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OBJECTIVE

A genome-wide association study in the Action to Control Cardiovascular Risk in
Diabetes (ACCORD) trial identified two markers (rs57922 and rs9299870) that were
significantly associated with cardiovascular mortality during intensive glycemic
control and could potentially be used, when combined into a genetic risk score
(GRS), to identify patients with diabetes likely to derive benefit from intensive
control rather than harm. The aimof this studywas to gain insights into thepathways
involved in the modulatory effect of these variants.

RESEARCH DESIGN AND METHODS

Fasting levels of 65 biomarkers were measured at baseline and at 12 months of
follow-up in the ACCORD-Memory in Diabetes (ACCORD-MIND) MRI substudy (n =
562). Using linear regression models, we tested the association of the GRS with
baseline and 12-month biomarker levels, and with their difference (D), amongwhite
subjects, with genotype data (n = 351) stratified by intervention arm.

RESULTS

A significant association was observed between GRS and DGLP-1 (glucagon-like
peptide 1, active) in the intensive arm (P = 3 3 1024). This effect was driven by
rs57922 (P = 53 1024). C/C homozygotes, who had been found to derive cardiovas-
cular benefits from intensive treatment, showed a 22% increase in GLP-1 levels
during follow-up. By contrast, T/T homozygotes, who had been found to experience
increased cardiac mortality with intensive treatment, showed a 28% reduction in
GLP-1 levels. No association between DGLP-1 and GRS or rs57922 was observed in
the standard treatment arm.

CONCLUSIONS

Differences in GLP-1 axis activation may mediate the modulatory effect of variant
rs57922 on the cardiovascular response to intensive glycemic control. These findings
highlight the importance of GLP-1 as a cardioprotective factor.

With the global rise in type 2 diabetes, it is imperative to prevent its cardiovascular
complications, since these aremajor contributors to the high mortality, morbidity, and
socioeconomic burden associated with this disease (1). The Action to Control Cardio-
vascular Risk in Diabetes (ACCORD) randomized clinical trial aimed to study whether
intensive as opposed to standard glycemic control could prevent cardiovascular disease
(CVD) in type 2 diabetes (2). Despite a significant reduction in nonfatal myocardial
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infarctions in subjects treated intensively,
the trial was prematurely terminated ow-
ing to a paradoxical increase in cardiovas-
cular mortality in the same arm (2).
Through a genome-wide association

study (GWAS) on a subset of ACCORD
participants, we have recently identified
two genetic markers, rs9299870 on 10q26
and rs57922on5q13, thatwere associated
with the excess cardiovascular mortality in
the intensive glycemic arm (3). A genetic
risk score (GRS) derived from these two
variants significantly modulated the ef-
fect of glycemic treatment on cardiovas-
cular outcomes. Intensive glycemic control
prevented fatal andnonfatal cardiac events
among subjects with a GRS = 0, whereas it
increased cardiac mortality among those
with a GRS$2 (3).
While the rs57922/rs9299870 GRS is

a potential tool for precision medicine
approaches to treat type 2 diabetes, re-
gardless of the mechanism of its effect,
understanding the pathways that are in-
volved in this genetic modulation may
provide new insights into the links be-
tween glycemic control and cardiovascu-
lar outcomes. To this end, we examined
the association between the GRS and
65 biomarkers measured at baseline and
at 12 months postrandomization as part
of the ACCORD-Memory in Diabetes
(ACCORD-MIND) MRI substudy (4). Our
findings point to an unexpected link be-
tween one of the twoGRS variants (rs57922)
and the GLP-1 axis.

RESEARCH DESIGN AND METHODS

Study Population
In ACCORD, 10,251 individualswith type2
diabetes and high cardiovascular risk
from 77 clinical centers across the U.S.
andCanadawere randomized in a 1:1 ratio
to intensive (HbA1c,6.0% [42mmol/mol])
and standard (HbA1c 7–7.9% [53–63
mmol/mol]) glycemic treatment, as well
as to lipid and blood pressure subtrials,
in a double 2 3 2 factorial design (2).
GWAS data were generated for 8,084
participants, 5,360 of whom were self-
reported whites (3). From the overall
ACCORD cohort, 2,977 participants were
enrolled in the ACCORD-MIND study, and
632 of these underwent MRI scans (4).
ACCORD-MIND MRI subjects with avail-
able serum samples participated in an
ancillary biomarker study (n = 562) (4).
This subset did not differ significantly
from the overall cohort, except for a

larger proportion of whites, females, and
blood pressure subtrial participants
and lower numbers with baseline CVD
(Supplementary Table 1). The current
study concerned 351 subjects corre-
sponding to the overlap between ACCORD
whites with GWAS data (n = 5,360) and
theACCORD-MINDMRI biomarker cohort
(n = 562).

Genotyping
Genotyping and quality-control methods
of the ACCORD-genetic data set have pre-
viously been described (3). Briefly, geno-
typing was carried out on two platforms
at two sites based on the level of genetic
consent. Those participants who had
consented to genetic studies by any in-
vestigator were typed on an Illumina
HumanOmniExpressExome-8, version 1.0,
chip at the University of Virginia, and
those who had consented only to studies
byACCORD investigatorswere genotyped
on an Affymetrix Axiom-Biobank1 chip at
the University of North Carolina (3). Two
distinct sets emerged after variousmerge
and quality-control procedures: one in-
cluding 5,971 samples with any level of
genetic consent (ANYSET), genotyped
for 1,263,585 variants, and another one
including 2,113 sampleswithonlyACCORD
investigator consent (ACCSET), genotyped
for 572,192 variants. High-quality imputa-
tion performed by IMPUTE version 2.3.1
(Marchini Laboratory, Oxford) on both
sets resulted in24millionvariants spanning
the entire genome, of which 6.8 million
common (minor allele frequency $5%)
single nucleotide polymorphisms (SNPs)
were tested in the GWAS (3). For the cur-
rent study, posterior genotype probabi-
lities of rs57922 and rs9299870 were
extracted from the GWAS data.

Biomarker Measurement
Fasting blood samples were collected at
baseline and at 12 months of follow-up
(4). Serum sample aliquots (1 mL) were
stored at 280°C at the ACCORD central
laboratory (Northwest Lipid Metabolism
and Diabetes Research Laboratories),
and levels of 65 biomarkers were mea-
sured immediately on freshly thawed
samples (4).

Apolipoproteins A-I and B, hs-CRP, and
cystatin C were measured on a Siemens
BNII nephelometer (Siemens Healthcare
Diagnostics, Newark, DE) using Siemens
reagents and in-house prepared calibra-
tors and quality-control materials. The
interassay coefficients of variation (CVs)

of the quality-control samples with low,
medium, and high levels were consis-
tently,3% for all four biomarkers.

Nonesterified fatty acids were mea-
sured using Wako Diagnostics reagents
(Wako Diagnostics, Richmond, VA) on a
Roche Modular P autoanalyzer. The sen-
sitivity of the method was 0.0014 mEq/L,
and the linearity was 4.0 mEq/L. The in-
terassay CVs, as determined on quality-
control samples with low, medium, and
high levels of nonesterified fatty acids,
were 4.6%, 3.3%, and 3.3% respectively.

Total testosterone levels were deter-
mined by a Tosoh 2000 autoanalyzer
(Tosoh Bioscience, Inc., San Francisco,
CA). The assay sensitivity was 10 ng/dL.
The interassay CVs on quality-control
samples with high, medium, and low lev-
els of testosterone were 2.48%, 2.69%,
and 5.99%, respectively.

Estradiol (E-2) levels were measured
by a Tosoh AIA-2000 analyzer in a com-
petitive enzyme immunoassay. The assay
was linear up to 3,000 pg/mL, and the
sensitivity was 25 pg/mL. The interassay
CVs on quality-control samples with high,
medium, and low levels of estradiol were
4.2%, 4.9%, and 8.9%, respectively.

C-peptide levels were determined by a
two-site immunoenzymometric assay using
a Tosoh 2000 autoanalyzer calibrated
against the World Health Organization’s
International Standard of 84/510. The
assay had a sensitivity level of 0.05 ng/mL.
The interassay CVs for low, medium, and
high C-peptide control samples were 3.2%,
1.6%, and 1.8%, respectively.

Analyses for GAD-65 autoantibodies
were based on a protocol provided by
the National Institute of Diabetes and Di-
gestive and Kidney Diseases Autoanti-
body Harmonization Committee. Based
on the analysis of 550 samples provided
by the Centers for Disease Control and
Prevention Diabetes Autoantibody Stan-
dardization Program, positive/negative
cutoff for the assay was determined to
be 33 DK units. The GAD assay had 76%
sensitivity and 92.2% specificity.

Analysis of glycated albumin was per-
formedbymeans of the bromocresol pur-
ple method using a Lucica GA-L kit (Asahi
Kasei Pharma, Tokyo, Japan) on a Roche
Modular P autoanalyzer. The assay linear
range was 3.2–68.1%, and the interassay
CV was 3.0%.

Theremainingbiomarkersweremeasured
by multiplexing kits from Millipore and
Luminex using a single lot of reagent and
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quality-control materials. These assays were
grouped into the following panels.

1. Chemokine/cytokines: interleukins
(IL-1a, IL-1b, IL-1ra, IL-5, IL-6, IL-8,
IL-10, IL-12[p40], IL-12[p70], IL-15,
and IL-17), epidermal growth factor
(EGF), granulocyte-colony stimulating
factor (G-CSF), interferon-g (IFNg), in-
terferon-inducible protein 10 (IP-10),
monocyte chemoattractant protein-
1(MCP-1), macrophage inflamma-
tory proteins (MIP-1a and MIP-1b),
soluble CD40 L (sCD40 L), transforming
growth factor a (TGFa), tumor necro-
sis factor a (TNFa), vascular endothe-
lial growth factor (VEGF), rotaxin, and
fractalkine.

2. Endocrine: adiponectin, plasminogenac-
tivator inhibitor-1 (PAI-1) (active and to-
tal), resistin, hepatocyte growth factor
(HGF), leptin, and nerve growth factor
(NGF).

3. Metabolism: amylin (active and total),
glucagon, gastric inhibitory polypep-
tide (GIP), GLP-1 (active), ghrelin (ac-
tive), pancreatic polypeptide, and
peptide YY (PYY).

4. CVD: matrix metallopeptidase-9
(MMP-9), myeloperoxidase (MPO),
soluble E-selectin, soluble adhesion
molecules sICAM and sVCAM, serum
amyloid A, serum amyloid P, and
N-terminal pro–b-type natriuretic
peptide (NT-proBNP).

5. Sepsis/apoptosis: macrophage migra-
tion inhibitory factor (MIF), sFas, and
sFasL.

6. Bone: osteoprotegrin (OPG) and
osteocalcin.

Statistical Analysis
All statistical analyseswere conducted us-
ing SAS, version 9.4 (SAS Institute, Cary,
NC). Baseline characteristics of participants
were described through means, medians,
and proportions as appropriate. Minor al-
lele dosages (ranging 0–2) for each of the
polymorphisms, rs9299870 and rs57922,
were calculated from the imputed poste-
rior genotype probabilities for each indi-
vidual, and these dosages were added up
to form theGRS (scoring 0–4). Biomarkers
with values above and below the limits of
quantification were assigned the upper
and lower limits of levels of quantification,
respectively. The 65 biomarkers were log
transformed for normalization of their dis-
tributions, andD values, were obtained by
subtracting baseline from 12-month log-
transformed levels.

Linear regression models tested the
association of the GRS in each treatment
arm with baseline and 12-month bio-
marker levels and their difference (D),
adjusted by blood pressure and lipid
subtrials, clinical center network, and
genotyping set (ACCSET or ANYSET). In a
principal component analysis including
65 biomarker measurements at baseline,
65measurements at 12months, and 65D
values, 100% of the variance of these
195 variables (65 3 3) was explained by
70 principal components. On this basis, a
Bonferroni-adjusted P value threshold of
3.6 3 1024 (0.05/[70 3 2 treatment
arms]) was set as a significance threshold
for our primary analysis. As the effect of
GRS was significant for DGLP-1, the mod-
ulatory effects of polymorphisms and
treatment onGLP-1 levelswere evaluated
by estimating least squares (LS) means of
baseline, 12-month, and DGLP-1 levels
within genotype and treatment groups.
Further sensitivity analyses included
adjustments for baseline CVD, age, sex,
HbA1c, fasting plasma glucose, heart rate,
BMI, and glomerular filtration rate (GFR).

The associations between SNP rs57922
and the expression of selected genes sug-
gested by the literature to be involved in
GLP-1 synthesis or secretion (5–9) were
tested using RNA-Seq data from up to
570 donors in the online Genotype-Tissue
Expression (GTEx) database v6p (The
Broad Institute of MIT and Harvard, Cam-
bridge, MA). This publicly available data-
base allows the identification of potential
expression quantitative trait loci (eQTLs),
that is, genetic variants affecting gene
expression in different tissues. Random ef-
fectsmeta-analysesof rs57922eQTLsacross
multiple tissues were conducted for each
gene using Metasoft, version 2.0.1 (10).

RESULTS

Baseline characteristics of the ACCORD
participants included in this study did
not significantly differ between intensive
and standard glycemic arms (Table 1).
Supplementary Table 2 shows the results
of the analysis for association between
the rs57922/rs9299870 GRS, which had
been found to be associated with cardio-
vascular mortality in the intensive arm,
and 65 biomarkers measured at baseline
and 12 months after randomization. No
significant association was observed for
any of the biomarkers at either time point
in either treatment arm. However, when

biomarkers data were expressed as the
difference (D) between 12-month and
baseline levels, a highly significant associ-
ation was observed in the intensive treat-
ment arm for active GLP-1, with each GRS
unit increment being associated with a
22% decrease in the change in active
GLP-1 levels from baseline to 12 months
(P = 3 3 1024) (Table 2). No association
was observed in the standard arm, result-
ing into a GRS 3 treatment interaction
P value of 0.016 (Table 2).

As shown in Figs. 1 and 2, the GRS ef-
fect on active GLP-1 levels was mostly
driven by SNP rs57922. No significant dif-
ferences were observed among rs57922
genotypes in active GLP-1 levels at base-
line in either treatment arm (Fig. 1A). In
the intensive arm, active GLP-1 levels in-
creased from baseline to 12 months by
22% (95% CI 1–46) among C/C homozy-
gotes, were unmodified in C/T heterozy-
gotes, and decreased by 28% (95% CI
10–41) in T/T homozygotes (P = 5 3
1024) (Fig. 2A). By contrast, no significant
changes in active GLP-1 levels from base-
line to 12 months were observed in the
standard treatment arm for any of the ge-
notype groups. Carriers of the rs9299870
minor (G) allele showed an overall ten-
dency to have higher active GLP-1 at
baseline (Fig. 1B), but no significant differ-
ences were observed in the change from
baseline to 12 months (Fig. 2B) in any of
the treatment/genotype groups. Adjust-
ments for baseline CVD, diabetes dura-
tion, HbA1c, fasting plasma glucose, heart
rate, smoking, age, and sex did not alter
these results (Supplementary Table 3). No
significant correlations were observed
between DGLP-1 levels and DHbA1c

(r2 = 0.01) or between DGLP-1 and
Dfasting plasma glucose (r2 = 0.02) within
rs57922 genotypes in the intensive arm.
In subgroup analyses, the association be-
tween active GLP-1 level changes and
rs57922 genotype observed in the inten-
sive arm was most pronounced among
males $61 years and among individuals
with baseline BMI ,35 kg/m2 or BMI
change in the upper tertile (Supplementary
Tables 4 and 5).

There were only nine subjects on the
GLP-1 analog exenatide during the 12
months of follow-up and none on dipep-
tidyl peptidase-4 (DPP-IV) inhibitors. Re-
peating the analysis by excluding the nine
subjects on exenatide did not alter re-
sults. With regard to other antihypergly-
cemic treatment modalities, no statistical
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differences were observed in drug distribu-
tions across genotypes (Supplementary
Table 6). Accordingly, adjustment for the
different modalities yielded no or mini-
mal attenuations of the effect of the
SNP on GLP-1 change (Supplementary
Table 7). Also, there was no evidence of
interaction between the SNP and any of
the treatment modalities (data not
shown).

In a meta-analysis of multitissue eQTL
data in GTEx, rs57922 was associated
(random effects P values,0.05) with the
expression of four out of twenty genes
selected for their involvement in the syn-
thesis, secretion, and/or processing of GLP-1
(binomial P = 0.01) (Supplementary Table
8). Significant genes included LEPR (leptin
receptor) (P = 0.0007), GRPR (gastrin-
releasing peptide receptor) (P = 0.0009),

SLC5A1 (sodium/glucose cotransporter 1)
(P = 0.0039), and SLC2A5 (glucose trans-
porter 5) (P = 0.03). In all four cases, the
rs57922 T allele, which in ACCORD was
associated with a decrease in GLP-1 levels
during intensive treatment,wasassociated
with lower expression levels of these
genes within the terminal ileum and other
tissues,with no evidenceof significant het-
erogeneity across tissues. cis-eQTL analy-
ses in intestinal tissue for genes located
2 MB upstream and downstream of
rs57922 did not reveal any significant as-
sociationwith the expression of transcrip-
tion factors that could explain the trans
effects on LEPR, GRPR, or GLUTs (data not
shown). However, specific expression of
these genes within intestinal L cells could
not beexaminedowing to lack of this data
in the GTEx database.

CONCLUSIONS

Intensive glycemic control has been pro-
posed as a strategy for preventing CVD in
type 2 diabetes. However, this approach
has remained controversial owing to the
small overall benefit of this intervention
and the suspicion, raised byACCORD, that
it may cause an increased risk of cardio-
vascular death. We recently identified
two genetic variants that can potentially
be used to identify a subset of subjects
with type 2 diabetes who may derive
greater benefit from intensive glycemic
control without being exposed to its risks
(3). Following up on those findings, we
have now discovered a possible pathway
that could mediate the modulatory effect
of one of those variants (rs57922). Specif-
ically, we have found that homozygotes
for allele C of these variants, that is, those
individuals who derived benefit from in-
tensive glycemic control, responded to
this intervention with an increase in fast-
ing levels of active GLP-1 at 12 months
from randomization. By contrast, T/T
homozygotes, that is, those subjects who
showed increased cardiovascular mortal-
ity in response to intensive glycemic con-
trol, were characterized by a significant
reduction in 12-month active GLP-1 lev-
els. While in the limited sample at our
disposal we could not test the association
of GLP-1 changes with cardiovascular
mortality, one can hypothesize that the
observed difference in GLP-1 levels may
have contributed to the stark difference
between the two genotype groups in the
cardiovascular response to intensive gly-
cemic control.

Table 1—Baseline characteristics of white participants of the ACCORD-MIND MRI
biomarker cohort (N = 351) within intensive and standard glycemic arms

Characteristic* Intensive arm (N = 162) Standard arm (N = 189)

Female sex, n (%) 64 (39.5) 84 (44.4)

Age, years, mean (SD) 62.3 (5.7) 63.3 (5.8)

Diabetes duration, years, median (IQR) 8.8 (5.0–11.0) 9.7 (5.0–13.0)

Previous cardiovascular event, n (%) 44 (27.2) 49 (25.9)

Current smoker, n (%) 16 (9.9) 22 (11.6)

HbA1c, %
Mean (SD) 8.2 (1.0) 8.0 (0.9)
Median (IQR) 8.0 (7.6–8.7) 7.9 (7.5–8.5)

Fasting serum glucose, mg/dL, mean (SD) 179.4 (52.6) 174.6 (46.5)

BMI, kg/m2, mean (SD) 33.9 (4.7) 32.8 (4.7)

Waist circumference, cm, mean (SD) 111.2 (12.7) 107.9 (12.3)

Blood pressure, mmHg, mean (SD)
Systolic 134.2 (16.3) 134.8 (17.4)
Diastolic 74.7 (9.5) 73.7 (9.7)

Serum creatinine, mg/dL, mean (SD) 0.9 (0.2) 0.9 (0.2)

eGFR (from MDRD), mL/min/1.73 m2,
mean (SD) 86.3 (20.0) 87.5 (19.6)

Lipids, mg/dL, mean (SD)
Total cholesterol 182.7 (38.3) 184.9 (42.7)
LDL 100.0 (31.3) 101.4 (33.4)
HDL (women) 47.3 (12.1) 47.2 (11.4)
HDL (men) 38.1 (9.1) 39.9 (9.1)
Triglycerides 214.7 (129.7) 208.2 (124.2)

Blood pressure trial, n (%) 102 (63.0) 116 (61.4)
Standard 48 (29.6) 51 (26.9)
Intensive 54 (33.3) 65 (34.4)

Lipid trial, n (%) 60 (37.0) 73 (38.6)
Statin + placebo 33 (20.4) 31 (16.4)
Statin + fibrate 27 (16.7) 42 (22.2)

eGFR, estimated glomerular filtration rate; IQR, interquartile range. *There were no significant
(P, 0.05) differences between the two groups.

Table 2—Association of GRS with baseline and 12-month GLP-1 levels and with
DGLP-1 levels in ACCORD intensive and standard arms

Intensive glycemic arm Standard glycemic arm

GRS 3 treatment
interaction P

Fold change
(95% CI)* P

Fold change
(95% CI)* P

Baseline GLP-1 1.15 (0.93–1.42) 0.193 1.03 (0.84–1.25) 0.810 0.457

12-month GLP-1 0.86 (0.70–1.06) 0.161 1.03 (0.85–1.24) 0.778 0.227

DGLP-1 0.78 (0.68–0.89) 0.0003‡ 0.99 (0.86–1.15) 0.935 0.016

*Fold change of GLP-1 levels per unit of GRS obtained from linear regression models testing
association of GRS with log-transformed active GLP-1 levels at baseline and 12 months, and the
difference between the two, adjusted by clinical center networks and source of genetic data
(ACCSET or ANYSET). ‡Significant at P, 0.00036 (Bonferroni adjusted).
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How the interaction of intensive glyce-
mic control and the rs57922 variant may
affect active GLP-1 plasma levels is un-
clear at this time. GLP-1 is secreted by

intestinal L cells after being cleaved
from a precursor (preproglucagon) by
the action of the enzyme prohormone
convertase 1. Once secreted, active GLP-

1 is quickly inactivated by cleavage of its
NH2 terminus by the enzyme DPP-IV.
SNP rs57922 is not placed in or within
the vicinity of the genes coding for

Figure 1—A and B: Baseline and 12-month GLP-1 levels within glycemic treatment arms and genotypes of rs57922 and rs9299870. LS means of GLP-1
obtained from model adjusted by trial covariates, clinical center network, and source of genetic data. P values are obtained from generalized linear
regression for association with baseline or 12-month GLP-1 levels, using additive model of SNP, and adjusted for trial covariates, clinical center network,
and source of genetic data. 12mths, 12 months.
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preproglucagon (GCG), prohormone con-
vertase 1 (PCSK1), and DPP-IV and was
not found to be associated with the ex-
pression of those three genes in any of
the tissues in the GTEx database. We
found, however, an associationof the var-
iant with the expression of genes coding
for proteins involved in the stimulation of
GLP-1 secretion by L cells such as the re-
ceptor of gastrin-releasing peptide (a
GLP-1 secretagogue) andtwohexose trans-
porters (sodium/glucosecotransporter1and
glucose transporter 5)mediating the sensing
of nutrients in the intestinal lumen by L
cells. The variantwas also associatedwith
expression of the gene coding for leptin
receptor, to which the cytokine leptin

binds, thereby inducing GLP-1 release
via STAT (signal transducer and activator
of transcription) phosphorylation (6,11).
Since the allele associatedwith decreased
GLP-1 levels during intensive glycemic
controlwas associatedwith lower expression
of these genes and vice versa, this appears
to be a conceivable mechanism through
which the variant may affect the GLP-1 re-
sponse. Though cis-eQTL analyses in intes-
tinal tissue could not explain the trans
effects on LEPR, GRPR, or GLUTs, it should
be considered that rs57922 is in close
proximity to a number of long noncoding
RNAs (LINCs), which, in theory, could be
responsible for trans effects. Unfortu-
nately, this hypothesis cannot be readily

explored, as data on the expression of
these long noncoding RNAs are not in-
cluded in the GTEx database. Hence,
whether the variant affects the expres-
sion of these genes directly through a
long-range trans effect or indirectly by
affecting other genes placed in its vicinity
remains unclear at this time, as do the
mechanisms of the interactionwith inten-
sive glycemic control. With regard to the
latter, we did not find any difference
among genotypes in the prevalence of
glucose-lowering treatments that may in-
fluence GLP-1 levels such as metformin
(12). None of the participants were on
DPP-IV inhibitors, and only handfuls
were on GLP-1 agonists during the
12 months of follow-up. We cannot ex-
clude, however, that some drugs were
used at a higher dosage in the intensive
armand that thiswas the feature having a
permissive influence on the GLP-1 effects
of the gene expression changes induced
by the SNP. Unfortunately, we cannot ex-
plore this hypothesis, as we do not have
access to individual level data about the
dosage of each drug. Differences in HbA1c
or fasting plasma glucose levels do not
seem to account for the interaction ei-
ther. Given the evidence suggesting that
intestinal microbiota can regulate GLP-1
secretion (13), one can also postulate a
role of differences inmicrobiome induced
by the intensive therapy, but again we do
not have data to test this hypothesis.

In terms of mechanisms though which
GLP-1 levels can be related to cardiovas-
cular outcomes, it is well-known that
GLP-1, in addition to its actions on glucose
metabolism, has anti-inflammatory and
antioxidative effects in cell types relevant
to atherogenesis as well as direct cardio-
protective effects (14–16). Consistent
with these findings, treatment with the
GLP-1 agonists liraglutide and semaglu-
tide have been reported to reduce the
incidence of major cardiovascular events
(death from cardiovascular causes, non-
fatal myocardial infarction, and nonfatal
stroke) in individuals with type 2 diabetes
independent of the effects of these
drugs on glycemic control (17–19). Fur-
thermore, by playing a regulatory role in
the hypothalamic-pituitary-adrenal axis,
GLP-1 modulates neuroendocrine and
autonomic responses to acute and
chronic stress, which may influence the
ability of a subject to survive a harmful
exposure (20–22). One must consider,
however, that these anti-inflammatory,

Figure 2—A and B: Mean change in GLP-1 from baseline to 12 months within glycemic treatment
arms and rs57922 genotypes. Twelve-month–to–baseline GLP-1 ratio derived from the difference
(D) between the log-transformed baseline and 12-month GLP-1 levels; here, presented within
intensive/standard glycemic treatment arms, are LS means of this ratio (from model adjusted for
trial covariates, clinical center network, and source of genetic data) within genotypes of rs57922 on
5q13 (A) and rs9299870 on 10q23 (B). P values are obtained from generalized linear regression for
associationwithDGLP-1 levels, using additivemodel of SNP, and adjusted for trial covariates, clinical
center network, and source of genetic data. 12mth, 12-month.
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antiatherogenic, and antistress effects
have been observed with pharmacologi-
cal doses of native GLP-1 or GLP-1 ago-
nists (17,18,23–25) and/or in animal
models with homozygous disruption of
the GLP-1 receptor (20,21,26). Whether
the relatively small changes in fasting
GLP-1 levels thatweobserved in response
to intensive glycemic control in carriers of
specific rs57922 genotypes are sufficient
to affect cardiovascular risk remains to be
determined. A report from Sweden has
described an association between fasting
GLP-1 levels and left ventricular diastolic
function in elderly men (27), but the
same group failed to demonstrate an as-
sociation between low GLP-1 levels and
coronary artery disease (28). Further
studies considering both fasting and post-
prandial GLP-1 concentrations in larger
populations are necessary to clarify the
role of nonpharmacological levels of
GLP-1 activity in themodulationof cardio-
vascular risk.
Our study has several strengths, includ-

ing 1) the meticulous design of ACCORD
and its excellent randomization, follow-
up, and adherence; 2) the excellent qual-
ity of DNA samples, genotyping, and
imputation and the precise measure-
ments of a large panel of biomarkers;
and 3) the availability of longitudinal bio-
marker measurements. However, several
limitations should be acknowledged.
First, the sample size was relatively small,
and we cannot exclude that smaller ef-
fects on other biomarkers were present
but were missed owing to limited power.
Also, as a result of the small sample size,
we were unable to evaluate the associa-
tion of GLP-1 with cardiovascular out-
comes to determine how much of the
modulatory effect of rs57922 was medi-
ated by its association with GLP-1 level
during the intervention. In fact, we can-
not rule out the possibility of the variant
being associated with a cardiovascular
benefit via another mechanism not in-
volving the GLP-1 axis, which in turn
has a secondary effect on GLP-1 levels.
Second, given the clinical characteristics
of the ACCORD participants, our findings
may not be generalizable to younger sub-
jects, nonwhites, or those with low car-
diovascular risk. Third, since biomarker
measurements were limited to baseline
and 12 months of follow-up, longer-term
effects on GLP-1 or other biomarker levels
could not be investigated. Finally, as only
fasting samples were taken, we cannot

make any inference on a possible impact
of rs57922 on postprandial GLP-1 levels.

In conclusion, our results suggest a pos-
sible role of diminished GLP-1 activity as
a factor for increased cardiac mortality
during intensive glycemic therapy in
rs57922 T/T homozygotes, possibly via
impaired cardio- and/or stress-protective
mechanisms or enhanced inflammatory
pathways. Further studies seeking repli-
cation of this observation in other data
sets and exploring the underlying mecha-
nisms are warranted.
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Raalte DH, Diamant M. Extra-pancreatic effects
of incretin-based therapies: potential benefit
for cardiovascular-risk management in type 2
diabetes. Diabetes Obes Metab 2013;15:593–
606
26. Gros R, You X, Baggio LL, et al. Cardiac func-
tion in mice lacking the glucagon-like pep-
tide-1 receptor. Endocrinology 2003;144:2242–
2252
27. Nathanson D, Zethelius B, Berne C, et al.
Plasma levels of glucagon like peptide-1 asso-
ciate with diastolic function in elderly men. Di-
abet Med 2011;28:301–305
28. Nathanson D, Zethelius B, Berne C, Holst JJ,
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