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With the increasing availability of continuous glucose monitoring (CGM) and con-
tinuous subcutaneous insulin infusion (CSII), the artificial pancreas (AP) (the com-
monly accepted term for closed-loop control [CLC] of blood glucose [BG] levels in
diabetes) has become a hot area in translational research and industrial develop-
ment. After a prolonged period of inpatient, clinical research center trials using
cumbersome systems, the field has progressed rapidly over the past 2 years to
long-term, free-living studies running AP algorithms on smartphones. Although it
is still not a cure, the AP is the most promising advance in the treatment of diabetes
at this time.
This issue of Diabetes Care presents today’s AP state of the art, including reports on

multinational home-use AP trials, studies in young children, the use of multihormonal
approaches to mitigate meal-related hyperglycemia, and discussions of AP study de-
signs and outcome measures. This collection of articles establishes the AP as a new
diabetes treatment paradigmdnot a single-function CGM or CSII device but an adapt-
able wearable network encompassing the patient in a digital treatment ecosystem.
In its May 2014 issue, Diabetes Care featured the progress in the AP field in a

series of articles labeled “Advances in Artificial Pancreas Development.” In addition
to an editorial discussing the state of the art of AP development in 2014 (1), the issue
included original articles that covered a broad range of topics including analyses of
the possible physiological inputs to CLC (2), real-time estimation of insulin sensitivity
fromCGMand insulin pump data (3), engineering of the AP algorithms (4), reports of
predictive low-glucose suspend (LGS) systems (5), studies of overnight CLC at home
(6), feasibility of the AP in type 2 diabetes (7), and the first around-the-clock outpatient
CLC running a model predictive control (MPC) algorithm on a portable AP system (8).
Since then, Nature, Science, JAMA, the New England Journal of Medicine, and

Lancet have published overviews or research articles on the AP as well (9–15). These
articles supported the conviction that a mechanical solution to the problem of
maintaining strict control of diabetes without increasing the risk of hypoglycemia
was rapidly progressing to a reality.

HISTORICAL PERSPECTIVE

Although the AP concept can be traced back to studies in the 1970s that showed the
possibility for external BG regulation using intravenous infusions of insulin and
glucose and frequent BG measurements (16,17), today’s AP was made possible by
advances in insulin pump technology and the introduction of real-time, minimally
invasive CGM sensors (18–21). The pioneering AP study by Steil et al. (22) in 2006
was followed by a series of promising, short-term, closely supervised, inpatient
investigations that demonstrated the effectiveness of hybrid CLC using manual
premeal bolus dosing (23), tested different control algorithms (24,25) and the
feasibility of a bihormonal “bionic” pancreas that used glucagon to prevent post-
meal hypoglycemia resulting from aggressive premeal insulin (26), and demon-
strated other benefits of CLC (27–30). Most of these reports showed the
superiority of CLC over CSII therapy in terms of 1) increased time within target
BG range (typically 70–180 mg/dL), 2) reduced incidence of hypoglycemia, and 3)
better overnight control (31). These studies were supported by the JDRF Artificial
Pancreas Project Consortium and the National Institutes of Health AP initiatives,
which set the stage for the European AP@home Consortium launched in 2010.
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SYSTEM INTEGRATION

LGS, which is now commercially avail-
able and is already a part of clinical prac-
tice, was the first half-step to CLC
because it is an integrated pump and
CGM system that can automatically
shut off insulin delivery when sensor glu-
cose levels fall below a preset low
threshold level. The Automation to
Simulate Pancreatic Insulin Response
(ASPIRE) trial showed a 38% reduction
in nocturnal hypoglycemia compared
with CGM alone, without increasing
HbA1c (32). Predictive LGS algorithms,
which have the ability to shut off insulin
delivery based on the projected fall of
sensor glucose levels during a prede-
fined time interval, brought this type of
system to a higher level of computa-
tional sophistication when introduced
in 2014. However, both of these LGS ap-
proaches are based on a simple switch
to turn off insulin in response to falling
glucose values and lack the defining
characteristics of CLCdfeedback/feed-
forward modulation of insulin delivery
based on the analysis of glucose fluctu-
ations and insulin on board.

OUTPATIENT CLC

The first step toward CLC in the outpa-
tient setting was using a laptop-based
system installed at the bedside of chil-
dren at a diabetes camp (12). Other AP
trials, which confirmed the feasibility of
CLC outside of the hospital in adults and
adolescents, used small personal com-
puters installed in the patients’ homes
(6,14,33). The University of Virginia
group introduced the first wearable
AP platformdthe Diabetes Assistant
(DiAs)din 2011. DiAs used an Android
smartphone as a computational hub,
and its defining characteristic was the
ability to switch smoothly between dif-
ferent modes of operation depending
on patient preference and signal avail-
ability (34,35). Several international
multisite trials confirmed the feasibility
and the safety of this system in the out-
patient setting (36–40).

AP TODAY

This issue of Diabetes Care presents the
AP state of the art today and includes four
reports onoutpatient clinical trials in free-
living patients: two testing the AP in
adults (41,42), one in adolescents (43),
and one in young children (44). One study
examined whether adjunctive treatment

with pramlintide and liraglutide improves
CLC bymitigating postmeal glucose excur-
sions (45) and one focused on the head-
to-head comparison of two strategies:
MPC and proportional integral derivative
(PID) under comparable clinical condi-
tions (46). The issue concludes with two
articles related to study design issues: a
consensus document aimed at identifying
a minimal set of outcome measures that
should be included in future studies (47)
and an article that discusses design con-
siderations for AP pivotal trials (48). Here
we provide a brief guided tour on these
contributionsbypointingout somerelevant
information for each article, which should
help the reader put them into context.

Anderson et al. (41) report the results
of a multicenter multinational trial test-
ing the free-living use of a wearable AP
system in 30 adults, aged 18–66 years,
recruited in six centers in the U.S., Italy,
France, and Israel. This nonrandomized
study included three 2-week periods. In
the first period, the patients used a
sensor-augmented pump (SAP). In the
second period, they used the AP system
only overnight (from 2300 to 0700 h). In
the third period, they used the AP 24/7.
This studyused theUniversity ofVirginia’s
DiAs AP platform.

Renard et al. (42) report a nonrandom-
ized extension phase, continuing a previ-
ous AP trial (15) that tested, in free-living
conditions, SAP against AP used from din-
ner towake-up (evening-and-night AP). In
the current study, the same AP system is
used 24/7 for 1month (day-and-night AP)
in adults from the previous study (15).
Day-and-night AP was compared against
evening-and-night AP and SAP. The algo-
rithm was an MPC algorithm developed
at the University of Pavia, University of
Padova, and University of Virginia. The
algorithm was running on DiAs.

Tauschmann et al. (43) report the first
outpatient trial testing in free-living, at-
home day-and-night closed-loop insulin
delivery in 12 adolescents, aged 15.4 6
2.6 years, recruited in Cambridge, U.K.
This randomized crossover study included
two 1-week periods during which patients
used either SAP or the AP. The control
algorithm used was the MPC algorithm
developed at theUniversity of Cambridge.
The algorithm was running on the Flor-
ence D2A wearable platform that was de-
veloped at the same university.

Del Favero et al. (44) report the results
of the first study focused on outpatient

day-and-night use of a single-hormoneAP
in 30 children, aged 5–9 years, recruited
in five Italian centers and studied in a pe-
diatric camp. This randomized crossover
study included two 3-day periods during
which the patient used either SAP, man-
aged by their parent/caretakers, or SAP.
The algorithm was an MPC algorithm de-
veloped at theUniversity of Pavia, Univer-
sity of Padova, and University of Virginia.
The algorithm was running on DiAs.

Sherr et al. (45) investigated clinical
strategies that used adjunctive treat-
ment with pramlintide and liraglutide,
titrated to full therapeutic doses over
3–4 weeks, to blunt exaggerated post-
prandial glucose excursions. In the
pramlintide study, two 24-h closed-
loop inpatient studies were conducted
in 10 subjects, aged 16–23 years. It com-
pared AP alone with AP plus 60-mg doses
of pramlintide given with each meal. A
similar studywas carried outwith liraglu-
tide in 11 subjects, aged 18–27 years,
whowere studied before and after treat-
ment with daily injections of 1.8 mg of
liraglutide.Meals were not announced in
either study.

Pinsker et al. (46) compare twowidely
used AP control algorithms, personal-
ized MPC and PID, under nonideal but
comparable clinical conditions. The
comparison was performed in 20 adults
studied in a randomized crossover trial
held in supervised inpatient 27.5-h AP
sessions. Challenges included both an-
nounced (dinner and breakfast) and un-
announced meals (lunch).

The current issue of Diabetes Care is
enriched by a consensus document by
Maahs et al. (47) in which a broad panel
of scientists working in the field of the
AP identified a minimal set of outcome
measures that should be included among
those presented when reporting on AP
studies. This consensus on outcomemea-
sures will facilitate the interpretation of
study results by investigators, regulatory
bodies, health care providers, payers, and
patients themselves, thereby accelerating
thewidespreadadoptionofAP technology.

Finally, Russell and Beck (48) discuss
design considerations for AP pivotal
studies intended to provide the neces-
sary data to gain clearance from the U.S.
Food and Drug Administration, coverage
by payers, and adoption by patients and
clinicians. In particular, a key aspect of
study design is emphasized: the inter-
vention to be used by the control group.
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Suggested options are the currently avail-
able best technology, SAP, or the usual
care.
Patients often ask how many years will

it be before AP systems become commer-
cially available for the treatment of their
diabetes. Although there is still much
work to be done in improving these sys-
tems, our readers should be reassured by
the remarkable progress that has been
made during the two years since Diabetes
Care’s last AP issue. However, the evi-
dence provided in the articles published
in this special issue of Diabetes Care
should not be interpreted as an indication
that we are nearing the end of AP devel-
opment. Rather, this body of work indi-
cates that the translation of advances in
AP technology intobetter care for patients
with diabetes is just around the corner.
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