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OBJECTIVE

We examined whether the addition of novel genetic risk variant data to conven-
tional childhood risk factors improves risk assessment of impaired fasting glucose
(IFG) and type 2 diabetes in adulthood.

RESEARCH DESIGN AND METHODS

An association of a weighted genetic risk score (wGRS) based on 73 risk variants
with IFG and type 2 diabetes was analyzed in 2,298 participants of the Cardiovas-
cular Risk in Young Finns Studywhowere followed for 24–31 years from childhood
to adulthood. In addition, the value of the wGRS in pediatric prediction of type 2
diabetes was examined.

RESULTS

Of the 2,298 participants, 484 (21.8%) and 79 (3.4%) had IFG or type 2 diabetes in
adulthood, respectively. Adjusting for age, sex, baseline BMI, parental diabetes,
mother’s BMI, fasting insulin concentration, systolic blood pressure, and smoking
status, wGRS was associated with an increased risk of IFG (odds ratio 1.64 [95% CI
1.33–2.01] per unit increase in the wGRS) and type 2 diabetes (2.22 [1.43–3.44]).
IncorporatingwGRS into pediatric riskmodels improvedmodel discrimination and
reclassification properties. Area under the receiver operating curve improved for
IFG (from 0.678 to 0.691, P = 0.015), combined IFG and type 2 diabetes outcome
(from 0.678 to 0.692, P = 0.007), and type 2 diabetes (from 0.728 to 0.749, P =
0.158). The net reclassification improvement and integrated discrimination im-
provement were significant for all outcomes.

CONCLUSIONS

Amultifactorial approach combining genetic and clinical risk factors may be useful
in identifying children at high risk for adult IFG and type 2 diabetes.
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Pediatric risk factors for type 2 diabetes
include obesity, high systolic blood
pressure, highmaternal BMI, and family
history of type 2 diabetes (1,2). A signif-
icant genetic component contributing
to type 2 diabetes risk also exists, and
genome-wide association studies (GWAS)
have identified a number of loci consis-
tently associated with type 2 diabetes
and related traits (3–6).
Developing risk prediction models for

the early identification of individuals at
high risk for type 2 diabetes later in life is
important because beneficial lifestyle
changes have proven effective in pre-
venting or delaying the onset of type 2
diabetes in individuals at increased risk
(7,8). Two previous analyses have ad-
dressed the value of genetic risk factors
in the pediatric prediction of adult
type 2 diabetes: one from the present
cohort (1) and the other from the longi-
tudinal Bogalusa Heart Study (9). These
reports found no clear support for the
hypothesis that novel genetic risk vari-
ants would improve the prediction of
type 2 diabetes in adulthood above
clinical childhood risk factors. However,
these studies may have been underpow-
ered to detect a genetic prediction effect
due to low numbers of participants with
type 2 diabetes and/or an incomplete ge-
netic risk marker panel. Since their publi-
cation, an increased number of loci
associated with type 2 diabetes has
been identified. Additionally, we have
identified more patients with type 2 di-
abetes in the recent follow-up studies
of our cohort. In the current study, we
aimed to re-examine the value of novel
genetic markers in identifying children
and adolescents who are at increased
risk of adulthood impaired fasting glu-
cose (IFG), an early metabolic abnormal-
ity often preceding the onset of type 2
diabetes, and type 2 diabetes by combin-
ing phenotype and genotype data in a
longitudinal population cohort.

RESEARCH DESIGN AND METHODS

Study Population
The Cardiovascular Risk in Young Finns
Study (Young Finns) is a population-
based follow-up study of cardiovascular
risk factors in Finland. In 1980, 3,596
participants aged 3–18 years were ex-
amined. Subsequently, follow-up stud-
ies have been conducted regularly. A
total of 2,283, 2,204, and 2,060 partici-
pants were examined in 2001, 2007, and

2011–2012, respectively. The sample
used in the current study (n = 2,298)
comprises participants for whom geno-
type and outcome data as well as risk
factor data from baseline and 2001,
2007, and/or 2011–2012 follow-up visits
were available. All participants gave
written informed consent, and the local
ethics committees approved the study.

Clinical and Biochemical Variables
Height and weight were measured and
BMI was calculated as weight in kilo-
grams over height in meters squared.
Venous blood samples were drawn after
an overnight fast. Mother’s weight was
obtained by questionnaire at baseline.
Participants .12 years of age reported
their own smoking status during a study
visit without their parents present.
Those who had reported smoking daily
at some stage before or at age 24 years
were categorized as smokers; others
were categorized as nonsmokers.

Serum insulin was measured by using
a modification of the immunoassay of
Herbert et al. (10). Serum triglycerides
and HDL cholesterol were measured as
previously described (11,12). Serum LDL
cholesterol was calculated using the
Friedewald equation (13). Plasma glucose
concentrations in adulthood were deter-
mined by the enzymatic hexokinase
method (glucose reagent; Olympus,
County Clare, Ireland). Glycated hemo-
globin (HbA1c) fraction in whole blood
was measured by an ARCHITECT ci8200
analyzer (Abbott Laboratories). The con-
centration of total hemoglobin was
first determined colorimetrically, after
which the concentration of HbA1c was
measured immunoturbidimetrically
with the microparticle agglutination
inhibition method (HbA1c reagent;
Fisher Diagnostics). These two concen-
trations were used to calculate the
HbA1c percentage.

Blood pressure was measured while
seated after a 5-min rest with a standard
mercury sphygmomanometer at the
baseline visit. An ultrasound device
was used to measure blood pressure of
3-year-old participants. Readings to the
nearest even number of millimeters of
mercury were performed at least three
times, and their mean was used in the
analyses.

Definition of Diabetes and IFG
Participants were classified as having
type 2 diabetes if at any of the follow-up

visits (2001, 2007, or 2011–2012) their
fasting plasma glucose value was
$7 mmol/L or if they reported having
been given a type 2 diabetes diagnosis
by a physician. In addition, individuals
whose HbA1c was$6.5% (48 mmol/mol)
at the 2011 follow-up or who reported
taking glucose-lowering medication at
the 2007 or 2011 follow-up were classi-
fied as having type 2 diabetes. Finally,
type 2 diabetes diagnoses were obtained
from the National Social Insurance Insti-
tution Drug Reimbursement Registry.
Information on type 1 diabetes was col-
lected at each follow-up visit. In 2001,
type 1 diabetes was defined as having
been given a diagnosis at or before age
24 years and/or insulin treatment. Dur-
ing the 2007 and 2011 follow-up visits,
participants self-reported a type 1 dia-
betes diagnosis. Participants with type 1
diabetes were excluded from all analy-
ses (n = 21).

Parental diabetes status was based
on questionnaires at baseline. Diabetes
type was not specified, and positive pa-
rental history of diabetes was defined as
one or both parents having diabetes.

IFG was defined as having a fasting
plasma glucose$5.6 mmol/L by the lat-
est available measurement (14). Addi-
tional analyses were performed by
using theWorld Health Organization cut-
off (6.1 mmol/L) for IFG. Separate anal-
yses were done for the group of
participants with IFG (excluding those
categorized as having type 2 diabetes)
and for a combined group of participants
with either IFG or type 2 diabetes.

Genotyping and Genotype Imputation
Genotyping was performed by using a
custom-made Illumina Human 670 K
BeadChip. Genotypes were called by
using the Illumina clustering algorithm
(15), and after quality control, 2,442
samples and 546,677 genotyped single
nucleotide polymorphisms (SNPs) were
available for further analysis. Genotype
imputationwas performed using SHAPEIT
v1 (16) and IMPUTE2 (17) software and
the 1000G Phase I Integrated Release
Version 3 as a reference panel (18).

Construction of the Genetic Risk
Score
A weighted genetic risk score (wGRS)
comprising 73 SNPs found to be associ-
ated with type 2 diabetes was calculated
as a sum of genotyped risk alleles or
imputed allele dosages carried by an
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individual, each multiplied by the exter-
nally reported effect size (the natural log
of the odds ratio [OR]) (6). A list of
SNPs and effect sizes used in the wGRS
calculation is provided in Supplementary
Table 1. Three SNPs forwhich association
results in a population of European an-
cestry were not reported were omitted
from the wGRS. In addition, the SNP
rs3132524 at POU5F1/TCF19 was not
available among genotyped or imputed
SNPs, and a proxy SNP, rs3130501, in
high linkage equilibrium was used in-
stead (r2 = 1.0). We replicated all analy-
ses using another previously published
weighted genotype score comprising
46 SNPs found to be associated with
type 2 diabetes in populations of Euro-
pean origin (19). In general, the salient
results were similar with this score;
however, it showed slightly stronger as-
sociations with the outcomes and better
prediction value possibly because it in-
cludes fewer variants with very small ef-
fect sizes.

Statistical Analyses
Group comparisons were performed by
using ANOVA or Kruskal-Wallis test for
continuous variables and x2 or Fisher
exact test for categorical variables. Pair-
wise group comparisons were adjusted
for multiple testing by Tukey test for nor-
mally distributed variables and Benjamini
and Hochberg method for others.
Deviation of genotype distributions

from Hardy-Weinberg equilibrium was
tested using the exact test. Association
of individual SNPs and wGRS with the
risk of IFG and type 2 diabetes was

analyzed with logistic regression. Statis-
tical models for individual SNPs were
adjusted for age and sex, with no correc-
tion for multiple comparisons. Multivar-
iable logistic regressionmodels with and
without wGRS were constructed for all
outcomes, including the following child-
hood risk factors: BMI, fasting insulin,
mother’s BMI, parental diabetes, smok-
ing status, and baseline systolic blood
pressure. Age- and sex-specific z scores
were calculated for baseline BMI, fast-
ing insulin, and systolic blood pressure.

The additional value of wGRS in the
prediction of adult IFG and type 2 dia-
betes was examined by using the R pack-
ages PredictABEL (20), Hmisc, and pROC
(21) to estimate fit, calibration, and the
differences in predictive abilities of
the models. The discrimination perfor-
mance of each model was estimated
by calculating the receiver operating char-
acteristic area under the curve (AUC)
(22). Youden J statistic was used to de-
termine the optimal cutoff value for sen-
sitivity and specificity in each model (23).
The improvement of prediction models
was assessed by using the continuous
net reclassification index (NRI) and inte-
grated discrimination index (IDI), and
model calibration was tested using the
Hosmer-Lemeshow goodness-of-fit test
(24).

RESULTS

Participants were followed for 24–31
years from baseline, and during that
time, IFG developed in 484 (21.8%)
and type 2 diabetes in 79 (3.4%). The

baseline characteristics are shown
separately for participants with normal
fasting glucose (NFG), IFG, and type 2 di-
abetes in Table 1.

Most baseline risk factors differed be-
tween the groups (Table 1). Those in
whom IFG or type 2 diabetes developed
were significantly older and had higher
wGRS, baseline BMI, maternal BMI, fast-
ing insulin, and systolic blood pressure.
The proportion of women was signifi-
cantly lower in the IFG group than in
the NFG and type 2 diabetes groups.
The proportion of children with a paren-
tal history of diabetes was significantly
higher among those in whom type 2 di-
abetes developed in adulthood, whereas
no differences were seen between the
NFG and IFG groups. The proportion of
smokers was higher in both the IFG and
the type 2 diabetes groups than in the
NFG group, but no difference was seen
between the IFG and type 2 diabetes
groups.

Single SNP Analyses
All genotyped SNPs were in Hardy-
Weinberg equilibrium except for
rs3130501 (P = 0.036), and the informa-
tion score for imputed SNPs was .0.9
for all except rs7560163 (0.70) and
rs11063069 (0.88), indicating high-
quality imputations. The results of
single SNP associations are shown
in Supplementary Table 1. Four SNPs
(rs6878122 in the ZBED3 locus, rs7903146
in the TCF7L2 locus, rs831571 in the
PSMD6 locus, and rs9470794 in the
ZFAND3 locus) were associated with
an increased risk of type 2 diabetes

Table 1—Childhood characteristics of participants according to NGF, IFG, and type 2 diabetes status in adulthood

P value

NFG IFG Type 2 diabetes Overall NFG vs. IFG
NFG vs. type 2

diabetes
IFG vs. type 2

diabetes

n 1,735 484 79

Female 59.9 34.5 53.2 4.6 3 10222* 2.0 3 10222 0.283 0.003

Age (years) 10.2 6 5.0 11.8 6 4.8 13.1 6 4.6 4.9 3 10213† 3.3 3 1029 1.5 3 1026 0.074

BMI (kg/m2) 17.7 6 3.0 18.4 6 3.1 19.7 6 3.4 1.8 3 10211† 6.3 3 1026 4.6 3 1028 0.002

Fasting insulin (pmol/L) 56.3 6 35.5 61.7 6 35.4 77.0 6 41.0 1.4 3 1027‡ 0.0009 6.0 3 1026 0.002

Systolic blood
pressure (mmHg)§ 112 6 11.9 115 6 12.1 117 6 11.6 7.6 3 1029† 2.9 3 1027 0.001 0.535

Mother’s BMI (kg/m2) 23.8 6 3.7 24.3 6 4.0 26.1 6 4.5 3.4 3 1028† 0.009 2.7 3 1027 0.0004

Parental diabetes 2.0 2.9 8.9 0.003| 0.325 0.005 0.028

Daily smoking¶ 25.1 30.6 36.7 0.006* 0.043 0.043 0.338

wGRS (range 4.99–8.35) 6.61 6 0.51 6.72 6 0.53 6.84 6 0.55 2.2 3 1027† 6.0 3 1025 0.0002 0.128

Data are % or mean6 SE. IFG cutoff is 5.6 mmol/L. *x2 test. †ANOVA. ‡Kruskal-Wallis test. §n = 2,298. |Fisher exact test. ¶At any stage in early life
before or at the age of 24 years.
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(P, 0.05). In addition, rs7955901 in the
TSPAN8 locus was significantly associ-
ated with lower risk of type 2 diabetes
(OR 0.68, P = 0.033). Altogether, nine
SNPs were associated with IFG, all with
effect in the expected direction (ORs
1.17–1.34, P = 0.0003–0.047).

Association of wGRS With IFG and
Type 2 Diabetes
The wGRS ranged from 4.99 to 8.35
(mean 6.64, SD 0.52) and was signifi-
cantly associated with IFG (OR 1.64
per unit increase in the wGRS, P =
2.5 3 1026), type 2 diabetes (2.22, P =
0.0004), and the combined IFG and
type 2 diabetes outcome (1.73, P =
3.0 3 1028) in multivariable logistic re-
gression models adjusted for childhood
risk factors (Table 2). Associations re-
mained significant when the cutoff of
6.1 mmol/L was used to define IFG. To
examine whether the effect of the
wGRS was similar across all age-groups,
the age–wGRS interaction term was in-
cluded in the multivariable models for
all outcomes, but statistically significant
interactions were not seen.

Model Discrimination and
Reclassification
Adding wGRS to the childhood risk fac-
tormodel improved the AUC for isolated
IFG and the combined outcome (Table
3). For IFG, the AUC increased from
0.678 to 0.691 (P = 0.015) and for the
combined IFG and type 2 diabetes out-
come, from 0.678 to 0.692 (P = 0.002).
For the combined outcome, the result
remained statistically significant when
the cutoff value of 6.1 mmol/L was
used for IFG. Compared with the model
without the wGRS, the model with ge-
netic information showed a reduction in
the number of false-positive type 2 di-
abetes cases from 673 to 617 and in the
number of false-negative cases from

26 to 24 when using the threshold cor-
responding to the best sum of sensitivity
and specificity. Similarly, the number of
false positives was reduced from 611 to
593 and false negatives from 172 to
170 for IFG.

The net percentage of individuals
with IFG correctly classified upward
(event NRI) was 7.4% and of those with-
out IFG correctly classified downward
(nonevent NRI), 9.3%, resulting in an
overall statistically significant continu-
ous NRI of 0.167 (P = 0.001). Further-
more, the IDI was 0.011 (P = 1.3 3
1025), indicating that the difference in
average predicted risks between indi-
viduals with and without the outcome
increased significantly when the wGRS
was included in the prediction model
(Table 4).

Similarly, the improvement in the re-
classification properties of the type 2
diabetes prediction model was statisti-
cally significant, with the continuous
nonevent NRI 16.4% and the overall
continuous NRI 0.278 (P = 0.015) and
IDI 0.010 (P = 0.013), whereas the
event NRI was nonsignificant. For the
combined IFG and type 2 diabetes out-
come, all measures of reclassification
properties except eventNRI improved sig-
nificantly when the wGRS was added
to the model (Table 4). The Hosmer-
Lemeshow goodness-of-fit test P values
were nonsignificant for all models except
the IFGmodelwithcutoff value6.1mmol/L
(P = 0.037), indicating that there was
no evidence of poor fit for most models.

CONCLUSIONS

Whether recently discovered genetic
variants are useful in predicting cardio-
metabolic risk in young individuals is a
clinically relevant question that can be
addressed by cohort data spanning the
life course from childhood to adulthood.

In this study, we provide novel data
from the longitudinal Young Finns data
by demonstrating that a wGRS asso-
ciates with IFG and type 2 diabetes in
young adults and that the performance
of pediatric risk prediction for these out-
comes is improved when wGRS is in-
cluded in the model together with
other well-established childhood risk
factors.

Genetic risk factors differ from con-
ventional risk factors in that their mea-
surement is unambiguous, they remain
unchanged during the life course, and
they are not affected by disease out-
comes. As the costs of genotyping de-
cline and genomic profiling becomes
more common, genetic variants may be-
come increasingly useful in identifying
individuals at increased risk for complex
diseases, such as type 2 diabetes (25).
Although genetic variants are strongly
associated with incident type 2 diabe-
tes, only limited added clinical value
has been reported in the short-term
prediction of type 2 diabetes in adult-
hood (9,26–28). However, a recent large
U.K.-based consortium of prospective
studies concluded that the addition of
genetic risk score to the type 2 diabetes
risk score derived from the Framingham
Offspring Study leads to a potentially
clinically important improvement in dis-
crimination of incident type 2 diabetes
over a median of 10 years of follow-up
(29). Furthermore, genetic variants may
be better predictors in younger individ-
uals and even over longer follow-up pe-
riods (27,30). We have similarly shown
for other cardiometabolic outcomes,
such as adult hypertension (31,32) and
dyslipidemia (33), that genetic informa-
tion provides incremental predictive in-
formation in addition to nongenetic
childhood risk factors. Genetic informa-
tion could conceivably help to identify
individuals with a high risk for type 2
diabetes in early life when other risk
factors have not yet developed. The
current results are in line with this
hypothesis, demonstrating that genetic
variants provide incremental informa-
tion over clinical risk factors in identi-
fying children and adolescents who are
at risk for IFG or type 2 diabetes in
adulthood.

Lifestyle interventions have proven
effective in preventing or delaying the
onset of type 2 diabetes in individuals
at increased risk (7,8). Furthermore,

Table 2—Association of wGRS with IFG, type 2 diabetes, and combined IFG and
type 2 diabetes outcome in pediatric multivariable logistic regression models

Outcome OR (95% CI) P value n

IFG (cutoff 5.6 mmol/L) 1.64 (1.33–2.01) 2.53 3 1026 2,219

IFG (cutoff 6.1 mmol/L) 1.68 (1.19–2.38) 0.003 2,219

Type 2 diabetes 2.22 (1.43–3.44) 0.0004 2,298

Type 2 diabetes + IFG (cutoff 5.6 mmol/L) 1.73 (1.43–2.10) 3.01 3 1028 2,298

Type 2 diabetes + IFG (cutoff 6.1 mmol/L) 1.89 (1.43–2.50) 9.48 3 1026 2,298

OR is per unit increase in wGRS. Adjusted for age, sex, baseline BMI z score, baseline fasting
insulin z score, mother’s baseline BMI, parental history of diabetes, baseline systolic blood
pressure z score, and smoking status.
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lifestyle changes may attenuate the
adverse effects of genetic risk variants
(34,35). Early identification of individu-
als with increased genetic risk of type 2
diabetes might enable the introduction
of lifestyle and therapeutic disease
prevention. Furthermore, as dietary
and physical activity habits are estab-
lished in early life, implementation of
lifestyle changes may be more efficient
at younger ages (36,37). We have
shown that obese children who become
nonobese adults have a normalized
type 2 diabetes risk in adulthood (38),
which further emphasizes the impor-
tance of targeted lifestyle interventions
aimed at children at increased risk of
type 2 diabetes.
Parental history of diabetes partly re-

flects genetic predisposition and partly
shared environmental and lifestyle fac-
tors. Because adding wGRS to a risk
model already including parental history
of diabetes improved discrimination
and reclassification properties of the
model, the present results suggest that

parental history does not capture all ge-
netic influences.

The mechanisms underlying the rela-
tionship between most of the risk
SNPs and type 2 diabetes are currently
unknown. In individual SNP analyses,
partly different variants were associated
with the two outcomes type 2 diabetes
and IFG. A larger number of SNPs were
significantly associated with IFG, which
may be explained by higher statistical
power as a result of a larger number
of cases. On the other hand, differences
might also exist in the genetic archi-
tecture of type 2 diabetes and IFG.
Whereas most genetic variants associ-
ated with type 2 diabetes in GWAS are
known to influence insulin secretion,
IFG mainly reflects hepatic insulin
resistance (39). Insights into the poten-
tial mechanisms could be gained by
following individuals with high genetic
risk of type 2 diabetes at an early
stage by using multiomics approaches
(e.g., by using nested designs with ap-
propriate controls) to prospectively

follow the manifestation of disease biol-
ogy at a very early stage through to dis-
ease onset.

We used three statistical measures
(AUC, NRI, and IDI) to assess the perfor-
mance of the present risk prediction
models. The AUC describes the overall
performance of the model in discrimi-
nating individuals with and without the
outcome, but it is relatively insensitive
to change if risk factors with strong as-
sociations with the outcome are already
included in the initial model. In the cur-
rent study, the increase in AUCs was
1.3% for IFG and 1.4% for the combined
outcome, both statistically significant
(38), and 2.1% for type 2 diabetes (P =
0.158). For type 2 diabetes, the genetic
model identified 56 fewer false-positive
cases compared with the model without
genetic data. For IFG, the reduction of
false-positive cases was 18.

The observed improvement in the
overall NRI wasmostly driven by the non-
event NRI, indicating that the wGRS
correctly decreased the risk estimates
for nonevents. Alternatively, this may
be a result of a low number of events.
The IDI was statistically significant for
all models, indicating that the dif-
ference in average predicted risks be-
tween the individuals with and without
the outcome increased significantly
when the wGRS was included in the
models.

The major strength of this study is the
use of a large prospective cohort fol-
lowed from childhood to adulthood.
Most genetic prediction studies have
examined the value of genetic risk fac-
tors in type 2 diabetes prediction in
adult populations. The novelty of this
study is that the participants were

Table 4—Improvement of reclassification properties of the pediatric type 2 diabetes and IFG prediction models, including
wGRS compared with models without wGRS

Outcome Nonevent NRI (95% CI) Event NRI (95% CI) Overall NRI (95% CI) IDI (95% CI)

IFG (cutoff 5.6 mmol/L) 0.093 (0.046 to 0.140) 0.074 (20.015 to 0.163) 0.167 (0.067 to 0.268) 0.011 (0.006 to 0.016)
P value 0.0001 0.101 0.001 1.3 3 1025

IFG (cutoff 6.1 mmol/L) 0.101 (0.058 to 0.143) 0.158 (20.009 to 0.326) 0.259 (0.085 to 0.432) 0.005 (0.001 to 0.010)
P value 3.8 3 1026 0.065 0.003 0.014

Type 2 diabetes 0.164 (0.123 to 0.205) 0.114 (20.105 to 0.333) 0.278 (0.055 to 0.500) 0.010 (0.002 to 0.017)
P value 5.7 3 10215 0.308 0.015 0.013

Type 2 diabetes + IFG (cutoff 5.6 mmol/L) 0.106 (0.059 to 0.152) 0.058 (20.031 to 0.147) 0.163 (0.063 to 0.264) 0.012 (0.007 to 0.018)
P value 1.0 3 1025 0.202 0.001 1.8 3 1025

Type 2 diabetes + IFG (cutoff 6.1 mmol/L) 0.127 (0.084 to 0.169) 0.179 (0.047 to 0.312) 0.306 (0.167 to 0.445) 0.011 (0.005 to 0.017)
P value 5.6 3 1029 0.008 1.6 3 1025 0.0004

Adjusted for age, sex, baseline BMI z score, baseline fasting insulin z score, baseline mother’s BMI, parental history of diabetes, wGRS, baseline
systolic blood pressure z score, and smoking status.

Table 3—Discriminating properties of the pediatric multivariable IFG and type 2
diabetes prediction models

AUC (95% CI)

Outcome Without wGRS With wGRS P value*

IFG (cutoff 5.6 mmol/L) 0.678 (0.652–0.705) 0.691 (0.665–0.717) 0.015

IFG (cutoff 6.1 mmol/L) 0.701 (0.658–0.744) 0.716 (0.673–0.758) 0.114

Type 2 diabetes 0.728 (0.672–0.784) 0.749 (0.695–0.802) 0.158

Type 2 diabetes + IFG
(cutoff 5.6 mmol/L) 0.678 (0.653–0.703) 0.692 (0.668–0.717) 0.007

Type 2 diabetes + IFG
(cutoff 6.1 mmol/L) 0.699 (0.663–0.735) 0.716 (0.681–0.752) 0.041

Adjusted for age, sex, baseline BMI z score, baseline fasting insulin z score, mother’s baseline
BMI, parental history of diabetes, wGRS, baseline systolic blood pressure z score, and smoking
status. *Model with wGRS vs. model without wGRS.
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followed from childhood to adulthood,
with comprehensive collection of data
on childhood risk factors for type 2 di-
abetes. The study population of Finnish
individuals is racially homogeneous, and
the results may not be directly general-
izable to populations with different
ethnic backgrounds. Although we used
age- and sex-specific z scores of baseline
BMI, fasting insulin concentration, and
systolic blood pressure to account for
age differences in risk factor levels and
did not find any evidence for age–wGRS
interaction in the statistical models, one
limitation of the study is the wide age
range of the children at baseline. In
addition, the participants are still rela-
tively young, and some classified as un-
affected in this study will have disease
onset in the future. Similarly, informa-
tion on parental diabetes status was col-
lected at baseline when the children’s
parents were still relatively young and
may have not yet experienced the onset
of type 2 diabetes.
At present, in clinical practice, type 2

diabetes risk in children and adolescents
is estimated through traditional risk fac-
tors such as age, BMI, family history, and
fasting insulin levels. The current results
suggest that when genetic information
is added, the improvement in discrimi-
nation and reclassification properties of
the models increases statistically signif-
icantly. Nevertheless, replication of this
finding in other longitudinal cohorts
would be important to verify its clinical
utility so that the knowledge can be in-
corporated into guidelines for pediatric
risk prediction.
Onemajor limitation of genetics stud-

ies of type 2 diabetes, both risk variant
discovery and risk prediction, is an im-
precise definition of diabetes type. Par-
ticularly, latent autoimmune diabetes in
adults (LADA) often is misdiagnosed as
type 2 diabetes and is estimated to ac-
count for;7% of all diabetes cases (40).
We were not able to exclude LADA
cases, and this may have resulted in
an underestimated association between
wGRS and IFG/type 2 diabetes because
the genetic architecture of LADA and
type 2 diabetes differs significantly
(40). Similarly, type 1 diabetes and
type 2 diabetes do not have a shared
genetic background (40), and we were
not able to separate parental status by
diabetes type. Most of the variants in-
cluded in our risk score were identified

in GWAS performed in cross-sectional
adult populations. In addition, the true
causal variant is not necessarily identi-
fied by a GWAS approach because
many of the variants included in the
wGRS may be proxy variants that are
in close linkage disequilibrium with the
causal variant, which may weaken the
effect of the wGRS.

In summary, the present data demon-
strate that a multifactorial approach
that takes genetic risk factors into ac-
count could improve the identification
of children at high risk for adult IFG
and type 2 diabetes.
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Wanne O, Raitakari O. Physical activity from
childhood to adulthood: a 21-year tracking
study. Am J Prev Med 2005;28:267–273
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