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OBJECTIVE

Nutrient “preloads” given before meals can attenuate postprandial glycemic ex-
cursions, at least partly by slowing gastric emptying and stimulating secretion of
the incretins (i.e., glucagon-like peptide-1 [GLP-1] and glucose-dependent insulino-
tropic polypeptide [GIP]). This study was designed to evaluate whether a pro-
tein preload could improve the efficacy of the dipeptidyl peptidase-4 (DPP-4)
inhibitor vildagliptin to increase incretin concentrations, slow gastric emptying,
and lower postprandial glycemia in type 2 diabetes.

RESEARCH DESIGN AND METHODS

Twenty-two patients with type 2 diabetes treated with metformin were studied
on four occasions, receiving either 50 mg vildagliptin (VILD) or placebo (PLBO) on
both the evening before and the morning of each study day. The latter dose was
followed after 60min by a preload drink containing either 25 gwhey protein (WHEY)
or control flavoring (CTRL), and after another 30 min by a 13C-octanoate–labeled
mashed potato meal. Plasma glucose and hormones, and gastric emptying, were
evaluated.

RESULTS

Compared with PLBO/CTRL, PLBO/WHEY reduced postprandial peak glycemia,
increased plasma insulin, glucagon, and incretin hormones (total and intact),
and slowed gastric emptying, whereas VILD/CTRL reduced both the peak and area
under the curve for glucose, increased plasma intact incretins, and slowed gastric
emptying but suppressed plasma glucagon and total incretins (P < 0.05 each).
Compared with both PLBO/WHEY and VILD/CTRL, VILD/WHEY was associated
with higher plasma intact GLP-1 and GIP, slower gastric emptying, and lower
postprandial glycemia (P < 0.05 each).

CONCLUSIONS

In metformin-treated type 2 diabetes, a protein preload has the capacity to en-
hance the efficacy of vildagliptin to slow gastric emptying, increase plasma intact
incretins, and reduce postprandial glycemia.

The “incretin” hormones glucose-dependent insulinotropic polypeptide (GIP)
and glucagon-like peptide-1 (GLP-1) are major determinants of postprandial gly-
cemia (1). The latter is an important target in patients with type 2 diabetes,
particularly those with modestly elevated HbA1c (2). In health, both incretins
stimulate insulin secretion in a glucose-dependent manner (1). However, the
effect of GIP is substantially diminished in type 2 diabetes (3), whereas GLP-1
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retains considerable insulinotropic activ-
ity (3) and also slows gastric emptying (4)
and suppresses glucagon secretion (5)
and energy intake (6).
Dipeptidyl peptidase-4 (DPP-4) inhib-

itors prevent rapid degradation of en-
dogenous incretins, thereby elevating
plasma concentrations of the intact
forms. However, the overall secretion
of incretin hormones is reduced as a re-
sult of negative feedback regulation (1).
Given the loss of response to GIP in
type 2 diabetes (3), the glycemic effect
of DPP-4 inhibitors has been considered
largely GLP-1 related. Indeed, the GLP-1
receptor antagonist exendin(9–39) at-
tenuates the glucose-lowering and insu-
linotropic effects of the DPP-4 inhibitor
sitagliptin by ;50% in patients with
type 2 diabetes and abolishes any slow-
ing of gastric emptying (7). Therefore,
strategies that stimulate endogenous
GLP-1 secretion could potentially en-
hance the efficacy of DPP-4 inhibition.
Our group has developed a novel

“preload” concept, which primarily tar-
gets the postprandial glycemic excur-
sion in the management of type 2
diabetes. Consumption of a macronutri-
ent preload before the main meal can
stimulate release of gut peptides, in-
cluding GLP-1, slow gastric emptying,
and reduce the glycemic response to
the meal (8). We recently reported
that a preload of xylose (a poorly ab-
sorbed pentose) augments the reduc-
tion of postprandial glycemia by
sitagliptin in type 2 diabetes, associated
with sustained elevation of plasma in-
tact GLP-1 concentrations (9). However,
diarrhea and flatulence may limit the
tolerability of xylose for long-term use.
Whey protein preloads also stimulate
GLP-1 and reduce postprandial glycemia
in type 2 diabetes and are well tolerated
(10,11). However, the doses of whey
used (;50 g) entail a substantial burden
in energy intake and are relatively ex-
pensive. A smaller whey preload (25 g)
was also reported to slow gastric emp-
tying and reduce postprandial peak
blood glucose, without causing signifi-
cant weight gain with sustained use in
patients with type 2 diabetes (12), but
whether it is sufficient to increase
plasma GLP-1 concentrations and, ac-
cordingly, enhance the efficacy of DPP-4
inhibitors has not been established.
In the current study, we hypothesized

that a protein preload would enhance

the efficacy of glucose lowering by
DPP-4 inhibition and evaluated the
acute effect of the DPP-4 inhibitor
vildagliptin with and without a 25-g
whey preload on postprandial glycemia
in patients with type 2 diabetes man-
aged with metformin monotherapy, a
group in whom DPP-4 inhibitors are
commonly added (13).

RESEARCH DESIGN AND METHODS

Subjects
Twenty-two male subjects with type 2
diabetes, managed bymetforminmono-
therapy (500–2,000 mg/day, stable for
$3 months), were studied after provid-
ing written informed consent. The mean
(6SE) age was 64.2 6 1.4 years, BMI
27.9 6 1.7 kg/m2, HbA1c 6.6 6 0.2%
(48.8 6 2.2 mmol/mol), and duration
of known diabetes 5.6 6 1.2 years.
None were smokers or tookmedications
affecting gastrointestinal function. The
protocol was approved by the Human
Research Ethics Committee of Royal
Adelaide Hospital and was conducted
in accordance with the principles of
the Declaration of Helsinki.

Protocol
Each subject was studied on four occa-
sions, separated by 7 days, in random-
ized, double-blind fashion. On the evening
before each study day (;1900 h), subjects
consumed a standardized beef lasagna
meal (2,472 kJ; McCain Foods Proprie-
tary Ltd., Victoria, Australia) with a tablet
of either 50 mg vildagliptin (Novartis,
NSW, Australia) or matching placebo, to-
gether with their usual evening dose of
metformin. Compliance was reinforced
with a phone call and evaluated by pill
count.

Subjects then fasted untilmorning and
attended the laboratory at ;0730 h.
Any usual morning medications, includ-
ing metformin, were withheld until the
end of the visit. An intravenous cannula
was inserted for repeated blood sam-
pling, and subjects remained seated
throughout the study. Vildagliptin 50 mg
or a matching placebo tablet was ad-
ministered orally with 30 mL water (at
t = 290 min), followed after 60 min
(t = 230 min) by a 250-mL preload drink
containing either 25 g whey protein iso-
late (89 kcal; Murray Goulburn, Mel-
bourne, Australia) or 25 g control
flavoring (8 kcal; Cottee’s, Southbank,
Australia), so that the four treatments

were vildagliptin + whey preload
(VILD/WHEY), vildagliptin + control pre-
load (VILD/CTRL), placebo + whey pre-
load (PLBO/WHEY), and placebo +
control preload (PLBO/CTRL) (Fig. 1).
Thirty minutes later (between t = 0 and
5 min), subjects ate a semisolid meal
comprising 65 g powdered potato (Deb
Instant Mashed Potato; Continental,
Epping, Australia) and 20 g glucose, recon-
stituted with 200 mL water and one egg
yolk containing 100 mL 13C-octanoate.
Breath samples were collected immedi-
ately before and every 5 min after meal
ingestion in the 1st hour and every
15 min for a further 3 h for the measure-
ment of gastric emptying. Venous blood
samples were collected at t =290,230,
215, 0, 15, 30, 60, 90, 120, 180, and 240
min, for measurements of plasma glu-
cose, insulin, glucagon, and GIP and
GLP-1 (both total and intact forms).
Samples were stored on ice in tubes
containing EDTA and DPP-4 inhibi-
tor (DPP4-010; Linco Research Inc.,
St. Charles, MO), before centrifugation
at 3,200 rpm for 15 min at 48C within
15 min of collection. Plasma was sepa-
rated and stored at 2808C for subse-
quent analysis.

Measurements
Plasma glucose concentrations were
measured by the glucose oxidase tech-
nique (2300 STAT Plus; YSI, Yellow
Springs, OH). Plasma insulin was mea-
sured by ELISA immunoassay (10-1113;
Mercodia, Uppsala, Sweden). Plasma
glucagon was measured by radioimmu-
noassay (GL-32K; Millipore, Billerica,
MA). Plasma GIP and GLP-1 analyses
were performed as previously described
(14,15). Intact and total GIP were
analyzed with the N-terminally and
C-terminally directed antisera 98171 (14)
and 80867 (15), respectively. Intact GLP-1
was measured using a two-site ELISA
(C-terminally directed GLP-1F5–catching
antibody and N-terminally directed
Mab26.1-detecting antibody) (14). Total
GLP-1 was assayed using antiserum
89390, requiring the intact amidated
C terminus of the molecule and reacting
equally with intact GLP-1 and the pri-
mary (N-terminally truncated) metabo-
lite (14).

The 13CO2 concentration in breath
samples was measured by an isotope
ratio mass spectrometer (ABCA 2020;
Europa Scientific, Crewe, U.K.) with an
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online gas chromatographic purification
system. The half-emptying time (T50)
was calculated, using the formula de-
scribed by Ghoos et al. (16). This method
has been validated against scintigraphy
for the measurement of gastric empty-
ing (17).

Statistical Analysis
The differences in fasting plasma glu-
cose and hormone levels for vildagliptin
versus placebo, and for whey versus
control preload days, were evaluated
using two-factor repeated-measures
ANOVA, with drug and preload as fac-
tors. Areas under the curve (AUCs)
were calculated using the trapezoidal
rule for plasma glucose and hormones,
which, together with postprandial peak

plasma glucose and T50, were compared
using one-factor repeated-measures
ANOVA. The variables were also
assessed using two-factor repeated-
measures ANOVA, with treatment and
time as factors. Post hoc comparisons,
adjusted for multiple comparisons by
Bonferroni-Holm correction, were per-
formed if ANOVAs revealed signifi-
cant effects. Relationships between
variables were assessed using univari-
ate linear regression analysis. Based on
our previous work (9,10,12), a sample
size of 22 subjects was calculated to
have at least 80% power (at a = 0.008
to enable correction for multiple post
hoc testing) to detect a difference in the
AUC for blood glucose of 2.5 mmol/L z h
with an SD of 3.3 mmol/L z h between

treatments. All analyses were performed
with SPSS Statistics (Version 21; IBM, New
York, NY). Data are presented asmeans6
SEM.P,0.05was considered statistically
significant.

RESULTS

Compliance with medication was com-
plete, and all subjects tolerated the
study well.

Plasma Glucose Concentrations
Fasting plasma glucose did not differ
betweenwhey and control butwas slightly
lower with vildagliptin than placebo
(P = 0.003 at t = 290 min and P = 0.006
at t = 230 min, respectively) (Table 1).
Before the meal (t = 230 to 0 min),
plasma glucose remained unchanged
after both control and whey preloads. Af-
ter the meal, the plasma glucose excur-
sion showed significant treatment effects
on both the peak and AUC (P , 0.001
for each), such that the peak was lower
for PLBO/WHEY and VILD/CTRL versus
PLBO/CTRL and was lowest after VILD/
WHEY (P , 0.05 for each), whereas
the AUCwas lower for VILD/CTRL versus
PLBO/CTRL and lowest after VILD/
WHEY (P , 0.05 for each), without
a significant difference between
PLBO/CTRL and PLBO/WHEY (Table 2
and Fig. 2A).

Plasma Insulin Concentrations
Fasting plasma insulin (at t = 290 and
230 min) did not differ across study
days (Table 1). Before the meal (t =
230 to 0 min), plasma insulin remained

Figure 1—Outline of study protocol. On the preceding evening of each study visit, either 50 mg
vildagliptin (VILD) or a placebo (PLBO) tablet was givenwith a standardizedmeal. On each study
day, at t = 290 min, either 50 mg vildagliptin or a placebo tablet was given. At t = 230 min, a
250-mL preload drink containing either 25 g whey or control flavoring (CTRL) was consumed,
followed by a 13C-octanoate–labeled mashed potato meal (at t = 0–5 min). Venous blood was
obtained at frequent intervals during the study for measurement of plasma glucose, insulin,
glucagon, GLP-1, and GIP. Gastric emptying was determined by breath test.

Table 1—Fasting plasma glucose, insulin, glucagon, and GIP and GLP-1 (both total and intact forms) concentrations on the
control (CTRL) and whey preload days after an acute dose of 50 mg vildagliptin (VILD) or placebo (PLBO) at ∼1900 h on the
preceding evening in patients with type 2 diabetes treated with metformin (n = 22)*

PLBO (CTRL) PLBO (WHEY) VILD (CTRL) VILD (WHEY)
Difference
due to drug

Difference
due to preload

At t = 290 min
Plasma glucose (mmol/L) 8.8 6 0.5 8.8 6 0.5 8.4 6 0.5 8.3 6 0.4 0.003 0.501
Plasma insulin (mU/L) 9.3 6 1.5 8.4 6 1.0 8.2 6 1.1 9.0 6 1.2 0.534 0.900
Plasma glucagon (pg/mL) 95.5 6 4.7 93.6 6 4.0 91.8 6 4.8 90.2 6 24.5 0.092 0.249
Plasma total GIP (pmol/L) 11.5 6 1.1 10.5 6 0.9 9.8 6 0.7 9.7 6 0.9 0.022 0.202
Plasma intact GIP (pmol/L) 6.4 6 0.4 6.4 6 0.5 7.9 6 0.6 8.2 6 0.7 0.002 0.639
Plasma total GLP-1 (pmol/L) 4.6 6 0.4 5.2 6 0.8 5.4 6 0.7 4.9 6 0.6 0.494 0.803
Plasma intact GLP-1 (pmol/L) 0.2 6 0.1 0.3 6 0.1 0.7 6 0.2 1.0 6 0.4 0.003 0.340

At t = 230 min
Plasma glucose (mmol/L) 8.7 6 0.4 8.6 6 0.5 8.4 6 0.5 8.1 6 0.4 0.006 0.251
Plasma insulin (mU/L) 8.2 6 1.4 6.7 6 1.0 7.9 6 1.3 7.9 6 1.2 0.216 0.130
Plasma glucagon (pg/mL) 88.0 6 4.5 86.5 6 3.7 83.7 6 4.2 84.2 6 3.7 0.007 0.776
Plasma total GIP (pmol/L) 9.6 6 0.8 10.0 6 1.1 8.2 6 0.6 8.6 6 0.9 0.004 0.553
Plasma intact GIP (pmol/L) 5.6 6 0.5 6.0 6 0.4 7.3 6 0.6 8.3 6 0.9 0.003 0.093
Plasma total GLP-1 (pmol/L) 4.1 6 0.4 5.0 6 0.6 4.3 6 0.6 4.5 6 0.7 0.378 0.097
Plasma intact GLP-1 (pmol/L) 0.2 6 0.1 0.2 6 0.1 0.6 6 0.2 0.7 6 0.3 0.007 0.905

Data are mean 6 SEM. *Two-factor ANOVA, with drug and preload as factors, was used to determine statistical difference.

care.diabetesjournals.org Wu and Associates 513

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/39/4/511/625835/dc152298.pdf by guest on 03 April 2024

http://care.diabetesjournals.org


unchanged on the control days (PLBO/
CTRL and VILD/CTRL) and increased af-
ter the whey preload (PLBO/WHEY and
VILD/WHEY). After the meal, plasma in-
sulin concentrations showed a signifi-
cant treatment effect for AUC (P ,
0.001), such that plasma insulin was
higher for PLBO/WHEY versus PLBO/
CTRL and for VILD/WHEY versus VILD/
CTRL (P, 0.05 for each), without signif-
icant difference between PLBO/CTRL
and VILD/CTRL or between PLBO/
WHEY and VILD/WHEY (Table 2 and
Fig. 2C).

Plasma Glucagon Concentrations
Fasting plasma glucagon did not differ
between the whey and control days
but was slightly lower with vildagliptin
compared with placebo (P = 0.092 at
t =290 min and P = 0.007 at t =230 min,
respectively) (Table 1). Before the meal
(t = 230 to 0 min), plasma glucagon
concentrations remained unchanged
on the control days (PLBO/CTRL and
VILD/CTRL) but increased markedly af-
ter the whey preload (PLBO/WHEY and
VILD/WHEY). After the meal, plasma
glucagon showed a significant treat-
ment effect for AUC (P , 0.001), such
that plasma glucagon was higher for
PLBO/WHEY versus PLBO/CTRL and for
VILD/WHEY versus VILD/CTRL but lower
for VILD/CTRL versus PLBO/CTRL and for
VILD/WHEY versus PLBO/WHEY (P ,
0.05 for each) (Table 2 and Fig. 2D).

Plasma Total and Intact GIP
Concentrations
Fasting plasma total and intact GIP did
not differ between thewhey and control
days, but plasma total GIP was slightly
lower (P = 0.022 at t = 290 min and

P = 0.004 at t = 230 min, respectively)
whereas intact GIP was higher (P =
0.002 at t = 290 min and P = 0.003 at
t = 230 min, respectively) with vildaglip-
tin compared with placebo (Table 1). Be-
fore the meal (t = 230 to 0 min), both
total and intact GIP concentrations re-
mained unchanged on the control days
(PLBO/CTRL and VILD/CTRL) but in-
creased after the whey preload (PLBO/
WHEY and VILD/WHEY). After the meal,
both total and intact GIP concentrations
showed significant treatment effects for
the AUC (P , 0.001 for each), such that
total GIP was higher for PLBO/WHEY
versus PLBO/CTRL and for VILD/WHEY
versus VILD/CTRL but lower for VILD/
CTRL versus PLBO/CTRL and for VILD/
WHEY versus PLBO/WHEY, whereas in-
tact GIP was higher for PLBO/WHEY and
VILD/CTRL versus PLBO/CTRL and high-
est after VILD/WHEY (P, 0.05 for each)
(Table 2 and Fig. 2E and F).

Plasma Total and Intact GLP-1
Concentrations
Fasting plasma total GLP-1 did not differ
between study days, whereas intact
GLP-1 concentrations did not differ be-
tween the whey and control days but
were slightly higher with vildagliptin
compared with placebo (P = 0.003
at t = 290 min and P = 0.007 at t =
230 min, respectively) (Table 1). Before
themeal (t =230 to 0min), both total and
intact GLP-1 concentrations remained
unchanged on the control days (PLBO/
CTRL and VILD/CTRL) but increased af-
ter the whey preload (PLBO/WHEY and
VILD/WHEY). After the meal, there
were significant treatment effects on
the AUC for both total and intact GLP-1

(P , 0.001 for each), such that total
GLP-1 was higher for PLBO/WHEY ver-
sus PLBO/CTRL and for VILD/WHEY
versus VILD/CTRL but lower for VILD/
CTRL versus PLBO/CTRL and for VILD/
WHEY versus PLBO/WHEY, whereas in-
tact GLP-1 was higher for PLBO/WHEY
and VILD/CTRL versus PLBO/CTRL and
highest after VILD/WHEY (P, 0.05 for
each) (Table 2 and Fig. 2G and H).

Gastric Emptying
There was a significant treatment effect
on the half-emptying time of the meal
(T50) (P, 0.001), such that gastric emp-
tying was slower for PLBO/WHEY (T50:
172.3 6 5.7 min) and VILD/CTRL (T50:
161.3 6 5.7 min) versus PLBO/CTRL
(T50: 147.76 4.4 min) and was slowest
after VILD/WHEY (T50: 193.76 7.3 min)
(P , 0.05 for each) (Fig. 2B).

Relationships of Glycemia With
Gastric Emptying, Insulin, GIP, and
GLP-1
When data from the four study visits
were pooled, postprandial glycemia at
t = 30, 60, and 90 min was inversely
related to T50 (r = 20.25, P = 0.02;
r = 20.40, P , 0.001; r = 20.28, P =
0.008, respectively), and at t = 240 min
directly related to T50 (r = 0.25,
P = 0.02).

Compared with placebo, the magni-
tude of reduction in peak postprandial
glucose with vildagliptin was related
directly to the slowing of gastric emp-
tying (r = 0.42, P = 0.005), while the
reduction in AUC for postprandial
plasma glucose was related to the in-
crease in AUC for plasma intact GLP-1
(r = 0.31, P = 0.04), but not GIP, insulin,
or glucagon.

Table 2—Effects of vildagliptin, with or without a whey preload, on postprandial glycemic peak and the AUC for plasma
glucose, insulin, glucagon, and GIP and GLP-1 (both total and intact forms) in response to a carbohydrate meal in patients
with type 2 diabetes treated with metformin (n = 22)

PLBO/CTRL PLBO/WHEY VILD/CTRL VILD/WHEY P value

Glycemic peak (mmol/L) 15.4 6 0.7 14.7 6 0.9§ 14.4 6 0.8# 13.1 6 0.8a,d,« ,0.001

Glucose AUC230 to 240min (mmol/L z h) 51.6 6 3.2 51.2 6 3.6 48.7 6 3.3# 46.3 6 3.0a,d,« ,0.001

Insulin AUC230 to 240min (mU/L z h) 130.7 6 20.4 155.0 6 21.5§ 137.9 6 23.4 166.3 6 26.5a,« ,0.001

Glucagon AUC230 to 240min (pg/mL z h) 380.5 6 16.9 496.4 6 20.8§ 358.7 6 15.8# 468.7 6 21.1a,d,« ,0.001

Total GIP AUC230 to 240min (pmol/L z h) 163.9 6 14.9 193.3 6 21.0§ 135.6 6 12.4# 167.4 6 24.5d,« ,0.001

Intact GIP AUC230 to 240min (pmol/L z h) 59.0 6 2.9 72.5 6 5.5§ 114.7 6 9.8# 144.3 6 19.6a,d,« ,0.001

Total GLP-1 AUC230 to 240min (pmol/L z h) 30.4 6 2.0 37.4 6 2.5§ 25.5 6 2.2# 31.8 6 3.1d,« ,0.001

Intact GLP-1 AUC230 to 240min (pmol/L z h) 1.7 6 0.4 3.9 6 0.8§ 6.4 6 1.0# 10.1 6 1.5a,d,« ,0.001

Data are mean 6 SEM. Post hoc comparisons were adjusted by Bonferroni-Holm correction. One-factor ANOVA was used to determine statistical
difference. §P , 0.05, PLBO/WHEY vs. PLBO/CTRL. #P , 0.05, VILD/CTRL vs. PLBO/CTRL. aP , 0.05, VILD/WHEY vs. PLBO/CTRL. dP , 0.05,
VILD/WHEY vs. PLBO/WHEY. eP , 0.05, VILD/WHEY vs. VILD/CTRL.
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CONCLUSIONS

In this study of patients with type 2
diabetes who were relatively well
controlled on metformin alone, we
observed that 1) a low-dose whey pre-
load reduces postprandial glycemic ex-
cursions in association with slowing of
gastric emptying and stimulation of

incretin hormone, insulin, and glucagon
secretion; 2) acute dosing with vildaglip-
tin increases plasma intact GLP-1 and
GIP, suppresses plasma glucagon and
total GLP-1 and GIP, slows gastric emp-
tying, and attenuates postprandial gly-
cemia independent of enhancement of
insulin secretion; and 3) combining

vildagliptin with a whey preload is
more effective for increasing plasma
intact GLP-1 and GIP, slowing gastric
emptying, and reducing postprandial gly-
cemia, compared with either treatment
alone. Remarkably, the addition of the
whey preload to treatmentwith vildaglip-
tin approximately doubled the reduction
in peak postprandial blood glucose.

The dose of whey, although lower
than used previously (10,11), proved
sufficient to stimulate GLP-1 and GIP se-
cretion and slow gastric emptying.
Whey also induced early increases in
plasma insulin and glucagon, probably
due to direct b- and a-cell stimulation
by absorbed amino acids, since themod-
est elevation in intact GLP-1 and GIP oc-
curred later. However, the effects of
insulin and glucagon on blood glucose
appeared to be counterbalanced. Al-
though the modest increase in intact
GLP-1 and GIP in the absence of vildaglip-
tin was not associated with significant
lowering of the AUC for postprandial
glycemia, the “early” phase of the post-
prandial glycemic excursion was attenu-
ated, in line with slowing of gastric
emptying after whey (18). The latter
would also favor a reduction in the
meal-induced insulin response (19). In
the presence of vildagliptin, both the
early rise andoverall AUC for postprandial
glycemia were attenuated after whey
compared with control, highlighting the
complementary actions of a dietary strat-
egy combined with DPP-4 inhibition.

As anticipated, vildagliptin increased
intact GLP-1 and GIP concentrations, an
effect that was enhanced by the whey
preload. The reduction in total GLP-1
and GIP concentrations is consistent
with the concept of negative feedback
on incretin hormone secretion (1). Al-
though there is recent evidence that
about half of the insulinotropic and
glucose-lowering effects of sitagliptin are
GLP-1 independent (7), we showed
that the magnitude of reduction in post-
prandial glycemia was related directly
to the increase in plasma intact GLP-1,
consistent with complementary glucose-
lowering actions of GLP-1 in type 2 diabetes
(1). Elevated intact GIP concentrations are
likely to contribute less (3,20,21), and GIP
administration can even antagonize the
glucagonostatic effect of GLP-1 (20). In
the current study, the glucagonostatic
effect of intact GLP-1 prevailed, and
may, to some extent, have contributed

Figure 2—Effects of vildagliptin, with or without a whey preload, on plasma glucose (A), gastric
half-emptying time (B), plasma insulin (C), plasma glucagon (D), and plasma GIP (E and F for total
and intact forms, respectively) and GLP-1 (G and H for total and intact forms, respectively) in
response to a high-carbohydrate meal in patients with type 2 diabetes managed by metformin
monotherapy (n = 22). The four treatments were VILD/WHEY, VILD/CTRL, PLBO/WHEY, and
PLBO/CTRL. Repeated-measures ANOVA was used to determine statistical difference. Results
of ANOVA were reported as P values for differences by experiment (Tx), differences over time
(Time), and differences due to interaction of experiment and time (Tx*time). Post hoc compar-
isons were adjusted by Bonferroni-Holm correction. *P , 0.05, PLBO/WHEY vs. PLBO/CTRL;
#P, 0.05, VILD/CTRL vs. PLBO/CTRL;aP, 0.05, VILD/WHEY vs. PLBO/CTRL; dP, 0.05, VILD/WHEY
vs. PLBO/WHEY; eP, 0.05, VILD/WHEY vs. VILD/CTRL. Data are mean6 SEM.
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to glucose lowering by vildagliptin.
However, relative to the increase of
glucagon after whey, this effect was
modest. Therefore, additional mecha-
nisms are likely to be important in ac-
counting for the glycemic effect after
combined treatment with whey preload
and vildagliptin. Despite augmentation
of intact GLP-1 after vildagliptin, partic-
ularly when combined with whey, there
was minimal increase in insulin, proba-
bly because the insulinotropic activity
of GLP-1 is glucose dependent (1). The
glycemic effect of vildagliptin observed
in the current study was also unlikely to
be related to improvement in insulin sen-
sitivity; administration of 50 mg vildaglip-
tin twice daily for 9 days was previously
reported not to alter insulin action in
patients with type 2 diabetes (22). Nev-
ertheless, during pancreatic clamp
studies where insulin and glucagon se-
cretion are inhibited, GLP-1 remains ef-
fective to suppress endogenous glucose
production (23) and enhance peripheral
glucose uptake (24), suggesting that
GLP-1 has the capacity to lower blood
glucose independent of changes in islet
hormones.
Vildagliptin slowed gastric emptying

modestly both in the absence and pres-
ence of the whey preload, associated
with the reduction in peak blood glu-
cose. This has been reported previ-
ously in patients with type 2 diabetes
receiving a single dose of vildagliptin
(25) and is consistent with evidence
that endogenous GLP-1 slows gastric
emptying (4,7). Several studies failed
to show any effect of DPP-4 inhibitors
on gastric emptying in health or type 2
diabetes (9,26–28), probably related to
changes in other peptides that regulate
gastric emptying (e.g., reduced conver-
sion of peptide YY[1-36] to [3-36]) (29),
and differences in test meal, subject
characteristics, or duration of DPP-4 in-
hibition. Sustained exposure to elevated
GLP-1 during prolonged DPP-4 inhibi-
tionmay potentially cause tachyphylaxis
for its effect on gastric emptying (30).
Furthermore, the magnitude of GLP-1
secretion is dependent on the load and
nutrient composition of themeal (1) and
may be influenced by concurrent medi-
cations (e.g., metformin) (31).
We studied only one dose of whey on

the basis of its established effect on gas-
tric emptying (12); testing of different
doses at various intervals before the

meal may further optimize the interac-
tion with DPP-4 inhibitors. Alternative
preloads could be evaluated; Tricò
et al. (32) recently reported that a pre-
load of protein (egg) and fat (cheese)
reduced the glycemic response to oral
glucose substantially, but the effect on
the secretion of incretin hormones was
rather modest, despite higher caloric
value of the preload compared with
our whey preload. We studied only
male patients with relatively good glyce-
mic control on metformin in order to
minimize heterogeneity in this “proof
of concept” study. Therefore, there
should be caution in generalizing our
findings to the broader community of
patients with type 2 diabetes.

In summary, in metformin-treated
patients with type 2 diabetes, the effi-
cacy of vildagliptin in reducing postpran-
dial glycemia is substantially improved
by combination with a small whey pre-
load, associated with augmentation of
plasma intact GLP-1 concentrations
and slowing of gastric emptying. The
strategy of combining a dietary and
pharmacological approach warrants
evaluation in longer-term clinical trials.
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