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OBJECTIVE

The mechanism causing gastrointestinal intolerance to metformin treatment is
unknown. We have previously shown that reduced-function alleles of organic
cation transporter 1 (OCT1) are associated with increased intolerance to metfor-
min. Considering recent findings that serotonin reuptake transporter (SERT)might
also be involved in metformin intestinal absorption, and the role of serotonin in
gastrointestinal physiology, in this study we investigated the association
between a common polymorphism in the SERT gene and metformin gastrointes-
tinal intolerance.

RESEARCH DESIGN AND METHODS

We explored the effect of composite SERT 5-HTTLPR/rs25531 genotypes, L*L*
(LALA), L*S* (LALG, LAS), and S*S* (SS, SLG, LGLG), in 1,356 fully tolerant and
164 extreme metformin-intolerant patients by using a logistic regression model,
adjusted for age, sex, weight, OCT1 genotype, and concomitant use ofmedications
known to inhibit OCT1 activity.

RESULTS

The number of low-expressing SERT S* alleles increased the odds of metformin
intolerance (odds ratio [OR] 1.31 [95% CI 1.02–1.67], P = 0.031). Moreover, a
multiplicative interaction between the OCT1 and SERT genotypes was observed
(P = 0.003). In the analyses stratified by SERT genotype, the presence of two
deficient OCT1 alleles was associated with more than a ninefold higher odds of
metformin intolerance in patients carrying the L*L* genotype (OR 9.25 [95% CI
3.18–27.0], P < 1024); however, it showed a much smaller effect in L*S* carriers
and no effect in S*S* carriers.

CONCLUSIONS

Our results indicate that the interaction between OCT1 and SERT genes might play
an important role in metformin intolerance. Further studies are needed to repli-
cate these findings and to substantiate the hypothesis that metformin gastroin-
testinal side effects could be related to the reduced intestinal serotonin uptake.

Metformin is a first-line antihyperglycemic agent, and the most widely used type 2
diabetes drug. It has major clinical advantages over other therapies because of its
proven safety record, it does not induce hypoglycemia or weight gain, and has
possible cardiovascular benefits (1). The most common adverse effect of metformin
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treatment is gastrointestinal (GI) upset,
which occurs in ;30% of patients, lim-
iting compliance. In 5% of patients treat-
ed with metformin, GI symptoms are
intolerable and warrant the discontinu-
ation of the drug (2). The mechanism of
metformin GI side effects is not clear.
Various pathophysiological hypotheses
have been proposed, including metformin-
induced release of serotonin in the
intestinal mucosa (3), reduced absorp-
tion of bile salts (4), an increase in
glucagon-like peptide-1 concentrations
(5), and more recently, changes in the
gut microbiome (6).
Metformin side effects might be

related to a high concentration of met-
formin in the gut after oral administra-
tion (7). We have recently shown that
reduced-function alleles of organic
cation transporter (OCT) 1, as well as con-
comitant treatment with medications
known to inhibit OCT1 activity, are risk
factors for metformin intolerance in a
large cohort of patients with type 2 di-
abetes treated with metformin (8). OCT1
is one of the several cation-selective
transporters expressed in the entero-
cytes, which could be involved inmetfor-
min absorption (9–11). Other potentially
involved transporters are OCT3 and
plasma membrane monoamine trans-
porter (PMAT). Interestingly, a recent
study (11) showed that OCT1, PMAT, sero-
tonin reuptake transporter (SERT; 5-HTT),
and choline high-affinity transporter, and
not OCT3, contribute to the apical uptake
of metformin into Caco-2 cell monolayers
and, thus, potentially to intestinal metfor-
min absorption. The choline high-affinity
transporter is not expressed in the human
intestine (11), and there are no established
common loss-of-function variants of
PMAT. On the other hand, the expression
of SERT is modulated by genetic variants,
most notably the serotonin transporter-
linked polymorphic region (5-HTTLPR)
variant, a well-established 43-bp insertion/
deletion polymorphism in the promoter
region. Moreover, a recent study (12)
showed that metformin can inhibit sero-
tonin uptake by OCT1, OCT3, and SERT
at concentrations that may be achieved
in the human intestine after oral admin-
istration. These findings contribute to
the hypothesis of serotonin-mediated
GI adverse effects after metformin
treatment, as metformin inhibition of
serotonin uptake could result in in-
creased GI side effects (12).

Considering that different expression
or activity of SERT might contribute to
high interindividual variability in GI in-
tolerance to metformin, in this study
we investigated the role of a common
SERT triallelic 5-HTTLPR polymorphism
in intolerance to metformin, and explored
the potential interaction between SERT
(SLC6A4) and OCT1 (SLC22A1) genes.

RESEARCH DESIGN AND METHODS

Study Population and Definition of
Intolerance
The study population was previously de-
scribed in detail (8). Briefly, the study
included patients with type 2 diabetes
from the Genetics of Diabetes Audit and
Research in Tayside Scotland (GoDARTS),
who were prescribed metformin for
the first time in the period from 1 Janu-
ary 1994 to 1 June 2011. A surrogate phe-
notype of metformin intolerance was
defined based on the discontinuation
of metformin therapy within the first
6 months of treatment (immediate re-
lease [IR] form) and a switch to another
oral hypoglycemic agent, including met-
forminslow-releaseforms,within6months
of the last metformin IR prescription.
Intolerant patients were compared with
patients who were defined as tolerant
based on treatment with $2,000 mg of
the metformin IR form for.6 months.

Clinical cofactors, including anthropo-
metric and biochemical parameters,
metformin daily dose, and the use of
OCT1-inhibiting medications were de-
fined previously (8).

Genotyping
Genotyping of five OCT1 reduced-
function variants (R61C, C88R, G401S,
M420del, and G465R) and the classifica-
tion of individuals based on the number
of haplotypes carrying reduced-function
alleles were described in our previous
study (8).

The 5-HTTLPR polymorphism in a
SERT gene (SLC6A4) is characterized by
long (L) and short (S) alleles. The S allele
has been associated with lower SERT ex-
pression and function (13). A single nu-
cleotide polymorphism (SNP), rs25531
A . G, located within this region, fur-
ther modulates SERT expression, with LA
carriers having higher SERT expression,
and LG carriers having lower SERT ex-
pression, similar to that in S allele car-
riers (14). In this study, we predicted
the 5-HTTLPR polymorphism based on

published machine learning method of
vertex discriminant analysis validated
for Northern European populations
(15). This method uses eight variants
in partial linkage disequilibrium with
5-HTTLPR to predict three genotypes,
LL, SL, and SS (15). Seven of eight SNPs,
and rs25531, were imputed from ex-
isting genome-wide data on 7,319
GoDARTS participants using the 1,000
genome reference panel and the soft-
ware IMPUTE2. The imputation quality
information values were between 0.88
and 1.00. All SNPs were in line with the
Hardy-Weinberg equilibrium (P . 0.05).
Considering that the LG allele has the
same expression as the S allele, the tri-
allelic 5-HTTLPR genotypes were coded
as L*L* (LALA), L*S*(LALG, LAS), and S*S*
(SS, SLG, LGLG).

Statistical Analysis
Differences in quantitative variables
between two groups were compared
using a t test or Mann-Whitney U test,
depending on the distribution normal-
ity, and categorical variables were com-
pared using a x2 test. For testing the
significance of the additive genetic
model, groups of quantitative variables
were compared using ANOVA for trend
or Jonckheere’s trend test, depending
on the distribution normality, and cat-
egorical variables were compared using
the Cochran-Armitage trend test. The
logistic regression model was used to
analyze the association of genotypes
with metformin intolerance, with age,
sex, weight, and the concomitant use of
OCT1-inhibiting medications as covari-
ates (8). On the basis of the findings of
our previous study, the effect of two
deficient OCT1 alleles was assessed (re-
cessive model) (8), and for the triallelic
5-HTTLPR polymorphism, an additive
genetic model was used. The multipli-
cative interaction was assessed by
adding an interaction term to the re-
gression model. Statistical analyses
were conducted using SAS version 9.3
software (SAS Institute Inc., Cary, NC),
and the statistical significance level was
set at P , 0.05.

RESULTS

A total of 1,356 tolerant patients and
164 intolerant patients with available
OCT1 and SERT genotype data were in-
cluded in the study (Table 1). Patients
differed in baseline characteristics, in
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line with our previous study (8). The
OCT1 or SERT genotypes were not asso-
ciated with study participants’ baseline
characteristics, with the exception of a
lower percentage of the antidiabetes
drug-naive patients in the group with
two deficient OCT1 alleles compared
with one or no deficient OCT1 allele car-
riers (Supplementary Table 1, P = 0.003).
The numbers of individuals in each

genotype group are shown in Supple-
mentary Table 2. In addition to the as-
sociation of the two deficient OCT1
alleles with intolerance (recessive
model, P = 0.001), which is in line with
our previous report (8), there was a sig-
nificant difference in the SERT genotype
frequencies between the intolerant and
tolerant groups (additive model, P =
0.019).
In the logistic regression analysis

model adjusted for the clinical covari-
ates age, sex, and weight, the number

of S* alleles was associated with higher
odds of metformin intolerance (odds
ratio [OR] 1.28 [95% CI 1.01–1.63], P =
0.040). This effect was greater after add-
ing theOCT1 genotype andOCT1-inhibiting
medications to the model (Table 2; OR
1.31 [95% CI 1.02–1.67], P = 0.031). Fur-
thermore, we tested the interaction be-
tween the OCT1 and SERT genotypes. A
negative multiplicative interaction was
observed between the two genes (P =
0.003), which is visually presented in
Fig. 1. This shows the joint effects of
OCT1 and SERT genotypes compared
with the reference genotype group (the
combination of one or no deficient OCT1
alleles and the L*L* genotype). In the
analysis stratified by SERT genotypes,
the presence of two deficient OCT1 al-
leles was associated with a more than
ninefold higher odds of metformin intol-
erance (OR 9.25 [95% CI 3.18–27.0], P,
1024) in individuals with L*L* genotype,

whereas there was no significant associ-
ation in L*S* carriers (OR 2.11 [95% CI
0.99–4.50], P = 0.054) and the S*S* ge-
notype group (OR 0.45 [95% CI 0.09–
2.20], P = 0.325) (Table 3). On the other
hand, when patients were stratified ac-
cording to the OCT1 genotypes, the
number of S* alleles increased intoler-
ance in carriers of one or no deficient
OCT1 allele (OR 1.48 [95% CI 1.15–
1.92], P = 0.003), but showed opposite
effect in two deficient OCT1 allele car-
riers (OR 0.33 [95% CI 0.13–0.82], P =
0.017) (Table 3).

CONCLUSIONS

In the first study of genetic and pheno-
typic determinants of metformin intol-
erance, we showed that variants of the
highly polymorphic OCT1 gene are asso-
ciated with severe intolerance leading
to the discontinuation of metformin
therapy (8). We hypothesized this based
on the possible role of OCT1 in met-
formin intestinal absorption. Our later
prospective study demonstrated the re-
lationship between OCT1-deficient al-
leles and common GI side effects of
metformin, thus replicating earlier find-
ings and extending them also to the
milder intolerance phenotype (16). The
mechanism for this association, how-
ever, was unclear. On the basis of the re-
cent findings that metformin may alter
serotonin uptake by gut transporters
(12), and considering the role of serotonin
in GI physiology, here we focused on the
effect of a common and well-established
SERT 5-HTTLPR functional polymorphism
on metformin intolerance.

We found that the low-expressing S*
allele of the SERT gene is associatedwith
increased intolerance to metformin, al-
though this effect was smaller than that
seen to be associated with two OCT1-
deficient alleles. The 5-HTTLPR poly-
morphism has been extensively studied
previously, and there is a possible asso-
ciation of 5-HTTLPR alleles with irritable
bowel syndrome (17), psychiatric traits
(18), and antidepressant drug response
(19). Although the results of the phar-
macogenetic studies have been incon-
sistent, evidence from reviews and
meta-analyses suggest that the L allele
is a predictor of better response to se-
lective serotonin reuptake inhibitors
(SSRIs) in Caucasian populations (19). On
the other hand, in the meta-analysis of
nine studies, the S allele was significantly

Table 1—Baseline characteristics of metformin-intolerant and metformin-tolerant
groups

Intolerant group
(n = 164)

Tolerant group
(n = 1,356) P*

Age (years) 68.8 6 9.7 58.4 6 10.6 ,0.001

Age at diagnosis (years) 63.5 6 9.9 55.2 6 10.3 ,0.001

Females/males (% female) 94/70 (57.3) 545/811 (40.2) ,0.001

Weight (kg) 81.7 6 15.5 92.1 6 18.3 ,0.001

BMI (kg/m2) 30.4 6 5.4 32.6 6 6.1 ,0.001

HbA1c ,0.001
% 8.1 (7.7–9.2) 8.8 (7.8–9.9)
mmol/mol 65 (61–77) 73 (62–85)

Creatinine (mmol/L) 87.4 6 14.4 87.2 6 14.4 0.831

Creatinine clearance (mL/min) 74.4 (57.4–91.4) 97.7 (77.0–120.7) ,0.001

Antidiabetes drug naive 86 (52.4) 831 (61.3) 0.029

Use of OCT1-inhibiting drugs† 83 (50.6) 450 (33.2) ,0.001

Metformin daily dose (mg) 1,000 (1,000–1,000) 1,000 (1,000–1,500) ,0.001

Data are reported as the mean 6 SD, median (interquartile range), or n (%), unless otherwise
indicated. *P values refer to the significance of t test, Mann-Whitney U test, or a x2 test for
data presented as the mean 6 SD, median (interquartile range), or n (%), respectively.
†Number of individuals concomitantly treated with OCT1-inhibiting drugs, including proton
pump inhibitors, tricyclic antidepressants, citalopram, verapamil, diltiazem, doxazosin,
spironolactone, clopidogrel, rosiglitazone, quinine, tramadol, and codeine.

Table 2—Results of logistic regression model for metformin intolerance

OR (95% CI) P

Age 1.11 (1.08–1.13) ,0.001

Sex (females vs. males) 1.82 (1.26–2.65) 0.002

Weight 0.99 (0.97–1.00) 0.031

Use of OCT1-inhibiting drugs 1.75 (1.22–2.49) 0.002

Two reduced-function OCT1 alleles 2.27 (1.31–3.92) 0.003

Number of SERT S* alleles 1.31 (1.02–1.67) 0.031

Logistic regression analysis included 164 intolerant and 1,356 tolerant patients.
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associated with more total adverse ef-
fects after SSRI treatment, and showed
a trend of association with GI side effects
induced by SSRIs (20), which is in linewith
our results.
In humans, serotonin is predomi-

nantly synthesized in the enterochro-
maffin cells of the gut mucosa. Here it
mediates many GI functions, including
motility, secretion, and vasodilation by
activating afferent neurons in the lam-
ina propria (21). Serotonin has been

involved in the pathophysiology of a
number of GI disorders, and drugs tar-
geting serotonin receptors have been
used in the treatment of GI symptoms
(21). Previously, it has been shown that
metformin can induce serotonin release
from the intestinal mucosa, in a dose-
dependent manner, without effect on
5-HT3 receptors (3). In this study, the
effect of metformin on serotonin reup-
take was not explored (3). However,
recent in vitro findings showed that

metformin can inhibit serotonin uptake
by SERT and other cation transporters
(12). Thus, metformin could increase
serotonin extracellular concentrations,
resulting in prolonged serotonergic sig-
naling in the intestine and increased GI
side effects (12). Although in this study,
metformin inhibited serotonin uptake
by OCT1 more strongly than that by
SERT (12), another in vitro study showed
conversely that metformin is not a sig-
nificant inhibitor of OCT1-mediated se-
rotonin transport (22). Beside this, SERT
has much higher expression than OCT1
in the human intestine (11,23), implying
that although metformin is a weak SERT
inhibitor, it could inhibit SERT at the
high concentrations achieved in the
gut after oral administration (24). In
addition, it has been proposed that
the inhibition of intestinal SERT may
contribute to GI adverse effects com-
monly observed with SSRI treatment
(25), and possibly also to the side ef-
fects of other drugs that may act as
SERT inhibitors (26).

As we observed a significant interac-
tion betweenOCT1 and SERT genotypes,
we performed analyses stratified by
each genotype. Interestingly, in the
analyses stratified by SERT genotype,
two OCT1-deficient alleles had a high
effect in patients carrying the L*L*
genotype, a much smaller effect in
L*S* genotype carriers, and no effect
in the S*S* genotype carriers. Further-
more, the low-expressing S* allele was
associated with intolerance only in pa-
tients with one or no deficient OCT1 al-
lele, and showed opposite direction in
the carriers of two deficient OCT1 al-
leles. It can be hypothesized that low
activity of OCT1, possibly the main
intestinal transporter of metformin, re-
sults in increased metformin concentra-
tions in the gut, which can inhibit SERT
and thus cause high extracellular sero-
tonin levels and GI intolerance. On the
other hand, although the number of
low-expressing SERT S* alleles was
associated with intolerance per se,
presumably also due to higher sero-
tonin extracellular levels, the S* allele
showed a protective effect in the pres-
ence of two low-activity OCT1 alleles.
This contradictory finding possibly could
be explained by desensitization of sero-
tonin receptors, which may occur as a
consequence of greatly increased inter-
stitial serotonin concentrations, in the

Figure 1—Joint effects of OCT1 and SERT genotypes onmetformin intolerance. The combination
one or no deficient OCT1 alleles/L*L* is used as a reference group. The numbers in each geno-
type group are presented for the intolerant and tolerant individuals as “intolerant/tolerant.”

Table 3—Stratified analyses according to OCT1 and SERT genotypes

OR (95% CI) P

Effect of two deficient OCT1 allelesdanalysis
stratified for SERT genotype

SERT genotype
L*L* carriers* 9.25 (3.18–27.0) ,0.0001
L*S* carriers† 2.11 (0.99–4.50) 0.054
S*S* carriers‡ 0.45 (0.09–2.20) 0.325

Effect of the number of SERT S* allelesd
analysis stratified for OCT1 genotype

OCT1 genotype
0 or 1 deficient alleles carriers§ 1.48 (1.15–1.92) 0.003
2 deficient alleles carriers| 0.33 (0.13–0.82) 0.017

Analyses were adjusted for age, sex, weight, and use of OCT1-inhibiting medications.
*Thirty-four intolerant patients and 382 tolerant patients. †Eighty-one intolerant patients and
656 tolerant patients. ‡Forty-nine intolerant patients and 318 tolerant patients. §One
hundred forty-one intolerant patients and 1,265 tolerant patients. |Twenty-three intolerant
patients and 91 tolerant patients.
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case of low SERT expression (27) and
high SERT inhibitor concentrations
(28). However, the small numbers of
patients especially in some of these
genotype-stratified analyses preclude
drawing strong conclusions about the
observed interaction. SERT is expressed
at both apical and basolateral mem-
branes of the enterocytes, with predom-
inant apical expression (11). However,
there is ambiguity around the localiza-
tion of the OCT1 in the enterocytes, as
it has been suggested to be located ba-
solaterally (9,29), and conversely, in a
recent study, apically (10). Thus, it is un-
clear whether increased mucosal or lu-
minal metformin concentrations could
contribute to the GI adverse effects.
Nevertheless, the results of our study
suggest a plausible hypothesis for GI in-
tolerance of metformin, which should be
explored further.
In addition to the small sizes of groups

in the stratified analyses, there are sev-
eral other limitations of our study that
need to be acknowledged. First, we
used a surrogate phenotype for met-
formin GI intolerance based on the dis-
continuation of metformin in the first
months of treatment. We ensured that
patients were switched to another oral
hypoglycemic agent; thus, the cessation
of metformin treatment was not due to
improvement in glycemic control. How-
ever, there could be other reasons for
stopping metformin treatment, includ-
ing other side effects or other reasons
not related to drug intolerance. This
could result in some imprecision in the
definition of phenotype categories, al-
though GI intolerance represents the
most common adverse effect of metfor-
min treatment. Furthermore, it would
be interesting to explore the effect of
concomitant treatment with SSRIs on
metformin intolerance, and their interac-
tionwith SERT aswell as OCT1 genotypes.
However, we were not able to do this
due to the small number of patients
who were treated with SSRIs. In addition,
SSRIs could also act as OCT1 inhibitors,
and citalopram has been included
among the overall OCT1-inhibiting
drugs. Finally, considering the relatively
small size of our study, the novel findings
of our study should be considered pre-
liminary and require independent repli-
cation. Beside this, as clearly genetic
studies alone cannot infer molecular
mechanisms of drug effects, further

in vitro and in vivo studies are needed
to explore the proposed hypothesis of
metformin GI intolerance.

In conclusion, our results indicate
that the SERT genotype and the interac-
tion between OCT1 and SERT genes
might play an important role in GI intol-
erance to metformin. Further studies
are needed to replicate our preliminary
findings as well to substantiate the pro-
posed interaction between metformin
and serotonin disposition in the intes-
tine, and to elucidate the exact mecha-
nisms of GI intolerance to metformin.
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