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OBJECTIVE

Observational studies show an association between ferritin and type 2 diabetes
(T2D), suggesting a role of high iron stores in T2D development. However, ferritin
is influenced by factors other than iron stores, which is less the case for other
biomarkers of iron metabolism. We investigated associations of ferritin, trans-
ferrin saturation (TSAT), serum iron, and transferrin with T2D incidence to clarify
the role of iron in the pathogenesis of T2D.

RESEARCH DESIGN AND METHODS

The European Prospective Investigation into Cancer and Nutrition–InterAct study
includes 12,403 incident T2D cases and a representative subcohort of 16,154
individuals from a European cohort with 3.99 million person-years of follow-up.
We studied the prospective association of ferritin, TSAT, serum iron, and trans-
ferrin with incident T2D in 11,052 cases and a random subcohort of 15,182 indi-
viduals and assessed whether these associations differed by subgroups of the
population.

RESULTS

Higher levels of ferritin and transferrin were associated with a higher risk of T2D
(hazard ratio [HR] [95% CI] in men and women, respectively: 1.07 [1.01–1.12] and
1.12 [1.05–1.19] per 100mg/L higher ferritin level; 1.11 [1.00–1.24] and 1.22 [1.12–
1.33] per 0.5 g/L higher transferrin level) after adjustment for age, center, BMI,
physical activity, smoking status, education, hs-CRP, alanine aminotransferase,
and g-glutamyl transferase. Elevated TSAT (‡45% vs. <45%) was associated
with a lower risk of T2D in women (0.68 [0.54–0.86]) but was not statistically
significantly associated in men (0.90 [0.75–1.08]). Serum iron was not associ-
ated with T2D. The association of ferritin with T2D was stronger among leaner
individuals (Pinteraction < 0.01).

CONCLUSIONS

The pattern of association of TSAT and transferrin with T2D suggests that the
underlying relationship between iron stores and T2D is more complex than the
simple link suggested by the association of ferritin with T2D.
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Hereditary hemochromatosis (HHC),
a genetic disorder characterized by
systemic iron overload, is reported
to be associated with diabetes (1).
Similarly, an overrepresentation of
diabetes cases has also been described
among individuals with conditions of
acquired iron overload, such as thalas-
semia major (2). This raises the question
whether high levels of body iron are a
risk factor for type 2 diabetes in the
general population; this would have
implications for the prevention and
treatment of type 2 diabetes. Cross-
sectional and prospective population
studies report a positive association
between ferritin and type 2 diabetes
(3,4). However, although ferritin
is considered a marker of iron stores
in healthy individuals (5–7), it is also
an acute phase reactant and is
influenced by inflammation, liver dis-
ease, and insulin resistance, which are
also associated with type 2 diabetes
(8–11).
Other commonly measured bio-

markers of iron metabolism reflect dif-
ferent aspects of the process and are
less influenced by the above-mentioned
conditions; therefore, their use may
provide additional information on the
role of iron in the pathogenesis of
type 2 diabetes. Transferrin is the iron-
binding protein in circulation, and
its levels rise with increasing iron
requirements. Serum iron is difficult
to interpret in isolation because it

has a diurnal variation and hence varies
significantly without changes in total
body iron (12). Transferrin saturation
(TSAT) is the proportion of transferrin
bound to serum iron and is in part a
marker of iron absorption: it reflects
the proportion of circulating iron in the
context of iron requirements. TSAT is el-
evated in the presence of non-transferrin-
bound iron, which in turn is responsible
for iron-related oxidative damage
(13,14).

We investigated the association of
ferritin, TSAT, serum iron, and transfer-
rin with incident type 2 diabetes in a
large, prospective European case-cohort
study. We also assessed whether these
associations have a threshold effect or
differ by subgroups of the population,
such as individuals not presenting signs
of conditions commonly associated with
hyperferritinemia.

RESEARCH DESIGN AND METHODS

The EPIC-InterAct Study

Participants and Study Design

The InterAct study is a large case-cohort
study of incident type 2 diabetes and is
nested within the European Prospective
Investigation into Cancer and Nutrition
(EPIC) study, the design and population
characteristics of which have been pub-
lished previously (15). In brief, a total of
12,403 incident cases of type 2 diabetes
were ascertained and verified during
3.99 million person-years of follow-up
(mean follow-up, 11.7 years) of 340,234

eligible EPIC participants (men and
women, age 20–80 years at baseline,
who had a stored blood sample and a
reported diabetes status). The subco-
hort (n = 16,154), which was a repre-
sentative sample of the original cohort,
was identified by randomly selecting in-
dividuals from each center. We excluded
individuals who had prevalent clinically
diagnosed diabetes at baseline. By de-
sign, there are individuals with incident
diabetes who were also randomly allo-
cated to the subcohort (n = 778), and
these are included as cases in case-cohort
analyses (15). A detailed breakdown of
participants with data on the iron bio-
markers and covariates are detailed in
RESULTS. Participants gave written in-
formed consent, and the study was ap-
proved by the local ethics committee in
the participating countries and the inter-
nal review board of the International
Agency for Research on Cancer.

Measurements

Standardized information was collected
by questionnaire and physical examina-
tion at recruitment as part of EPIC. Par-
ticipants were asked about their level of
education, smoking status, and alcohol
consumption (which was subsequently
converted into mean grams/day). Diet
and physical activity were assessed us-
ing questionnaires (15,16). Most co-
horts were asked about the presence
of a family history of type 2 diabetes,
defined as type 2 diabetes in a first-degree
relative, except those in Italy, Spain,
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Oxford, and Heidelberg. Menopausal
status was defined as menopausal
(postmenopausal or postoophorectomy)
and nonmenopausal (pre- or perimen-
opausal). A blood sample was taken at
varying times of day and stored frozen
for future measurements (15). Follow-
up data on mortality and disease status
was ascertained via registries, clinical
records, and other sources of clinical
information (15).

Type 2 Diabetes Case Ascertainment

and Verification

Incident type 2 diabetes cases were iden-
tified using multiple sources of evidence,
including self-report, linkage to primary-
care registers, linkage to secondary-care
registers, medication use, hospital admis-
sions, and mortality data. Cases were con-
sidered verified if confirmed by at least
two independent sources. Cases in
Denmark and Sweden were identified
via local and national diabetes and phar-
maceutical registers, and hence all ascer-
tained cases were considered to be
verified (15). Follow-up was censored at
the date of diagnosis, 31 December 2007,
or date of death,whichever occurred first.

Laboratory Measurements

Serum samples were used to measure
the biomarkers in all centers except
Umea (n = 1,845), where only plasma
samples were available and only ferritin
could be measured. All measurements
were done at the Stichting Huisartsen
Laboratorium, Etten-Leur, the Nether-
lands. Cobas assays were used to mea-
sure ferritin (electrochemiluminescence
immunoassay sandwich principle), iron
(colorimetric assay), and transferrin
(immunoturbidimetric assay) on a Roche
HitachiModularPanalyzer. Theassay range
for serum iron was 0.9–179 mmol/L, that
for transferrin was 1.26–63 mmol/L, and
that for ferritin was 0.5–2000 mg/L. Re-
sults below the lower detection limit for
each assay were consideredmissing (only
two results for serum iron). TSAT was
calculated as follows: [iron (mmol/L) 3
100)]/[transferrin (g/L) 3 22.75]. Cobas
assays on the same analyzer were also
used to measure hs-CRP (particle-
enhanced immunoturbidimetric assay),
alanine aminotransferase (ALT) and as-
partate aminotransferase (AST) (ultravi-
olet test), and g-glutamyl transferase
(GGT) (enzymatic calorimetric assay).
Quality control was based on the West-
gard rules (17).

Statistical Analysis

Baseline characteristics of individuals in
the subcohort were compared across
sex-specific quartiles of ferritin distribu-
tion. Distributions of ferritin levels were
compared by sex, BMI, and waist cir-
cumference categories in the subcohort.
After log-transformation of variables
with skewed distributions (ferritin, hs-
CRP, GGT, and alcohol consumption), a
multivariable regressionmodel adjusted
for age, center, and sex, and unadjusted
Pearson correlation coefficients, were
used to describe the relationships be-
tween each biomarker of iron metabo-
lism and each other, and with possible
confounders.

We estimated associations of differ-
ences (defined in Table 3) in ferritin,
iron, and transferrin (in natural units)
with the risk of type 2 diabetes using
Prentice-weighted Cox regression mod-
els with age as the underlying timescale,
fitted separately within each country;
estimates were combined across coun-
tries using random effects meta-analysis.
Prentice-weighted Cox regression is
used to analyze a case-cohort study to
account for the enrichment of incident
cases occurring outside of the random
subcohort. We used hazard ratios (HRs)
as estimates of risk. We used TSAT
$45% as a cutoff because this is the
threshold recommended by clinical
guidelines to rule out genetic causes of
hyperferritinemia (18) and at which sub-
stantial levels of non-transferrin-bound
iron appear (14). We fitted three differ-
ent models with increasing levels of ad-
justment for key potential confounders,
namely, age, study center, BMI, physical
activity, smoking status, level of educa-
tion, hs-CRP, ALT, and GGT. AST and ALT
were highly correlated (r = 0.75), and
because AST is less specific for liver dis-
ease than ALT, we included only ALT in
the model. We included participants
who had data available for the relevant
biomarker and all these potential con-
founders, unless stated otherwise. To
compare results with pooled estimates
from a recent meta-analysis (3), results
were also reported for the top quintile
compared with the lowest quintile of
ferritin (sex-specific quintiles defined in
the subcohort). Because the distribution
of ferritin is substantially different
among men and women in the general
population, we also reported results
for one sex-specific SD of ferritin. We

also presented HRs for various TSAT cut-
offs and for a 5% higher level of TSAT.
Adjusted and unadjusted cubic splines
were generated for the association of
each biomarker with type 2 diabetes
in men and women. The splines were
calculated between the 1st and 99th
percentiles of the relevant biomarker,
with knots at the 5th, 25th, 75th, and
95th percentiles and the median as
the reference.

The association of ferritin with type
2 diabetes was also estimated in a
restricted sample of individuals who did
not present signs of common corre-
lates of hyperferritinemia, namely, in-
flammation, liver disease, high alcohol
consumption, and obesity (n = 10,958).
Thesewere defined as individualswithhs-
CRP ,10 mg/L, ALT and AST #40 U/L,
GGT #60 U/L (men) and #40 U/L
(women) and low to moderate self-
reported alcohol consumption (,30 g/day
in men and ,20 g/day in women, as
suggested by the European Association
for the Study of Liver [19]). The same
association was also estimated after
excluding individuals with ferritin levels
higher than 1,000 mg/L (n = 125) in an
attempt to exclude individuals with
conditions of extreme iron overload,
such as HHC.

For biomarkers that showed a signif-
icant association with type 2 diabetes
in men and women, P values for inter-
action between the biomarker and
variables related to iron metabolism
were estimated by including a param-
eter representing the interaction be-
tween the biomarker (continuous)
and the variable of interest (categori-
cal) in Prentice-weighted Cox regres-
sion models adjusted for age, sex,
and center and fitted within each
country; estimates were combined us-
ing random effects meta-analysis. HRs
of type 2 diabetes for each biomarker
were then estimated within strata for
each variable of interest. Waist cir-
cumference was categorized accord-
ing to sex-specific cutoffs (20) and
BMI according to the World Health Or-
ganization classification (defined in
Fig. 2).

Sensitivity analyses were carried out
for the association of ferritin and type 2
diabetes because it is the one where
confounding is most likely; this was
also adjusted for menopausal status,
alcohol consumption, and red meat
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consumption. Information on waist cir-
cumference and family history of type 2
diabetes was missing in 7.3% and 50.4%
of the study population, respectively,
mainly because it had not been assessed
by certain centers. Therefore, these var-
iables were not included as covariates
in the main models, but sensitivity
analyses were carried out among indi-
viduals with information on waist cir-
cumference (n = 23,122) and family
history of type 2 diabetes (n = 11,565).
All analyses were performed using
Stata 13.

RESULTS

Of all 27,779 InterAct participants
(12,403 incident type 2 diabetes cases),
between 23,554 (10,371 cases) and
25,113 individuals (11,052 cases) had
data available for the relevant biomarkers
and all the covariates for the main

models and were included in this analy-
sis. The median (interquartile range) of
ferritin in the subcohort was 144 mg/L
(80–241 mg/L) in men and 58 mg/L (29–
107mg/L) in women. Among those in the
subcohort, 8.31% of men and 4.78% of
women had TSAT $45%. Summary sta-
tistics of biomarkers and baseline char-
acteristics of participants by quartiles of
ferritin in the subcohort are detailed in
Tables 1 and 2. Individuals in the highest
quartile of ferritin were older, consumed
more alcohol, had lower levels of trans-
ferrin, and had higher levels of TSAT and
liver enzymes compared with individuals
in the rest of the subcohort. Leaner indi-
viduals had smaller SDs of ferritin
(Supplementary Table 1). In linear re-
gression analyses adjusting for age, sex,
and center (Supplementary Table 2),
ferritin was associated with each of the
other iron markers and with all of

the possible confounding factors with
the exception of estimated dietary iron
intake, for which the relationship was
weak. TSAT was strongly correlated
with serum iron (r = 0.91) and inversely
correlated with hs-CRP (r =20.15). Esti-
mated dietary iron intake was only
weakly associated with ferritin and not
with the other iron biomarkers.

HRs of type 2 diabetes for each bio-
marker are summarized in Table 3 and
Supplementary Fig. 1; the adjusted and
unadjusted associations estimated from
spline regression are displayed in Fig. 1
and Supplementary Fig. 2, respectively.
A 100 mg/L higher ferritin level was as-
sociated with a higher risk (95% CI)
of type 2 diabetes in men (1.07 [1.01–
1.12]) and women (1.12 [1.05–1.19]),
after adjustment for age, center, BMI,
physical activity, smoking status, level
of education, hs-CRP, ALT, and GGT.

Table 1—Baseline characteristics by quartiles of ferritin in men in the subcohort (n = 5,697)

Ferritin by quartile* (mg/L)
P for difference
across quartiles†

Ferritin in the overall
subcohort (mg/L)Q1 (4–80) Q2 (81–144) Q3 (145–241) Q4 (242–2283)

Age (years) 52.2 (8.9) 52.1 (9.1) 52.8 (9.1) 53.5 (8.3) ,0.001 52.9 (8.9)

BMI (kg/m2) 26.2 (3.5) 26.4 (3.5) 26.6 (3.5) 27.4 (3.6) ,0.001 26.6 (3.6)

Education 0.0001
Low 7.9 6.1 4.9 4.4 5.6
Primary 37.0 35.0 31.5 32.0 34.1
Vocational 21.4 21.4 22.7 25.3 22.8
Secondary 13.2 13.3 13.7 12.3 13.3
Higher 20.5 24.1 27.2 26.1 24.2

Physical activity 0.006
Inactive 17.5 17.8 19.7 18.9 18.7
Moderately inactive 28.6 29.9 30.7 34.0 30.9
Moderately active 25.9 27.1 24.2 24.8 25.5
Active 28.0 25.1 25.2 22.3 24.9

Smoking 0.7
Never 34.5 32.8 30.6 29.2 31.7
Former 32.5 32.5 37.7 42.6 36.7
Current 33.0 34.7 31.6 28.2 31.6

Family history of
type 2 diabetes 12.1 16.2 12.8 19.3 ,0.001 15.5

Alcohol intake (g/day)‡ 10.5 (2.2–24.6) 12.3 (3.4–28.3) 15.2 (5.4–36.2) 19.3 (7.1–40.2) ,0.001 13.5 (4.0–32.4)

Dietary iron intake
(mg/day) 15.3 (4.9) 15.4 (5.0) 15.2 (5.0) 15.3 (5.0) 0.9 15.3 (5.0)

Biomarkers
TSAT (%) 26.8 (9.9) 29.7 (9.8) 30.8 (9.2) 33.8 (12.5) ,0.001 30.3 (10.7)
Iron (mmol/L) 17.3 (6.0) 17.8 (5.7) 18.2 (5.5) 19.2 (6.6) ,0.001 18.1 (6.0)
Transferrin (g/L) 2.9 (0.4) 2.7 (0.4) 2.6 (0.3) 2.5 (0.4) ,0.001 2.7 (0.4)
Glucose (mmol/L) 5.0 (1.6) 5.1 (1.3) 5.2 (1.5) 5.6 (1.5) ,0.001 5.2 (1.5)
HbA1c (mmol/mol) 36.4 (4.8) 36.3 (4.5) 36.4 (5.4) 36.3 (6.4) 0.97 36.4 (5.3)
hs-CRP (mg/L)‡ 0.9 (0.5–1.9) 1.0 (0.5–2.1) 1.1 (0.6–2.5) 1.4 (0.7–2.9) ,0.001 1.1 (0.5–2.3)
ALT (U/L) 22.6 (10.4) 24.4 (11.8) 26.6 (13.6) 32.9 (20.0) ,0.001 26.6 (14.9)
AST (U/L) 29.3 (7.6) 30.0 (8.4) 30.9 (9.5) 35.0 (15.3) ,0.001 31.3 (10.9)
GGT (U/L)‡ 24.0 (18.0–34.0) 26.0 (19.0–40.0) 29.5 (21.0–46.0) 36.0 (25.0–60.0) ,0.001 28.0 (20.0–44.0)

Data are mean (SD) or percentage. Data for skewed variables (marked with a ‡) are shown as median (interquartile range). *Range of ferritin values
by quartile are in parentheses. †ANOVA for normally distributed continuous variables, Kruskal-Wallis test for continuous variables with skewed
distribution (marked with a ‡), and x2 test for categorical variables.
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HRs per sex-specific SD of ferritin
were similar in men and women
(Supplementary Table 3). The spline
analyses showed that the strengths of
the associations were weakened by the
adjustment (particularly for ferritin),
whereas the shapes of the associations
remained generally similar. TSAT$45%
versus ,45% was associated with a
significantly lower risk of type 2 diabe-
tes in women only. Using cutoffs of 50%
and 55% for TSAT or estimating HRs per
5% higher level of TSAT did not sub-
stantially affect the results, but the as-
sociation was no longer statistically
significant in women using cutoffs of
50% or 55% (Supplementary Table 4).
A higher serum iron level was not
associated with type 2 diabetes. A
higher transferrin level was associated
with a higher risk of type 2 diabetes in
men (1.11 [1.00–1.24]) and women

(1.22 [1.12–1.33]). The associations of
ferritin and transferrin with type 2
diabetes were most attenuated after
adjustment for BMI and ALT (data not
shown). Sensitivity analyses excluding
individuals who developed diabetes
within the first 2 years of follow-up
did not change the results (data not
shown).

Restricting the analyses to individu-
als not presenting any sign of overt
inflammation, liver disease, high alco-
hol consumption, or obesity moder-
ately weakened the association of
ferritin with type 2 diabetes in men
to an HR (95% CI) of 1.04 (0.96–1.12),
whereas the association remained
similar in women, with an HR of 1.12
(1.02–1.24) per 100 mg/L higher level
of ferritin, adjusted for age, center,
type 2 diabetes risk factors, hs-CRP,
and liver enzymes. Among individuals

with ferritin levels,1,000 mg/L, the asso-
ciation of ferritin with type 2 diabetes was
similar in men, with an HR of 1.09 (1.02–
1.15), but higher in women (1.26 [1.15–
1.38]).

In age- and center-adjusted analyses,
associations for ferritin, TSAT, serum iron,
and transferrin were stronger among
women compared withmen, although dif-
ferences did not reach conventional levels
of statistical significance for transferrin
(Pinteraction = 0.004, ,0.001, 0.01, and
0.47, respectively). There was a stronger
association of ferritin with type 2 diabe-
tes among leaner individuals (Fig. 2),
with a significant interaction with waist
circumference (Pinteraction = 0.004) and
BMI (Pinteraction , 0.001). Transferrin
showed a stronger association with
type 2 diabetes among individuals at ex-
tremes ofwaist circumference (Pinteraction =
0.034). There was no interaction of either

Table 2—Baseline characteristics by quartiles of ferritin in women in the subcohort (n = 9,485)

Ferritin by quartile* (mg/L)
P for difference
across quartiles†

Ferritin in the overall
subcohort (mg/L)Q1 (1–29) Q2 (30–58) Q3 (59–107) Q4 (108–3,017)

Age (years) 47.2 (8.0) 50.0 (9.4) 54.1 (8.7) 57.0 (7.8) ,0.001 52.1 (9.3)

BMI (kg/m2) 25.5 (4.4) 25.4 (4.6) 25.4 (4.4) 26.4 (4.6) ,0.001 25.7 (4.5)

Education 0.002
Low 12.4 10.2 7.3 6.3 8.9
Primary 33.1 30.5 32.6 34.2 32.8
Vocational 20.3 22.0 24.4 26.6 23.4
Secondary 15.6 16.6 18.0 17.0 16.6
Higher 18.6 20.7 17.8 15.9 18.3

Physical activity 0.0008
Inactive 30.1 26.4 26.8 24.5 27.0
Moderately inactive 34.2 35.4 34.8 36.2 35.1
Moderately active 20.3 20.9 20.4 21.1 20.9
Active 15.4 17.3 18.0 18.2 17.1

Smoking 0.0006
Never 59.7 54.6 54.1 56.2 56.0
Former 20.2 21.3 21.7 22.4 21.4
Current 20.1 24.1 24.3 21.4 22.6

Family history of
type 2 diabetes 19.7 18.7 19.5 23.5 0.1 20.5

Alcohol intake (g/day)‡ 1.7 (0–7.2) 2.7 (0.2–10.6) 3.6 (0.4–12.0) 5.1 (0.6–13.5) ,0.001 3.0 (0.2–11.1)

Estimated dietary iron
intake (mg/day) 12.3 (3.6) 12.4 (3.7) 12.3 (3.6) 12.0 (3.4) 0.009 12.2 (3.6)

Biomarkers
TSAT (%) 20.8 (10.5) 27.2 (9.7) 28.5 (9.0) 30.5 (10.3) ,0.001 26.7 (10.5)
Iron (mmol/L) 14.3 (6.7) 17.1 (6.0) 17.3 (5.4) 17.8 (5.8) ,0.001 16.6 (6.2)
Transferrin (g/L) 3.1 (0.5) 2.8 (0.4) 2.7 (0.4) 2.6 (0.4) ,0.001 2.8 (0.4)
Glucose (mmol/L) 4.7 (1.3) 4.7 (1.0) 4.8 (1.2) 5.0 (1.3) ,0.001 4.8 (1.2)
HbA1c (mmol/mol) 35.6 (4.6) 35.5 (4.3) 36.4 (4.7) 36.9 (5.8) ,0.001 36.1 (4.9)
hs-CRP (mg/L)‡ 0.9 (0.4–1.9) 1.0 (0.5–2.2) 1.1 (0.6–2.5) 1.4 (0.7–3.1) ,0.001 1.1 (0.5–2.4)
ALT (U/L) 17.0 (8.7) 17.7 (9.0) 19.5 (12.4) 21.9 (15.1) ,0.001 19.0 (11.7)
AST (U/L) 25.7 (9.9) 26.1 (10.1) 27.3 (7.9) 29.1 (13.7) ,0.001 27.1 (10.7)
GGT (U/L)‡ 14.0 (11.0–18.0) 16.0 (12.0–22.0) 18.0 (14.0–26.0) 20.0 (15.0–31.0) ,0.001 17.0 (13.0–24.0)

Data are mean (SD) or percentages. Data for skewed variables (marked with a ‡) are median (interquartile range). *Range of ferritin values by
quartile are in parentheses. †ANOVA for normally distributed continuous variables, Kruskal-Wallis test for continuous variables with skewed
distribution (marked with a ‡), and x2 test for categorical variables.
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ferritin or transferrinwithmenopausal sta-
tus, estimated dietary iron, or alcohol con-
sumption, and no interaction of transferrin
with BMI.
Adjusting for menopausal status, alco-

hol consumption, red meat intake, family
history of type 2 diabetes, or waist circum-
ference did not substantially modify the
association of ferritin among men or
women (Supplementary Table 5).

CONCLUSIONS

This study, which was conducted in a
large European population, showed
that higher ferritin and transferrin

levels were associated with an increased
risk of type 2 diabetes among men and
women. Even among individuals show-
ing no signs of overt inflammation, liver
disease, high alcohol consumption, or
obesity, ferritin was associated with
type 2 diabetes in women and to a lesser
extent in men. An elevated TSAT was
associated with a lower risk of type 2
diabetes in women when a cutoff of
45% was used, and serum iron was not
associated with type 2 diabetes. The as-
sociations of all four iron biomarkers
with type 2 diabetes were stronger
among women than men. This likely

reflects physiological differences in
iron metabolism and biomarker distri-
butions between men and women,
causing the relative risk of absolute bio-
marker differences to be greater in
women.

The association of ferritin with type 2
diabetes has previously been reported,
but the association from the latest
meta-analysis of prospective studies
was stronger and less precise than that
found in this study, with an HR (95% CI)
of 1.73 (1.35–2.22) for the top quintile
compared with the lower quintile in the
meta-analysis (3). This difference may
be explained by themuch larger number
of cases in this study (11,052 versus
3,391) and the lack of adjustment for
liver enzymes in many of the studies in-
cluded in the meta-analysis. The stron-
ger association amongwomen thanmen
using natural units was no longer appar-
ent when using standardized units, sug-
gesting that the stronger association is a
reflection of the different distributions
of ferritin amongmen andwomen in the
population. Contrary to suggestions
from previous studies (21,22), we did
not observe a threshold effect of ferri-
tin with incident type 2 diabetes in the
InterAct study, but rather a linear asso-
ciation, with an increased risk even at
levels of ferritin considered within the
reference range. To our knowledge, we
demonstrated for the first time that fer-
ritin showed a relatively stronger associ-
ation among leaner individuals. This may
be because leaner individuals have a
lower absolute risk of type 2 diabetes
and that the SD of ferritin is smaller
among leaner individuals, and hence
the relative risk of ferritin is larger in
leaner than in overweight or obese indi-
viduals. The association of higher trans-
ferrin with type 2 diabetes was previously
reported in a small prospective study,
which also showed the absence of an as-
sociation of serum ironwith type 2 diabe-
tes (23).

Nevertheless, our study found a more
complex relationship between TSAT and
diabetes. Results from existing prospec-
tive studies of TSAT with type 2 diabetes
are conflicting. A study using data from
the National Health and Nutrition Exam-
ination Survey did not find any associa-
tion between TSAT and type 2 diabetes
using different cutoffs for TSAT (24).
By contrast, a meta-analysis of three
Danish studies found that TSAT $50%

Table 3—HRs (95% CI) of type 2 diabetes for the higher biomarker levels stated, by
sex and meta-analyzed across countries

Biomarkers by sex HR (95% CI) P value Heterogeneity I2 (%)

Men
Ferritin (per 100 mg/L)
Model 1 1.18 (1.12–1.25) ,0.001
Model 2 1.13 (1.08–1.19) ,0.001
Model 3 1.06 (1.01–1.12) 0.021 72.20

TSAT $45%
Model 1 0.99 (0.81–1.20) 0.885
Model 2 1.06 (0.86–1.32) 0.579
Model 3 0.90 (0.75–1.08) 0.259 0.0

Serum iron (per 5 mmol/L)
Model 1 1.03 (0.98–1.08) 0.293
Model 2 1.04 (0.98–1.11) 0.166
Model 3 1.00 (0.94–1.07) 0.976 49.40

Transferrin (per 0.5 g/L)
Model 1 1.20 (1.12–1.30) ,0.001
Model 2 1.16 (1.05–1.29) 0.003
Model 3 1.11 (1.00–1.23) 0.061 54.50

Women
Ferritin (per 100 mg/L)
Model 1 1.31 (1.22–1.41) ,0.001
Model 2 1.22 (1.14–1.31) ,0.001
Model 3 1.12 (1.05–1.19) 0.001 53.50

TSAT $45%
Model 1 0.54 (0.44–0.67) ,0.001
Model 2 0.73 (0.59–0.91) 0.004
Model 3 0.68 (0.54–0.86) 0.002 0.0

Serum iron (per 5 mmol/L)
Model 1 0.92 (0.89–0.95) ,0.001
Model 2 1.02 (0.97–1.07) 0.403
Model 3 1.00 (0.95–1.05) 0.869 38.00

Transferrin (per 0.5 g/L)
Model 1 1.30 (1.21–1.41) ,0.001
Model 2 1.24 (1.15–1.34) ,0.001
Model 3 1.22 (1.12–1.33) ,0.001 55.30

Men and women
Ferritin (upper vs.

lower quintile)†
Model 1* 2.46 (2.05–2.96) ,0.001
Model 2* 1.77 (1.57–2.00) ,0.001
Model 3* 1.36 (1.20–1.54) ,0.001 5.3

Model 1 is adjusted for age and center. Model 2 is further adjusted for BMI, physical activity,
smoking status, and level of education. Model 3 is adjusted even further for hs-CRP, ALT, and
GGT. *Additional adjustment for sex. †Ferritin quintile cut points for men: #68, .68–117,
.117–177, .177–270, and .270 mg/L; for women: #24, .24–45, .45–73, .73–121, and
.121 mg/L.
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was associated with a higher risk of
type 2 diabetes (25). However, these
were relatively small studies, with fewer
than 1,500 cases in each. This is, to our
knowledge, the first prospective study
to show that elevated TSAT is associated
with a lower risk of type 2 diabetes,
which was statistically significant only
in women. Recent cross-sectional stud-
ies have shown a similar association of
high ferritin and low TSAT among indi-
viduals with “prediabetes” (26–28).
TSAT is a useful biomarker of iron

metabolism in addition to ferritin (26)
because TSAT levels are less affected
by inflammation than ferritin (29) and
are thought to reflect levels of non-
transferrin-bound iron (13,14). In pa-
tients with HHC, which is characterized
by high iron absorption, TSAT is elevated
first, followed by ferritin once iron
accumulates in tissues (1). Non-transferrin-
bound iron is thought to be an important
source of organ iron deposition and tox-
icity because it is avidly taken up by tis-
sues, independent of the transferrin

receptor (14), and levels have been
shown to be higher in patients with
type 2 diabetes compared with con-
trols (30). However, the direction of
association between TSAT and type 2
diabetes observed in this study does
not support a simple association be-
tween increased iron absorption or
higher non-transferrin-bound iron
and type 2 diabetes. This may be be-
cause not all cases of iron overload
are characterized by elevated TSAT.
For example, the insulin resistance–
associated hepatic iron overload syn-
drome is characterized by mild to
moderate hepatic iron overload on
liver biopsy, generally with elevated
ferritin but normal TSAT (31–33). Alter-
natively, a higher TSAT could reflect
more successful scavenging of non-
transferrin-bound iron and therefore
be protective against type 2 diabetes.
Finally, because TSAT is inversely asso-
ciated with inflammation, negative
confounding by inflammation may
mask an association of TSAT with
type 2 diabetes.

High levels of ferritin and transferrin
are markers of high and low iron stores,
respectively, and were strongly in-
versely correlated. However, they were
both positively associated with type 2
diabetes in this study. Participants with
low ferritin levels had a lower risk of de-
veloping type 2 diabetes compared with
the median, suggesting that low iron
stores per se are not associated with a
higher risk of type 2 diabetes. While
cross-talk between iron and insulin re-
sistance is likely, the initiating factor of
the vicious circle remains unclear (34).
Cross-sectional studies showed that fer-
ritin was correlated with 2-h glucose
concentration and inversely correlated
with insulin sensitivity in individuals
without type 2 diabetes (8), as well as
inversely with adiponectin (35,36).
A recent study showed that ferritin
and transferrin were prospectively as-
sociated with indices of hepatic, mus-
cular, and adipocyte insulin resistance
(37). Some experimental studies re-
port upregulation of transferrin expres-
sion by insulin in human hepatocytes
(38,39), whereas others suggest an an-
tagonist effect of transferrin on insulin
action, leading to insulin resistance
(40). We suggest that the association
of both ferritin and transferrin with in-
cident type2 diabetes could be explained,

Figure 1—Adjusted HRs for type 2 diabetes by ferritin, TSAT, serum iron and transferrin levels in
men andwomen. Ferritin inmen (A) and women (B); TSAT inmen (C) and women (D); serum iron
in men (E) and women (F); and transferrin in men (G) and women (H). Adjusted for age, BMI,
physical activity, smoking status, level of education, hs-CRP, ALT, and GGT (A–F and H) and age,
BMI, hs-CRP, ALT, and GGT only (G) because otherwise the spline failed to converge. The
histograms represent the distribution of the biomarkers in the given population.
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at least in part, by insulin resistance.
This is supported by the fact that in
this study the strength of the associa-
tions of ferritin and transferrin with
type 2 diabetes was most strongly at-
tenuated after adjustment for BMI and
ALT, which are both associated with in-
sulin resistance (41,42).
Taken together, these observed asso-

ciations of TSAT and transferrin with
type 2 diabetes do not support the
clear role of iron in the pathogenesis
of type 2 diabetes that might have
been suggested by the association of
ferritin. Case series in the 20th century
reported a relatively high prevalence
of diabetes among patients with HHC,
which formed an important basis for
the hypothesized role of iron in the
pathogenesis of type 2 diabetes. How-
ever, the Hemochromatosis and Iron
Overload Screening Study found the
sex- and age-adjusted prevalence of

self-reported diabetes similar in C282Y
homozygotes and in participants with-
out HFE C282Y and H63D mutations
(43–46). Also, genetic studies to date
show that C282Y is not associated with
type 2 diabetes, whereas H63D is mod-
estly associated (47,48). HHC was his-
torically defined in the 19th century as
the co-occurrence of cirrhosis, diabetes,
and skin pigmentation, and this triad
became the sine qua non of HHC until
the end of the 20th century. Because
diabetes was part of the triad used to
define HHC, clinicians would look for
type 2 diabetes in people they sus-
pected of having HHC. This creates an
ascertainment bias, which is less likely
to occur now that genetic testing is
the gold standard for the diagnosis of
HHC. An alternative explanation for
the associations observed in this study
is that iron overload disorders caused
by different mechanisms show different

associations with type 2 diabetes,
but that these differences may not be
captured by the use of biomarkers.
However, the use of more invasive mea-
sures of iron stores necessary to distin-
guish these disorders is unlikely to be
feasible on a large scale.

This is, to our knowledge, the first
prospective study to comprehensively
report the association of four commonly
used clinical measures of iron stores
with type 2 diabetes. It is limited be-
cause we had a single measure of TSAT
for each individual and because most
samples were collected during a non-
fasting state, which may have affected
the dichotomous categorization of
TSAT. However, this applied to all par-
ticipants irrespective of their diabetes
status, and the consequence would
be nondifferential error, which would
underestimate the strength of the as-
sociation between TSAT and type 2

Figure 2—HRs of type 2 diabetes per 100mg/L of ferritin and 0.5 g/L of transferrin in men and women by strata adjusting for age, sex, and center, and
meta-analyzed across countries. Waist circumference (WC) in men: group 1,,94 cm; group 2, 94–102 cm; group 3,$102 cm; in women: group 1,
,80 cm; group 2, 80–88 cm; group 3, $88 cm.
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diabetes. This could contribute to the
lack of observed association in men but
does not explain the association in
women. Also, wewere unable to exclude
participants with clinically diagnosed
HHC. However, although HFE mutations
are common, the clinical penetrance of
the disease is extremely low (49); there-
fore, this is unlikely to have substantially
affected our results. As with all observa-
tional studies, we cannot exclude re-
verse causality or residual confounding
as potential explanations for our find-
ings. However, there was no relationship
between the iron biomarkers and HbA1c
at baseline in the subcohort, and sensi-
tivity analyses excluding individuals who
developed diabetes within the first 2
years of follow-up did not change the
results. These observations lessen the
likelihood of reverse causality.
In conclusion, the observed pattern

of association of these biomarkers of
iron metabolism with type 2 diabetes
suggests a more complex relationship
than simply high iron stores being a
risk factor for type 2 diabetes. It remains
to be clarified whether the associations
of higher ferritin and transferrin with
type 2 diabetes are due to a causal role
of iron in the pathogenesis of type 2
diabetes, or whether it simply reflects
the underlying progression of insulin
resistance. The genetics of iron metabo-
lism in general and of different disorders
of iron metabolism in particular, based
on their mechanisms, may be useful in
addressing these questions, which are
difficult to answer using traditional ob-
servational designs.
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