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OBJECTIVE

To assess the ability of plasma apolipoprotein (apo) A-IV (apoA4), apo C-III, CD5
antigen-like (CD5L), complement C1q subcomponent subunit B (C1QB), complement
factor H–related protein 2, and insulin-like growth factor binding protein 3 (IBP3) to
predict rapid decline in estimated glomerularfiltration rate (eGFR) in type 2 diabetes.

RESEARCH DESIGN AND METHODS

Mass spectrometry was used to measure baseline biomarkers in 345 community-
based patients (mean age 67.0 years, 51.9% males) from the Fremantle Diabetes
Study Phase II (FDS2). Multiple logistic regression was used to determine clinical
predictors of rapid eGFR decline trajectory defined by semiparametric group-based
modeling over a 4-year follow-up period. The incremental benefit of each biomarker
was then assessed. Similar analyses were performed for a ‡30% eGFR fall, incident
chronic kidney disease (eGFR<60mL/min/1.73m2), and eGFRdecline of‡5mL/min/
1.73 m2/year.

RESULTS

Based on eGFR trajectory analysis, 35 participants (10.1%) were defined as “rapid
decliners” (mean decrease 2.9 mL/min/1.73 m2/year). After adjustment for clinical
predictors, apoA4, CD5L, and C1QB independently predicted rapid decline (odds ratio
2.40 [95% CI 1.24–4.61], 0.52 [0.29–0.93], and 2.41 [1.14–5.11], respectively) and
improved model performance and fit (P < 0.001), discrimination (area under the
curve 0.75–0.82, P = 0.039), and reclassification (net reclassification index 0.76 [0.63–
0.89]; integrated discrimination improvement 6.3% [2.1–10.4%]). These biomarkers
and IBP3 contributed to improved model performance in predicting other indices of
rapid eGFR decline.

CONCLUSIONS

The current study has identified novel plasma biomarkers (apoA4, CD5L, C1QB, and
IBP3) that may improve the prediction of rapid decline in renal function indepen-
dently of recognized clinical risk factors in type 2 diabetes.
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Diabetes is the main cause of end-stage re-
nal disease (ESRD), accounting for 40–50%
of new cases in the U.S. and the largest
annual health care expenditure com-
pared with all other primary ESRD diag-
noses (1,2). Up to one-third of adults with
newly diagnosed type 2 diabetes have
chronic kidney disease (CKD) (2), implying
that it often develops during the courseof
prediabetes. Conventional assessment
andmonitoring of CKD is bymeasurement
of albuminuria (urinary albumin-to-
creatinine ratio [ACR] or urinary albumin
excretion rate) and renal function (esti-
mated glomerular filtration rate [eGFR]),
but thesemeasures are subject to substan-
tial intraindividual variability over time
that reflects intercurrent illness, hydration
status, and medication changes (3). The
relationship between ACR and eGFR is
also variable, an example being the devel-
opment of CKD (eGFR ,60 mL/min/
1.73 m2) without albuminuria (4). In ad-
dition, the ability of baseline ACR and/or
eGFR to predict the onset and progres-
sion of diabetic kidney disease (DKD)
remains poor (5). Given the prognostic
limitations of ACR and eGFR, there has
been a focus on alternative biomarkers
that could identify patients who are at
increased risk of DKD. This includes stud-
ies of a range of plasma proteins (6–12),
but most of these have been limited by
small sample sizes; the exclusion of
patients without albuminuria and/or CKD;
and/or the inclusion of patients who are
not representative of type 2 diabetes in
the community, suchas thoseparticipating
in clinical trials or those who have been
selected from hospital outpatient clinics.
The progression of DKD is traditionally

analyzed using the hard end point of ESRD,
with thedoubling of serumcreatinine level
(corresponding to a 57% reduction in
eGFR) accepted as a useful surrogate.
However, theseendpoints accrue relatively
slowly, with large longitudinal studies re-
quired to capture sufficient outcomes.
Recent interest has turned to alternative
eGFR-basedmetrics that can beusedover
shorter time periods. The U.S. Food and
Drug Administration has proposed a 30–
40% eGFR decline over 2 or 3 years as a
suitable surrogate end point in clinical
trials as it is strongly and consistently asso-
ciatedwith ESRD (13). The KidneyDisease:
Improving Global Outcomes (KDIGO)
guidelines (14) recommend an annual
eGFR decline of 5 mL/min/1.73 m2 as an
alternative for the assessment of DKD

progression. Serial measurements of se-
rum creatinine defining the trajectories
of kidney function over time, such as
through latent class analysis, have been
shown to capture the dynamic nature of
eGFR, with rapid declining trajectories as-
sociated with all-cause mortality (15) and
major cardiovascular events (16) in indi-
viduals with type 2 diabetes.

The aim of the present longitudinal ob-
servational study was, therefore, to assess
the ability of a selection of novel groupings
of plasma protein biomarkers to predict
rapid declining eGFR in a representative
community-based cohort of individuals
with type 2 diabetes. The incremental
benefit of biomarkers added to clinical
predictionmodelswas determined across
the following four clinically relevant defi-
nitions of DKD progression: 1) rapidly de-
clining eGFR trajectory, 2) incident CKD,
3) an eGFR decline of$30% over 4 years
(or 7.5%/year), and 4) an annual eGFR
decline of$5 mL/min/1.73 m2.

RESEARCH DESIGN AND METHODS

Patients
Weused data from the longitudinal obser-
vational Fremantle Diabetes Study Phase II
(FDS2), details of which have been pub-
lished (17). Of 1,551 patients with type 2
diabetes recruited to the FDS2 between
2008 and 2011, 345 had attended three
biennial assessments (baseline, year 2,
and year 4) between 2008 and 2014 and
had complete data on urine ACR, eGFR,
and medication, including the use of
renin-angiotensin-aldosterone system
(RAAS) inhibitors. Fasting plasma samples
collected from this subgroup and stored
at 280°C were used in the present FDS2
substudy. The FDS2 protocol was approved
by the South Metropolitan Area Health
Service HumanResearch Ethics Committee.
All subjects gave informed consent before
participation.

Renal Outcomes
The Chronic Kidney Disease Epidemiology
Collaboration equationwas used to calcu-
late eGFR (18). The primary outcome of
interest was the eGFR trajectory based on
the strong association between this mea-
sure and adverse outcomes in type 2 diabe-
tes (15,16). Trajectories were modeled
using finite mixtures of suitably defined
probability distributions, as described
previously (15). The modeling identified
four linear trajectories of eGFR change
over time (“low,” “medium,” “high,” and

“rapid declining”). For further analysis by
trajectory, patientswith a rapiddeclining tra-
jectory (“rapid decliners”) were compared
with those with a nonrapid declining
trajectory (called “nonrapid decliners,”
pooling data from patients in the “low,”
“medium,” and “high” trajectories).

In a series of additional analyses, the
utility of the biomarkers for predicting
rapid kidney decline by alternative defini-
tions were investigated, including 1) inci-
dent CKD (eGFR ,60 mL/min/1.73 m2

at year 4 in individuals who had an
eGFR $60 mL/min/1.73 m2 at baseline),
2) eGFR decline of$30% between study
entry and year 4 (7.5%/year) (13), and 3) an
annual decline in eGFR of $5 mL/min/
1.73 m2 calculated as (baseline eGFR 2
year 4 eGFR)/(time between baseline
and year 4) (14). Microalbuminuria and
macroalbuminuria were defined as a
first-morning urinary ACR of$3 mg/mmol
and$30 mg/mmol, respectively.

Biomarker Discovery and Verification
Biomarker discovery has been described
previously (19). In brief, a list of candidate
biomarkers was determined by a proteo-
mics mass spectrometry–based discovery
andvalidationworkflow.All sampleswere
measured using targeted mass spectrome-
try, known as multiple reaction monitoring
(MRM). Changes in relative peptide abun-
dance were measured against an 18O-
labeled reference plasma to give peak
area ratios for each biomarker. The ro-
bustness of the MRM assay was demon-
strated by the relative quantitative
analysis of intraday and interday refer-
ence plasma controls and a synthetic sta-
ble isotope–labeled peptide (intraday
coefficient of variation 5.9%, interday coef-
ficient of variation 8.1%). In previously re-
ported studies, theMRMassayPromarkerD
(Proteomics International, Perth, Australia)
was developed that identified a panel of
simultaneously measured biomarkers of
DKD (19) that included apolipoprotein
A-IV (apoA4), apolipoprotein C-III (apoC3),
CD5 antigen-like (CD5L), complement C1q
subcomponent subunit B (C1QB), comple-
ment factor H–related protein 2 (CFHR2),
and insulin-like growth factor–binding
protein 3 (IBP3) (20).

Statistical Analyses
Statistical analyses were performed in
SPSS for Windows (version 22; SPSS Inc.,
Chicago, IL) andRStudio software (version
1.0.136). A two-tailed level of significance
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of P , 0.05 was used throughout. Data
are presented as proportions, mean6 SD,
geometric mean (SD range), or, in the
case of variables that did not conform
to a normal or loge-normal distribution
(ln),median and interquartile range (IQR).
All biomarker peak area ratios were
ln-transformed prior to analysis. For inde-
pendent samples, two-way comparisons
for proportions were performed by Fisher
exact test, for normallydistributedvariables
by Student t test, and for non-normally
distributed variables by Mann-Whitney
U test.
Multivariate logistic regression anal-

ysis (forward conditional variable selec-
tion with P, 0.05 for entry and P. 0.10
for removal) was used to investigate in-
dependent predictors of each definition
of rapid decline. All clinically plausible
variables with bivariate P # 0.20 were
considered for entry in a forward step-
wise manner. After the most parsimoni-
ous clinical model was defined (clinical
model), all plasma biomarker concentra-
tions were considered for entry in a for-
ward stepwisemanner (clinical model plus
biomarker model 1). To assess the prog-
nostic performance of a combined panel
of biomarkers, the significant bio-
markers from each definition of rapid
decline were forced into a series of ad-
ditional models (clinical model plus bio-
marker model 2). Only participants with
complete data were included in each
model.
Measures of model fit, calibration, dis-

crimination, and reclassification were
used to assess the incremental benefit
of biomarkers to each clinical model for
predicting the risk of rapid decline.Model
fit was determined using the likelihood
ratio test (LRT), with higher x2 values
indicating better global fit. Model calibra-
tion was determined using the Hosmer-
Lemeshowgoodness-of-fit test,with larger
P values (.0.05) showing good agree-
ment between observed and predicted
outcomes. Observed probabilities were
plotted against predicted probabilities
over deciles of predictions (from Hosmer-
Lemeshow tests) for each model to assess
calibration. Model discrimination was as-
sessed by the area under the curve (AUC)
of the receiver operating characteristic.
The Youden index was used to determine
the optimal cutoff formaximum sensitivity
and specificity in each model. Improve-
ment in AUC after the addition of the bio-
markers was calculated using the method

of DeLong et al. (21). Internal validation
was performed using 1,000 bootstrap re-
samples to adjust for statistical optimism/
overfitting. The optimism-corrected AUC,
calibration slope, and intercept are a
more approximate estimate of the per-
formance of the model in an external
sample (22).

Continuous/category-free net reclassi-
fication improvement (NRI.0) was used
to assessmodel reclassification because no
established risk cutoffs warrant the use of
categoricalNRI (23). The overall NRI shows
the proportion of upward and downward
movement in predicted probabilities
when the biomarkers are added to the
clinical model. Absolute integrated dis-
crimination improvement (IDI) was used
to determine the average increase in pre-
dicted probabilities for those who were
rapid decliners and the reduction in those
who were not rapid decliners after the
addition of the biomarkers (24). The rela-
tive IDI (rIDI) was calculated as the ratio of
IDI over the discrimination slope of the
clinical model. The NRI and IDI were as-
sessed overall and separately in rapid de-
cliners (NRI in rapid decliners [NRIR]; IDI in
rapid decliners [IDIR]) and in nonrapid de-
cliners (NRI in nonrapid decliners [NRINR];
IDI in nonrapid decliners [IDINR]).

RESULTS

Cohort Characteristics
The patient characteristics of the present
FDS2 subgroupat study entry are summa-
rized in Table 1. The 345 participants
had amean6 SD age of 67.06 9.4 years,
51.9% were males, and their median di-
abetes duration was 9.0 years (IQR 3.0–
15.2 years). The mean baseline eGFR was
80.66 18.8 mL/min/1.73 m2, 13.0% had
CKD, 33.9% had microalbuminuria, and
4.1% had macroalbuminuria. Most (71.0%)
were receiving treatment with RAAS inhibi-
tors. Over the 4 years encompassed by the
present substudy, the mean annual decline
in eGFR was 1.7 6 2.5 mL/min/1.73 m2.
There were no participants with a base-
line eGFR of,15 mL/min/1.73 m2.

Rapidly Declining eGFR Trajectory
Based on latent class analysis, 35 individ-
uals (10.1%) were in the rapid declining
eGFR trajectory group with a mean an-
nual decline in eGFR of 2.9 mL/min/
1.73 m2. The remaining 310 individuals
(low, medium, and high eGFR trajecto-
ries) had a mean decline of 1.6 mL/
min/1.73 m2/year. Baseline clinical and

demographic characteristics in these
two subgroups are shown in Table 1. In-
dividuals with a rapidly declining eGFR
trajectory were older and had longer
diabetes duration and higher serum
triglyceride, uric acid, and creatinine
concentrations; lower eGFR and total
cholesterol; and a greater prevalence of
ischemic heart disease and diuretic med-
ication use than those with nonrapid
decline. Baseline apoA4, apoC3, C1QB,
and CFHR2 levels were higher in rapid
decliners compared with nonrapid
decliners.

The results of three multivariate prog-
nostic models (clinical and clinical plus
biomarkers 1 and 2) are shown in Table 2.
In the clinical model, diuretic use, older
age, longer diabetes duration, and lower
serum HDL cholesterol level were inde-
pendent predictors of rapid eGFR decline.
After adjusting for themost parsimonious
clinical model, higher apoA4 and C1QB
levels and lower CD5L levels were signif-
icant independent predictors. Duration of
diabetes became a nonsignificant predic-
tor after the addition of the biomarkers.
The additionof the biomarkers to the clin-
ical model improved model fit (ΔLRT x2 =
19.16, P , 0.001), calibration (Hosmer-
Lemeshow test P = 0.11), discrimination
(AUC increase from0.75 to 0.82,P = 0.039),
sensitivity and specificity (increased from
82.4% to 88.2% and from 63.4% to
68.5%, respectively), and risk classifica-
tion (Fig. 1). A calibration plot of the ob-
served probabilities against the predicted
probabilitiesoverdecilesofpredictions (from
Hosmer-Lemeshow tests) for each model
shows acceptable calibrationwith data close
to the 45° line (Supplementary Fig. 1). The
bootstrapped optimism-corrected AUCs
were 0.73 and 0.78, respectively, for the
clinical and clinical plus biomarkermodels
(Table 2). There was no improvement in
calibration intercept and slope.

The biomarkers improved risk classifi-
cation when added to the clinical pre-
diction model (overall NRI 0.76 [95% CI
0.63–0.89]). Of the 34 rapid decliners,
24 (70.6%) were reclassified as being at
higher risk and 10 (29.4%) as being at
lower risk (NRIR 0.41 [0.11–0.72]). Of the
292 nonrapid decliners, 95 (32.5%) were
reclassified to higher risk and 197 (67.5%)
to lower risk (NRINR 0.35 [0.24–0.46]). The
absolute IDI indicates that there was a
significant increase in predicted probabil-
ities for those who were rapid decliners
(IDIR 5.6% [1.5–9.6%]) and a reduction in
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Table 1—Baseline demographic and clinical characteristics of 345 participants with type 2 diabetes by rapid eGFR decline defined
by eGFR trajectory

N All Nonrapid decliners Rapid decliners P

Number (%) 345 345 310 (89.9) 35 (10.1)

Age (years) 345 67.0 6 9.4 66.6 6 9.3 70.3 6 8.8 0.028

Male sex (%) 345 51.9 51.6 54.3 0.86

BMI (kg/m2) 345 31.0 6 5.5 31.0 6 5.6 30.7 6 5.1 0.75

Waist circumference (cm) 345 102.7 6 13.5 102.5 6 13.7 104.7 6 12.1 0.36

Ethnic background (% AC/SE/OE/
Asian/Ab/other) 345 64.9/11.0/7.0/3.2/0.3/13.6 64.5/11.3/7.4/3.5/0.3/12.9 68.6/8.6/2.9/0.0/0.0/20.0 0.64

Age at diabetes diagnosis (years) 345 57.1 6 10.9 57.1 6 11.1 57.2 6 9.5 0.95

Diabetes duration (years)* 345 9.0 [3.0–15.2] 8.2 [3.0–15.0] 13.3 [6.0–19.9] 0.014

Fasting plasma glucose (mmol/L)† 344 7.1 (5.5–9.2) 7.1 (5.5–9.1) 7.6 (5.6–10.3) 0.16

HbA1c (%) 345 7.0 6 1.0 6.9 6 1.0 7.2 6 1.3 0.18

HbA1c (mmol/mol) 345 53 6 10.9 52 6 11.1 55 6 13.9 0.18

Serum total cholesterol (mmol/L) 344 4.3 6 1.0 4.3 6 1.0 4.1 6 1.0 0.31

Serum HDL cholesterol (mmol/L) 344 1.28 6 0.31 1.29 6 0.31 1.16 6 0.31 0.020

Serum triglycerides (mmol/L)† 344 1.5 (0.9–2.3) 1.4 (0.9–2.3) 1.7 (1.0–2.8) 0.044

Serum uric acid (mmol/L)† 344 0.34 (0.26–0.44) 0.34 (0.26–0.43) 0.38 (0.31–0.47) 0.005

Serum creatinine (mmol/L)† 345 75 (56–101) 73 (55–97) 98 (76–127) ,0.001

Urinary ACR (mg/mmol)† 345 2.9 (0.9–8.8) 2.8 (0.9–8.7) 3.4 (1.1–10.4) 0.35

eGFR (mL/min/1.73 m2) 345 80.6 6 18.8 82.9 6 17.4 59.9 6 18.1 ,0.001

eGFR categories (% G1/G2/
G3a/G3b/G4)‡ 345 37.7/49.3/6.4/5.5/1.2 40.6/50.6/3.5/3.9/1.3 11.4/37.1/31.4/20.0/0.0 ,0.001

CKD stage (% 0/1/2/3)§ 345 57.1/30.7/6.1/6.1 60.0/30.6/4.5/4.8 31.4/31.4/20.0/17.1 ,0.001

Systolic blood pressure (mmHg) 345 147 6 20 147 6 20 148 6 24 0.80

Diastolic blood pressure (mmHg) 345 80 6 12 80 6 12 77 6 11 0.08

Neuropathy (%) 345 73.6 73.5 74.2 .0.99

PAD (%) 345 17.4 17.1 20.0 0.64

CVD (%) 345 5.5 4.5 14.3 0.033

IHD (%) 345 25.5 24.5 34.3 0.22

Alcohol consumption (standard
drinks/day)* 326 0.1 [0.0–1.5] 0.1 [0.0–1.2] 0.3 [0.0–1.5] 0.47

Smoking status (% never/ex-/current) 345 47.2/47.0/5.8 47.1/46.5/6.5 48.6/51.4/0.0 0.36

Any physical activity (%) 341 94.4 95.1 88.6 0.12

Diabetes treatment (%)
Diet 345 29.3 30.3 20.0 0.24
OHA 345 49.0 49.0 48.6 1.00
Insulin6 OHA 345 21.7 20.6 31.4 0.19

Antihypertensive medication (%) 345 79.7 78.4 91.4 0.08
Diuretic 345 34.8 32.3 57.1 0.005
ACE-I 345 44.3 43.2 54.3 0.22
ARB 345 33.9 33.2 40.0 0.45
b-Blocker 345 22.3 21.9 25.7 0.67
Calcium channel blocker 345 26.1 25.5 31.4 0.43
Other 345 4.3 4.2 5.7 0.66

Lipid-lowering medication (%) 345 73.9 73.2 80.0 0.54

Aspirin use (%) 344 72.4 43.2 48.6 0.59

Plasma biomarkers (peak area ratios)†
apoA4 345 1.17 (0.57–2.42) 1.12 (0.54–2.30) 1.78 (0.96–3.32) ,0.001
apoC3 345 0.86 (0.33–2.28) 0.83 (0.32–2.17) 1.21 (0.43–3.36) 0.031
CD5L 344 2.37 (1.17–4.79) 2.39 (1.18–4.82) 2.23 (1.08–4.61) 0.59
C1QB 328 0.41 (0.22–0.77) 0.40 (0.22–0.73) 0.53 (0.25–1.12) 0.012
CFHR2 344 0.95 (0.53–1.72) 0.92 (0.52–1.60) 1.35 (0.66–2.78) ,0.001
IBP3 335 0.97 (0.58–1.64) 0.96 (0.58–1.59) 1.08 (0.56–2.09) 0.22

Rapid decliners were defined by eGFR trajectories as described in RESEARCH DESIGN AND METHODS. All values are mean6 SD, unless noted otherwise. Ab,
Aboriginal; AC, Anglo-Celtic; ACE-I, ACE inhibitor; ARB, angiotensin receptor blocker; CVD, cerebrovascular disease; IHD, ischemic heart disease; OE, other
European; OHA, oral hypoglycemic agent; PAD, peripheral arterial disease; SE, southern European. *Median [IQR]. †Geometric mean (SD range). ‡eGFR
categories: G1$90; G2 60–89; G3a 45–59; G3b 30–44; G4 15–29 mL/min/1.73 m2. §CKD stage defined by KDIGO 2012 guidelines (39).
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those who were not (IDINR 0.7% [20.2 to
1.5]) after the addition of the biomarkers,
resulting in an overall gain in predictive
ability of the model (overall IDI 6.3%
[2.1–10.4%]) (Table 2). Similarly, the rIDI
showed improvement comparedwith the
clinical model after the biomarkers were
added (rIDI 68.5%).
Significant biomarkers fromeachof the

four definitions of rapid eGFR decline
(apoA4, C1QB, CD5L, and IBP3; see be-
low) were combined into a final clinical
plus biomarker model 2. The addition of
IBP3 to apoA4, C1QB, and CD5L in pre-
dicting rapidly declining eGFR trajectory
provided further incremental improve-
ments in model fit, discrimination, and
reclassification (Table 2). In addition, mi-
croalbuminuria was forced into all clinical
prediction models but failed to provide
significant predictive power when con-
sidered as either a categorical variable

(ACR$3 mg/mmol) or a continuous vari-
able (data not shown).

Alternative Definitions of Rapid eGFR
Decline
There is limited consensus in measuring
the progression of DKD, hence the base-
line clinical and demographic characteris-
tics according to alternative definitions of
rapid eGFR decline (incident CKD, eGFR
decline $30%, and annual decline in
eGFR $5 mL/min/1.73 m2) were com-
pared (Supplementary Tables 1–3). A se-
ries of additional clinical and clinical plus
biomarker models were developed, and
their predictive performance was as-
sessed (Supplementary Tables 4–6).

During 4.1 years (IQR 3.7–4.4 years)
of follow-up,CKDdeveloped in37 individuals
(12.3%) with the clinical model identify-
ing ischemic heart disease, lower baseline
eGFR, and total cholesterol level as

independent predictors. After adjustment,
higher apoA4 added significantly to the clin-
ical model (clinical plus biomarker model 1),
improving model fit, calibration, discrimina-
tion, and reclassification (Supplementary
Fig. 1 and Supplementary Table 4). The
addition of biomarkers C1QB, CD5L, and
IBP3 to apoA4 (clinical plus biomarker
model 2) showed further incremental im-
provements in model reclassification for
predicting incident CKD (Supplementary
Table 4).

During follow-up, there were 30 in-
dividuals (8.7%) with a fall in eGFR
of $30% over 4 years. These participants
had a mean decrease in eGFR of 6.3 vs.
1.3 mL/min/1.73 m2/year in the 315 indi-
viduals with ,30% decline (P , 0.001).
The clinicalmodel for predicting this renal
end point included ischemic heart dis-
ease, diuretic use, older age, increased
diastolic blood pressure, and lower

Table 2—Performance of the clinical and clinical plus biomarkers prediction models for rapid eGFR decline defined by eGFR
trajectory

Clinical model (N = 326)
Clinical plus biomarkers model 1

(N = 326)
Clinical plus biomarkers model 2

(N = 316)§

Variable
Diuretic use 2.41 (1.14–2.08), 0.021 2.59 (1.17–5.70), 0.019 2.52 (1.11–5.74), 0.028
Age (per 10 years) 1.67 (1.06–2.64), 0.027 1.75 (1.08–2.83), 0.022 1.73 (1.04–2.87), 0.034
Diabetes duration (per 5 years) 1.28 (1.02–1.60), 0.033 1.22 (0.94–1.57), 0.129 1.19 (0.92–1.56), 0.192
HDL cholesterol (per mmol/L) 0.10 (0.02–0.45), 0.003 0.08 (0.02–0.38), 0.001 0.11 (0.02–0.51), 0.005
ln(apoA4)* NI 2.40 (1.24–4.61), 0.009 2.93 (1.40–6.16), 0.004
ln(C1QB)* NI 2.41 (1.14–5.11), 0.021 2.65 (1.19–5.92), 0.017
ln(CD5L)* NI 0.52 (0.29–0.93), 0.027 0.50 (0.27–0.92), 0.027
ln(IBP3)* NI NI 0.80 (0.37–1.74), 0.573

Performance measure
LRT x2 test, P 25.41, ,0.001 44.57, ,0.001 44.13, ,0.001
ΔLRT x2 test, P Reference 19.16, ,0.001 21.21, ,0.001
H-L test x2, P 6.95, 0.54 13.0, 0.11 6.37, 0.61
Sensitivity (%)† 82.4 88.2 84.4
Specificity (%)† 63.4 68.5 72.2
Positive predictive value (%)† 20.8 24.6 25.5
Negative predictive value (%)† 96.9 98.0 97.6
AUC (95% CI) 0.75 (0.66–0.84) 0.82 (0.76–0.88) 0.83 (0.77–0.89)
ΔAUC, P Reference 0.07, 0.039 0.08, 0.023
Optimism-corrected AUC‡ 0.73 0.78 0.79
Calibration intercept‡ 20.17 20.28 20.34
Calibration slope‡ 0.89 0.82 0.79
NRI (.0) Reference 0.76 (0.63–0.89) 0.82 (0.68–0.95)
NRIR Reference 0.41 (0.11–0.72) 0.44 (0.13–0.75)
NRINR Reference 0.35 (0.24–0.46) 0.38 (0.27–0.49)

Absolute IDI (%) Reference 6.3 (2.1–10.4) 7.4 (3.1–11.6)
IDIR Reference 5.6 (1.5–9.6) 6.6 (2.5–10.8)
IDINR Reference 0.7 (20.2 to 1.5) 0.8 (20.2 to 1.7)

rIDI (%) Reference 68.5 64.5

Only participants with complete data were included in each model. The most parsimonious clinical model was derived as described in RESEARCH DESIGN AND

METHODS, followed by inclusion of biomarkers with significant independent predictive value (clinical plus biomarkers model 1); then all significant
biomarkers across the four definitions of rapid eGFR decline were forced into the clinical model (clinical plus biomarkersmodel 2). Values are given as OR
(95%CI), P, unless otherwise indicated. AUC, area under the curve; H-L, Hosmer-Lemeshow; IDI, integrated discrimination index; NI, not included. *A 2.72-
fold change in mean peak area ratio of apoA4, C1QB, CD5L, or IBP3 corresponds to a change of 1 in ln-transformed (apoA4, C1QB, CD5L, or IBP3),
respectively. †Based on optimal cutoff defined by Youden index. ‡Based on internal validation by bootstrap resampling. §The performance of this model
was compared with the clinical model applied to the same 316 individuals.
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serum total cholesterol. After adjust-
ment, higher apoA4 and lower IBP3
levels added significantly to the predic-
tive ability of the clinical model (clinical
plus biomarker model 1) (Supplementary
Fig. 1 and Supplementary Table 5). The
addition of C1QB and CD5L to apoA4 and
IBP3 (clinical plus biomarker model 2)
showed further incremental improvements
in model reclassification (Supplementary
Table 5).
There was an annual decline in eGFR

of $5 mL/min/1.73 m2 in 28 individuals
(8.1%), which was predicted by the pres-
ence of ischemic heart disease, increased
diastolic blood pressure, and increased
HbA1c. After adjustment, a lower IBP3
level added significantly to the clini-
cal prediction model (clinical plus bio-
marker model 1) and improved model
performance (Supplementary Fig. 1 and
Supplementary Table 6). The addition of
biomarkers apoA4, C1QB, and CD5L to
IBP3 (clinical plus biomarker model 2)
showed further incremental improve-
ments in model fit, discrimination, and
reclassification for predicting annual
eGFR decl ine $5 mL/min/1.73 m2

(Supplementary Table 6).

CONCLUSIONS

The present substudy from the longitu-
dinal observational FDS2 has extended
preliminary developmental data relating
to a novel panel of plasma proteins
(PromarkerD) (19) to confirm that these
biomarkers have prognostic use in DKD.
Four biomarkers, apoA4, CD5L, C1QB, and
IBP3, predictedmeasures of rapid decline

in eGFR over a 4-year follow-up pe-
riod in community-based patients with
type 2 diabetes. Their prognostic use
was independent of conventional clinical
variables, and they added significant pre-
dictive value as assessed from indices of
model fit, calibration, discrimination, and
reclassification.

Other published data support the
PromarkerD panel as a DKD prognostic in-
dex. There is a reported association be-
tween higher circulating levels of apoA4
and renal impairment in individuals with-
out diabetes (25,26), and there is evidence
for increased renal apoA4 excretion in in-
dividuals with diabetic nephropathy (27).
Raised apoA4 levels are an early marker
of mild to moderate DKD (25), predict
CKD progression in patients recruited
from renal outpatient clinics (28), and
are strongly associated with CKD inde-
pendently of known risk factors in the
general population (26). C1QB is depos-
ited in the kidneys in C1q nephropathy,
leading to renal damage via inflammatory
and immune responses, which is consis-
tentwith data froma rodentmodel show-
ing significantly increased C1QB levels in
the kidneys of diabetic versus control
animals (29). CD5L or apoptosis inhibitor
of macrophage protein is implicated in
immune and inflammatory responses.
Plasma CD5L is normally present in high
concentrations via interaction with IgM
(30). In acute kidney injury in mice,
CD5L dissociates from IgM and is excreted
in the urine, with recovery from acute kid-
ney injury possible after CD5L interacts
with kidney injury molecule 1 (31). In the

current study, lower circulating levels of
CD5L were observed in patients with
rapidly declining kidney function, sug-
gesting either increased renal excre-
tion or, alternatively, a defect in CD5L or
IgM expression.

The one biomarker for which the pre-
sent data appear inconsistent with the
published literature is IBP3, a regulator of
insulin-like growth factor 1 that has been
implicated in the development of diabetic
nephropathy. In the current study, lower
circulating levels of IBP3 were observed in
participantswith aneGFRdeclineof$30%
or$5 mL/min/1.73 m2/year in apparent
contrast to a previous study (32) showing
an association between increased IBP3
levelwith lowbaseline eGFR in individuals
with type 2 diabetes. However, in this
latter study, the average eGFR reduction
over 7 years was only 2 mL/min/1.73 m2,
there was no rapid renal decline sub-
group, and there was association be-
tween IBP3 level and longitudinal eGFR
trends. There were also differences in pa-
tient characteristics (our participants
were older and had a higher baseline
eGFR, and more were female and were
receiving treatment with RAAS inhibitors
at baseline) and study design (including
the method of eGFR calculation) com-
pared with the current study. It is possible
that the lower levels of IBP3 observed in
the current study are due to increased re-
nal excretion via already damaged glomer-
uli or increased serum proteolysis (33).

A range of other potential biomarkers
have been studied in the context of DKD
(6). The current study aligns with recent
studies describing the prognostic utility of
tumor necrosis factor receptor (TNFR)
1 and TNFR2 (9,12,34,35). Our biomarker
panel provided a similar discriminative
ability (sensitivities of 83–94% and speci-
ficities of 72–80% for clinical plus bio-
marker model 2) to published data on
TNFR1/TNFR2 for predicting renal decline
(sensitivities of 68–72% and specificities
of 81–86%) (36). In another of the TNFR1/
TNFR2 studies (9), patientswere classified
by quartiles of biomarker concentration.
Adopting this approach showed that
most rapid decliners in the current study
were in the highest apoA4/C1QB quartile
or the lowest CD5L/IBP3 quartile (data
not shown), but these results should be
interpreted with caution because of small
cell numbers. A recent study of 1,135 par-
ticipants with type 2 diabetes with base-
line renal function similar to those in the

Figure 1—Graphical depiction of NRI (A) and IDI (B) for rapid eGFR decline defined by eGFR
trajectory. The NRI plot shows the proportion of individuals reclassified to higher or lower risk by
rapid decline status after the addition of biomarkers to the clinical model. The IDI plot shows the
meanpredictedprobability of rapid and nonrapid decliners according to the clinical (Clin) and clinical
plus biomarker (Clin+Bio) models.
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current study (12) showed that plasma
adrenomedullin, TNFR1, and N-terminal
pro B-type natriuretic peptide were asso-
ciated with rapid eGFR decline, indepen-
dent of established risk factors, and that
they significantly increased the receiver
operating characteristic AUC (ΔAUC =
0.027–0.054, P , 0.0001). We found a
similar significant increase in AUC after
the addition of the biomarkers to the clin-
ical prediction model for eGFR trajectory
(Table 2) (ΔAUC = 0.07, P = 0.039).We did
not detect TNFR1, TNFR2, N-terminal pro
B-type natriuretic peptide, or adrenome-
dullin during the earlier discovery phase
of our study since these proteins were
below the limit of detection in the mass
spectrometry methodology used (19). A
number of other studies have described
additional biomarkers that may improve
prediction of renal function decline in
diabetes beyond traditional risk factors,
but most were small or involved only in-
dividuals with impaired renal function at
study entry (11,34,35,37).
A key finding in the current study was

that the biomarkers predicted rapid eGFR
decline even after adjustment for conven-
tional indices of nephropathy (eGFR and
ACR) as well as other known clinical
predictors (sex, hypertension, HbA1c,
smoking, lipids, BMI, and RAAS inhibitor
use). The observation that microalbumi-
nuria did not enter any of our prediction
models supports other studies that found
TNFR1/TNFR2 predicted ESRD irrespec-
tive of albuminuria (9), although there is
evidence that microalbuminuria occurs
after the decline in eGFR has already
started in individuals with type 2 diabetes
(38). Therefore, the identification of indi-
viduals with type 2 diabetes who are at
risk for future renal decline should not be
limited to the assessment of albuminuria.
The major strengths of the current

study are its longitudinal community-
based design and the detailed phenotypic
characterization of the cohort. It is the
largest study to have used a targeted
MRM approach for biomarker detection
and validation. The current platform al-
lows multiple proteins to be analyzed
without an increase in cost even if a for-
mal cost-benefit analysis is yet to be con-
ducted. Recent improvements in the field
show that the MRM approach has in-
creased sensitivity compared with tradi-
tional antibody-based assays (19). The
limitations of the current study include a
relatively small sample size in the case of

participantswith rapid renal decline. In ad-
dition, the findings require external valida-
tion. Internal validation was performed by
bootstrap resampling of 1,000 replicates
that provided an estimate of external
model performance (22), which supports
further assessment of PromarkerD in
other cohorts. The predictionmodels pre-
sented in this study were developed in
people of mostly white origin (;80%),
and whether the findings can be general-
ized to other ethnicities and to subjects
with prediabetes or type 1 diabetes is as
yet unknown. Nevertheless, the predic-
tion models were adjusted for a large
range of known risk factors to address
confounding with the same result.

In conclusion, the current study has
identified four plasma protein biomarkers
(apoA4, CD5L, C1QB, and IBP3) that
predict a rapid decline in eGFR in patients
with type 2 diabetes independent of
other clinical predictors including eGFR
and ACR. The panel may be useful for
risk stratification in future clinical trials,
would enable earlier intervention of at-risk
individuals and monitoring of disease pro-
gression, andwould allow improvement
in patient outcomes. Further analysis of
these biomarkers via the PromarkerD test
in diabetes and more generally in CKD is
warranted.
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