9). Both AGE and OP are in-
creased indiabetes andhavebeen thought
to induce, in part, the cardiovascular com-
plications of diabetes (6,7)
In line with in vitro and preclinical evi-

dence linking AGE and OP to atheroscle-
rosis and CVD (reviewed by Shah and
Brownlee [5]), several clinical and epide-
miological studies indicate an association
between various AGE and CVD events
(10–19). We recently found a significant
association between several plasma AGE
and OP and progression of carotid intima
media thickness and calcified coronary
atherosclerosis in patients with T2D par-
ticipating in the Veterans Affairs Diabetes
Trial (VADT) (20).
In this study we demonstrate that

plasma levels of AGE and OP were also
associated with the risk of clinical CVD
events in these same VADT participants,
andwe confirm these findings in a nested
case-control cohort of the Action to Con-
trol Cardiovascular Risk in Diabetes
(ACCORD) lipid trial (21).

RESEARCH DESIGN AND METHODS

The samples and the data for this study
came from the baseline visits from two
independent studies of intensive glucose
lowering in patients with T2D. The main
cohort was a subset of 445 participants of
the VADT (4), which was previously used
to study the long-term effects (after
VADT) of glucose-lowering therapy on
measures of carotid and coronary athero-
sclerosis (22). The primary CVD outcome
for the current study was the first occur-
rence of any one of a composite of non-
fatal macrovascular events, including
myocardial infarction; stroke; new or
worsening congestive heart failure; surgi-
cal intervention for cardiac, cerebrovas-
cular, or peripheral vascular disease;
inoperable coronary artery disease; and
amputation for ischemic gangrene (4).
The confirmatory cohort was a nested
case-control subgroup of 271 partici-
pants (135 cases, 136 controls) from the
ACCORD lipid trial (21). The primary

outcome (cases) in the ACCORD trial
was the first occurrence of nonfatal myo-
cardial infarction or nonfatal stroke or
death from cardiovascular causes (3).
Cases and controls were matched by
age, sex, race/ethnicity, and study treat-
ment. All participants provided written
informed consent to participate in the
VADT and ACCORD studies, both of which
are registered at clinicaltrials.gov (iden-
tifiers NCT00032487 and NCT00000620,
respectively).

As described previously (20,23), five
dicarbonyl-derivedAGEdNe-carboxymethyl
lysine (CML), Ne-carboxyethyl lysine (CEL),
glyoxal hydroimidazolone (G-H1),methyl-
glyoxal hydroimidazolone (MG-H1), and
3-deoxyglucosone hydroimidazolone
(3DG-H1)dand two OP, methionine sulf-
oxide (MetSO) and 2-aminoadipic acid
(2-AAA), were measured by liquid chro-
matography (LC)–mass spectrometry
(MS) using internal stable heavy isotope
substituted standards (PreventAGE Health-
care Technology). Analysis was performed
in a blinded fashion on the plasma filtrate
following centrifugation through 10,000
cutoff Amicon filters. This fraction contains
free AGE and OP, as well as peptides of
various sizes, and the analytical method
measured the free products. An Agilent
model 6490 Triple Quadrupole MS sys-
tem with a 1290 Rapid Resolution LC sys-
tem was used to detect analytes. All AGE
and OP were separated and analyzed in a
single run using a single Waters X-select
HSS T3 column (2.5 mm, 2.13 150 mm)
with amobile phase gradient of methanol
and water with 0.20% heptafluorobutyric
acid. Total analysis time ran 19min. Interassay

coefficients of variation varied from 3.6%
(2-AAA) to 9.6% (G-H1).

Statistical analyses were performed
with the SAS statistical package version
9.4 (SAS Institute, Cary, NC). Data were
log10 transformed if they were not nor-
mally distributed. P values ,0.05 were
considered statistically significant. Between-
group differences were assessed with
the Student t test for continuous vari-
ables and the x2 test for categorical out-
comes. Univariate associations between
the continuous variables were assessed
by Spearman correlation. Mixed-model
ANCOVA was used to test the differences
between the groups after adjusting for
subject-specific random effects and fixed
effects of potential confounders. Risk of
incident cardiovascular events in the
VADT was analyzed by Cox proportional
hazards models adjusted for treatment
assignment. Additional adjustments were
made for age, race/ethnicity, sex, prior
CVD event, kidney function, treatment as-
signment, and diabetes duration. Combi-
nations of AGE and OP predicting CVD
events were selected by stepwise Cox re-
gression, with P , 0.2 for entry into and
P, 0.1 for retention in themodel. Cumu-
lative probability curves constructed us-
ing the Kaplan–Meier method compared
subjects at low and high risk, as defined
by selected median AGE and OP or their
combinations.

RESULTS

The clinical and demographic charac-
teristics within each subset of partici-
pants were comparable with those of
the full VADT and ACCORD lipid cohorts,

Table 1—Association of AGE and OP with clinical characteristics at baseline

Characteristics, by cohort 2-AAA MetSO G-H1 MG-H1 3DG-H1 CML CEL

Age
VADT 20.03 0.12* 0.31§ 0.23§ 0.18§ 0.16‡ 0.26§
ACCORD 20.18* 0.02 0.14* 0.12 0.11 0.09 0.06

BMI
VADT 0.22§ 20.03 20.01 0.03 0.01 0.02 0.00
ACCORD 0.01 20.12 20.04 20.01 20.004 0.07 0.08

Diabetes duration
VADT 0.02 0.08 0.18‡ 0.17‡ 0.17‡ 0.14† 0.13†
ACCORD 20.11 0.00 0.11 0.12* 0.08 0.18* 0.17*

Hemoglobin A1c
VADT 0.02 20.04 20.02 20.05 20.01 0.01 20.08
ACCORD 0.00 0.03 20.09 20.07 0.00 20.09 20.06

GFR
VADT 20.14† 20.09 20.43§ 20.29§ 20.30§ 20.35§ 20.45§
ACCORD 20.15* 20.11 20.50§ 20.37* 20.37* 20.51* 20.39*

Data are Spearman correlation coefficients. GFR, glomerular filtration rate (Modification of Diet in
Renal Disease formula). *P , 0.05, †P , 0.01, ‡P, 0.001, §P , 0.0001.
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respectively; they comprised predomi-
nantly white, overweight or obese men
with a median 10-year history of diabetes
and suboptimal glycemic control (Supple-
mentary Table 1). In both subset cohorts,
all AGE and 2-AAA negatively correlated
with kidney function, and several of them
positively correlated with age. All AGE
and 2-AAA positively correlated with di-
abetes duration but not with hemoglobin
A1c (Table 1). Those with a history of CVD
events before enrolling in the VADT had
significantly higher 2-AAA (mean 6 SD
1,699 6 639 vs. 1,484 6 551 nmol/L;
P = 0.0002), GH-1 (10.4 6 4 vs. 9.5 6
3 nmol/L; P = 0.003), MG-H1 (214 6
166 vs. 179 6 135 nmol/L; P = 0.01),
3DG-H1 (379 6 182 vs. 348 6 177
nmol/L; P , 0.05), and CEL (88 6 51 vs.
816 37 nmol/L; P = 0.03) (Fig. 1A). How-
ever, only the significant difference in
2-AAA levels persisted after adjusting for
age, race/ethnicity, sex, diabetes dura-
tion, and kidney function (P = 0.0002).
During theVADT, a total of 107patients

within this cohort subset developed
a CVD event after a median of 2.3 years
(range 0.1–6.6 years). These patients
with incident CVD events were older,
more likely to be non-Hispanic white,
and had a history of a previous CVD event
and a longer diabetes duration (Table 2).
Higher plasma MetSO concentrations
were associated with a lower risk of in-
cident CVD events (Fig. 1B), and this as-
sociation was independent of age, race/
ethnicity, sex, prior CVD event, kidney
function, treatment assignment, and dia-
betes duration (hazard ratio [HR] 0.53
[95% CI 0.28–0.99]; P = 0.047). Although
a trendwas seen for increasedCVD risk for
several AGE in the treatment-adjusted
models, these did not reach statistical sig-
nificance (Fig. 1B). In stepwise modeling
evaluating all AGE and OP, however, both
3DG-H1 (HR 1.51 [95% CI 1.003–2.27];
P , 0.05) and MetSO (HR 0.45 [95% CI
0.27–0.85];P =0.01)were associatedwith
incident CVD. The combination of both low
MetSO and high 3DG-H1 further increased
the risk for CVD beyond low MetSO alone
(Fig. 1C). This combination remained a sig-
nificant predictor of CVD after adjusting for
age, race/ethnicity, sex, prior CVD event,
kidney function, treatment assignment,
and diabetes duration (HR 1.70 [95% CI
1.12–2.57]; P = 0.01).
In the ACCORD study, those with prior

CVD had higher G-H1 (mean 6 SD 13 6
4 vs. 116 4 nmol/L; P, 0.0001), 3DG-H1

(402 6 205 vs. 330 6 165 nmol/L; P =
0.002), and CML (144 6 72 vs. 115 6
63 nmol/L; P = 0.0004) (Fig. 2A); however,
only the higher G-H1 remained significant

(P = 0.007) after adjusting for age, race/
ethnicity, sex, diabetes duration, and kid-
ney function.HistoryofCVDwas alsomore
common in those with incident CVD

Figure 1—Baseline plasmaOPandAGE, andprevalent and incident CVD, in the VADT.A: OP andAGE
by CVD history. Data aremean6 SE. *P, 0.05 between groups. B: Cox proportional HR and 95% CI
for treatment-adjusted (adj.) effects of OP and AGE for incident CVD.C: Kaplan-Meier curves of CVD-
related survival stratifiedby high and lowMetSO aloneor in combinationwith low andhigh 3DG-H1,
respectively (both stratified by median).
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(i.e., cases;median timetoanevent3years
[range 1–7 years]) than in controls (Table
2). Incident CVD cases had lower MetSO
(1,637 6 802 vs. 1,901 6 801 nmol/L;
P = 0.007) and higher G-H1 (13 6 4 vs.
11 6 4 nmol/L) and CML (137 6 79 vs.
1196 56 nmol/L) (P = 0.04 both) (Fig. 2B);
however, only the difference in MetSO
remained significant after adjustment
for CVD history (P = 0.002).

CONCLUSIONS

We found that higher levels of MetSO in
both theVADTandACCORDsubset cohorts
remained strongly associatedwith reduced
incident CVD events in middle-aged and
older patients with a relatively long history
of T2D. Several otherAGEandOPwerealso
associated with prevalent and incident
CVD. Although most AGE associations did
not remain significant after adjusting for
major risk factors or history of CVD, higher
concentrations of 3DG-H1 in combination
with lower MetSO levels further enhanced
risk for incident CVD in the VADT.
Thus, in two separate cohorts, we ob-

served the novel finding that a significant
association exists between lower MetSO
and incident CVD. Consistent with these
results, a recent preliminary report of
type 1 diabetes from the Epidemiology
of Diabetes Interventions and Complica-
tions (EDIC)/Diabetes Control and Com-
plications Trial (DCCT) cohort showed an
inverse association between plasma

MetSO and incident CVD (24). Because
MetSO is formed by ROS-mediated oxida-
tion of methionine residues of multiple
proteins, its inverse association with
CVD events seems to contradict the
notion of a deleterious effect of oxida-
tive stress on cardiovascular health (5).
However, methionine residues on protein
molecules have been proposed to consti-
tute an important antioxidant defense
mechanism, as a variety of oxidants react
readily with methionine to form the less
reactive methionine sulfoxide (25).
Surface-exposedmethionine residues pro-
vide an efficient scavenger system and
protect other functionally essential resi-
dues from oxidative damage. Further-
more, MetSO can be reduced back to
methionine by the enzyme methionine
sulfoxide reductase, providing a catalytic
amplification of the antioxidant potential
of each methionine residue (26). Our
findings can be interpreted as showing
that those with lower MetSO levels have
less effective protection against oxidative
stress through this pathway, resulting in
greater oxidative damage to vascular cells.
MetSO formation can also be an important
autoregulatory component in cell signal-
ing. For example,methionine sulfoxidation
of calcium-calmodulin has been identified
to contribute to downregulation of cellular
metabolism and ATP utilization and, as a
consequence, reduced ROS generation un-
der stress conditions (27).

As a result of their potential to accu-
mulate in tissue over the long term and
the ability to initiate and promote vascu-
lar damage (28), AGE and select OP are
considered important contributors to the
development of microvascular and mac-
rovascular complications in T2D (5). In
support of this concept, several studies
showed increases in various AGE or gly-
coxidation products in T2D and CVD
(10–14). In this analysis using LC-MS in
two different cohorts, plasma levels of
multiple free AGE and OP adducts were
indeed increased in individuals with pre-
existing CVD; however, these differences
seemed to be largely explained by stan-
dard CVD risk factors and demographic
characteristics. In fact, only 2-AAA in the
VADT and G-H1 in the ACCORD cohorts
remained significantly higher in those
with prevalent CVD after adjusting for
these potential confounders. Our results
show some similarity to a previous report
by Hanssen et al. (10), who detected as-
sociations between several AGE and prev-
alent CVD in individuals with normal
glucose metabolism, impaired glucose
metabolism, or T2D, although none of
these were independent of traditional
CVD risk factors.

Consistent with several previous longitu-
dinal studies thathavereportedassociations
between plasma AGE and incident CVD
(15,18,19,29), we found a nonsignificant
trend for an increased risk for CVD for

Table 2—Baseline demographic and clinical characteristics by incident CVD events in the VADT and the ACCORD subcohorts
included in these analyses

VADT ACCORD

CVD (n = 107) No CVD (n = 338) CVD (n = 135) No CVD (n = 136)

Participants receiving intensive treatment 50 52 47 51

Age (years) 60 6 8† 58 6 8 64 6 6 64 6 6

Male sex 99 96 76 75

Non-Hispanic white 72* 60 72 68

Prior CVD 59§ 25 57§ 33

BMI (kg/m2) 31 6 5 31 6 4 32 6 5 32 6 5

Diabetes duration (years) 13 6 8‡ 10 6 7 12.7 6 7.3 10.5 6 7

Hemoglobin A1c (% [mmol/mol]) 9.3 6 1.3 (796 14) 9.5 6 1.5 (806 17) 8.2 6 0.9 (676 10) 8.3 6 1.0 (676 11)

Cholesterol (mmol/L)
Total 4.8 6 1.5 4.7 6 0.9 4.5 6 0.9 4.7 6 1.0
LDL 2.8 6 0.8 2.7 6 0.8 2.4 6 1.0 2.7 6 0.8
HDL 0.91 6 0.21 0.95 6 0.26 0.93 6 0.17 0.96 6 0.19

Triglycerides (mmol/L) 1.8 6 0.8 1.9 6 0.9 2.2 6 1.1 2.4 6 1.4

GFR (mL/min/1.73 m2) 80 6 22 83 6 18 86 6 25 90 6 21

Data are mean6 SD or percentages. Incident composite CVD events in the VADT included myocardial infarction; stroke; new or worsening congestive
heart failure; surgical intervention for cardiac, cerebrovascular, or peripheral vascular disease; inoperable coronary artery disease; and amputation for
ischemic gangrene. Incident composite CVD in the ACCORD included myocardial infarction, stroke, and cardiovascular death. GFR, glomerular filtration
rate (Modification of Diet in Renal Disease formula). *P, 0.05, †P, 0.01, ‡P, 0.001, §P, 0.0001, independent samples t test orx2 test, as appropriate.
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most AGE in the VADT. 3DG-H1 did be-
come a significant predictor of CVD
events after inclusion with MetSO in a
combined model. This supports the con-
cept that AGE may contribute to CVD; we
previously observed a significant positive
association between several AGE and OP
and long-term progression of atheroscle-
rosis, defined by vascular calcification or
carotid intima media thickness, in this
sameVADT subcohort (20). In the ACCORD
subcohort, G-H1 and CML were higher in
those who developed incident CVD; how-
ever, this increase was partially explained
by preexisting CVD. It is possible that me-
dian follow-up times of 5.6 and 4.3 years,

respectively, may be too short to detect a
stronger association between higher AGE
andOP and clinical CVDoutcomes. In fact,
the follow-up time in a previous study
demonstrating a significant association
between plasma AGE and incident CVD
events was nearly 10 years (29).

Weak associations of plasma AGE with
clinical markers of glycemic control, as
observed in this study, have been noted
previously in patients without diabetes
(30). This is not surprising, as the majority
of free AGE in the circulation originate
from long-lived tissue and cellular stores
in the body (31) and thus are not readily
influenced by ambient glucose control.

Consistent with the prolonged accumula-
tion of these products with persistent hy-
perglycemia and oxidative stress, plasma
concentrations of several AGE and OP
were directly associated with duration
of diabetes. The poor association be-
tween AGE and OP with hemoglobin A1c
also emphasizes theminor effect of short-
to moderate-term glycemia changes on
these adducts in the setting of advanced
T2D. Thismay also partly explain themod-
est protective effect of intensive glucose
lowering in patients with advanced T2D
observed during both the VADT and
ACCORD trial (3,4).

Our study has several potential limita-
tions. Despite amoderate number of CVD
events in both study subsets, our cohorts
may not have had adequate statistical
power to detect small effects of some
AGEandOP. In addition, because the orig-
inal VADT subcohort used in this analysis
was designed to examine long-term ath-
erosclerosis changes, it did not include
individuals who died during the VADT
(20). This may have modified the CVD risk
associated with AGE and OP. Because age
and renal function are important deter-
minants of death and were associated
with higher AGE concentrations, which
are in turn associated with all-cause and
CVDmortality (15,18), excluding these in-
dividuals may have underestimated the
association of AGE with CVD. We believe
it is important that we found similar as-
sociations of CVD with AGE and MetSO
in the confirmatory ACCORD subcohort
that included CVD death within its pri-
mary outcome. Further studies of the full
VADT and ACCORD cohorts and their on-
going long-term observational follow-up
studies will clarify these issues. Although
lower glomerular filtration rate was asso-
ciated with higher levels of most AGE and
2-AAA in our study, consistent with prior
reports (32,33), its association with
MetSO was weak and does not account
for relationships between MetSO and in-
cident CVD. Although it does not lessen
the importance of the associations be-
tweenAGE and CVD, in this studywe could
not account for dietary AGE as a source of
free AGE in plasma (34,35). However, di-
etary AGE modestly increase free AGE in
plasma, mostly during the postprandial
period, and they are cleared relatively
quickly via the kidneys (34,36). Thus their
contribution to plasma levels was likely
small after an overnight fast in our study
subjects with preserved kidney function.

Figure 2—Baseline plasma AGE and OP in an ACCORD nested case subcohort by history of CVD (A)
and incident CVD (B) during the study. Data are mean6 SE. *P, 0.05 between groups.
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Finally, the VADT cohort comprised largely
whitemen; thus our results cannot be gen-
eralized to the entire population. Of note,
however, some previous studies suggest
the possibility of a stronger association of
selected AGE and incident CVD in women
compared with men (15,19).
In conclusion, our results indicate that

lower levels ofMetSO and higher levels of
select AGE are associated with incident
cardiovascular events over 3–7 years of
follow-up in patients with long-standing
T2D. This may help explain the limited
benefit of intensive glucose-lowering
therapy in thesemoderate-durationstudies.
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