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The emerging availability of genomic and electronic health data in large pop-
ulations is a powerful tool for research that has drawn interest in bringing pre-
cision medicine to diabetes. In this article, we discuss the potential application
of genomics to the prediction, prevention, and treatment of diabetes, and we
use examples from other areas of medicine to illustrate some of the challenges
involved in conducting genomics research in human populations and implement-
ing findings in practice. At this time, a major barrier to the application of genomics
in diabetes care is the lack of actionable genomic findings. Whether genomic
information should be used in clinical practice requires a framework for evaluating
the validity and clinical utility of this approach, an improved integration of genomic
data into electronic health records, and the clinical decision support and educational
resources for clinicians to use these data. Efforts to identify optimal approaches in all
of these domains are in progress andmay help to bring diabetes into the era of geno-
mic medicine.

Many anticipated that the completion of the Human Genome Project over
10 years ago would mark the beginning of a new era of genomic medicine, in
which new approaches to discovery research, disease prediction, and treatment
would develop from an improved understanding of the genetic causes of human
disease. In some areas of medicine, genomic discoveries have led to important
new treatments. Genetic association studies have demonstrated that loss-of-
function mutations in PCSK9 result in low levels of LDL cholesterol and a reduced
risk of coronary heart disease (1,2), This discovery led to a new class of drugs with
dramatic lipid-lowering effects (3,4). In oncology, there has been a shift from
using older drugs with broad cytotoxic effects to therapies that target specific
mutations in driver genes (5), resulting in impressive reductions in mortality for
some cancers (6).
Beyond the discovery of new drug targets, genomic information can be used to

predict the occurrence of disease and to identify subgroups of patients for whom
existing therapies or interventions will have the greatest efficacy or the least
adverse effects. These are key elements of an approach that is now called
precision medicine (7). Successes in oncology and other technological
developmentsdthe rapidly decreasing cost of whole-genome sequencing (8),
improvements in informatics, and the widespread adoption of electronic health
records (9–11)dhave galvanized interest in applying various forms of big data,
including genomics, to diseases such as diabetes (12). In this article, we discuss
the application of genomics to diabetes, with a focus on some of the challenges
involved in conducting genomics research in human populations and implement-
ing findings in practice.
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GENOMICS IN THE PREDICTION,
PREVENTION, AND DIAGNOSIS OF
DIABETES

The incidence and prevalence of diabe-
tes have doubled over the past two de-
cades (13), and there are now about
30 million adults in the U.S. living with
this condition, 95% of whom have type 2
diabetes (14). Genome-wide association
(GWA) studies test hundreds of thou-
sands or even millions of common (minor
allele frequency [MAF] .5%) and low-
frequency (MAF 1–5%) variants across
both protein coding (exonic) and non-
coding (intronic) regions of the genome.
Large GWA studies have identified more
than 50 genetic loci associated with var-
ious glycemic traits and at least 90 loci
associated with type 2 diabetes (15–18).
These genetic variants, which may ex-
plain as much as 10% of the variance in
disease susceptibility, have advanced
our understanding of the biology of di-
abetes, but each genetic locus confers
only a small increase in risk. For example,
the common variant from these GWA
studies most strongly associated with
type 2 diabetes, an intronic variant in
TCF7L2 (rs7903146), is associated with
a 37% increased relative risk per copy
of the variant allele (19). Rare variants
(MAF ,1%) and variants that are com-
mon only in specific ancestral popula-
tions have been associated with a greater
increase in diabetes risk, but they ac-
count for less of the overall burden of
diabetes (20–22).
Genetic risk scores (GRSs) that com-

bine information from multiple genetic
variants have been evaluated as a tool
for the prediction of type 2 diabetes.
Meigs et al. (23) found that a GRS with
18 variants was significantly associated
with the riskofdeveloping type2diabetes
in the Framingham Heart Study (FHS)
(odds ratio [OR] 1.12 per variant allele)
and that persons in the highest out of
three risk categories had an OR of 2.6
for developing type 2 diabetes compared
with persons in the lowest risk category.
However, this GRS did not improve the
prediction of diabetes beyond tradi-
tional nongenetic risk factors (23), and
the same was true for an updated GRS
that included 65 variants (24). To put this
into perspective, a prognostic marker
with an OR of 3.0 that correctly identifies
80% of persons who will develop diabe-
tes would incorrectly classify 60% of

persons who will not develop diabetes
(25); this degree of discrimination is not
useful clinically (26).

Biologic pathways other than herita-
ble changes in DNA sequence may also
be important predictors of diabetes and
account for some of the variability in di-
abetes susceptibility not explained by
genetics or traditional environmental
factors. For example, DNA methylation
at CpG sites, a key epigenetic mecha-
nism for the regulation of gene expres-
sion, has been associated with the risk
of type 2 diabetes (27,28). Metabolo-
mic profiles of amino acids and other
small molecules may also play a role
(29), particularly among younger
adults (30). However, these new types
of “omics” suffer from the traditional
epidemiologic limitations of confound-
ing and reverse causality and will re-
quire rigorous evaluation before their
clinical validity and utility are
understood.

Risk prediction tools are most useful
when there are effective and safe pre-
vention measures, which may include
behavioral interventions or drug thera-
pies. For high-risk adults, the Diabetes
Prevention Program (DPP) lifestyle in-
tervention reduces the risk of type 2 di-
abetes by more than half (31), and this
intervention is now offered throughout
the country at programs recognized by
the Centers for Disease Control and Pre-
vention. Although the highly effective
DPP lifestyle intervention has few or
no adverse effects, the identification of
persons who benefit the most from the
intervention could help to prioritize its
deployment in resource-limited set-
tings. Florez and colleagues (32,33)
have evaluated whether several genetic
variants associated with diabetes risk
modified the effectiveness of the life-
style intervention in the original DPP
study, and they found little evidence of
effect modification based on genetic
risk. Some have argued that communi-
cating genetic information on disease
risk might help to motivate healthy be-
haviors, but current evidence does not
support this claim (34). For example, in a
small randomized controlled trial (RCT)
of participants with type 2 diabetes who
all underwent an intensive lifestyle in-
tervention directed at weight loss, those
who received information on their ge-
netic risk for diabetes had the same
self-reported motivation and adherence

to the intervention as those who did not
(35).

If genetic tests are not helpful in the
prediction and prevention of diabetes,
they could have a role in discriminating
between type 1 and type 2 diabetes. The
epidemic of obesity (36) hasmade itmore
difficult to distinguish diabetes type be-
cause many children and young adults
with type 1 diabetes are also obese (37).
Misclassification poses significant risks;
an incorrect diagnosis of type 2 diabetes
may lead to inappropriate treatment
with oral glucose-lowering drugs, and
an incorrect diagnosis of type 1 diabetes
may lead to unnecessary insulin treat-
ment. In a recent cross-sectional study
of type 1 and type 2 diabetes, Oram
et al. (38) evaluated a GRS that included
high-risk HLA genotypes and 31 genetic
loci for type 2 diabetes. They found that
this GRS improved the discrimination
between strictly defined type 1 and
type 2 diabetes when added to clinical
factors and autoimmune antibody tests,
and it also helped to predict who would
require insulin treatment within 3 years
of diagnosis (38). One advantage of
a diagnostic tool based on genotype
is that, unlike islet cell antibodies,
the result does not change over time.
However, before this type of genetic
testing can be recommended for rou-
tine use in the clinic, further evalua-
tion in prospective studies will be
necessary to demonstrate not only ac-
curate discrimination between type 1
and type 2 diabetes but also improved
use of appropriate glucose-lowering
treatment.

Most cases of diabetes have multiple
genetic and environmental causes and
are classified according to the presumed
pathophysiologic defectdautoimmune
destruction of b-cells leading to insulin
deficiency for type 1 diabetes and vary-
ing degrees of insulin resistance and
deficiency for type 2 diabetes. In other
words, the vast majority of diabetes is
polygenic, and despite the growth in
knowledge about the various genetic
causes of diabetes in recent years, clas-
sification of individual cases into mean-
ingful subtypes based on the underlying
genetics has been difficult. On the other
hand, genetic testing may be useful for
the diagnosis of certain forms of diabe-
tes caused by defects in a single gene,
such as HNF1A mutations for maturity-
onset diabetes of the young (MODY)
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(39) and activating KCNJ11 mutations
for neonatal diabetes (40), both of which
are highly responsive to sulfonylurea
therapy. These monogenic forms of dia-
betes account for ;1–2% of diabetes
cases (41,42), and they typically present
at a young age (,25 years) and follow an
autosomal dominant pattern of inheri-
tance. Targeted genotyping could also
play a role in the diagnosis of type 2 di-
abetes in specific populations. For exam-
ple, a rare missense variant in HNF1A
(p.E508K) that increased the risk of diabe-
tes fivefold was present among 2% in a
study of Latinos in the southern U.S. with
type 2 diabetes (20); additional studies
are needed to determine whether this
functional variant shares the sulfonylurea-
responsiveness of the HNF1A variants
that cause MODY.

PHARMACOGENOMICS OF
THERAPIES FOR TYPE 2 DIABETES

Although, among persons with diabetes,
the rates of microvascular (retinopathy,
neuropathy, kidney disease) and cardio-
vascular complications have decreased
by about half over the past two decades,
they still occur more often among per-
sons with diabetes than among individ-
uals without diabetes (43). Reducing
these risks is the major goal of glucose-
lowering therapy. For type 1 diabetes,
the long-term benefits of intensive insulin
therapy are well established (44,45). For
type 2 diabetes, intensive glucose-lowering
therapy prevents microvascular complica-
tions, and postrandomization follow-up
data from several RCTs suggest there

may be long-term cardiovascular benefits
as well (46–48).

There are now several classes of med-
ications approved for the treatment of
diabetes (Table 1). Most oral therapies
have similar average effects on hemo-
globin A1c (HbA1c), but they differ in
their contraindications and side effects
(49,50). There is surprisingly little infor-
mation about the comparative benefits
and harms for different drugs (51), and
treatment guidelines for type 2 diabetes
(52) permit the use of most approved
drug classes as second-line therapy after
metformin, which is the recommended
first-line therapy for most patients be-
cause of its good safety profile and po-
tential cardiovascular benefits (53,54).
There is also substantial interindividual
variability in drug response (55), and
many patients eventually fail to achieve
recommended levels of glycemic control
with their initial therapy (56,57). For ex-
ample, in the U.K. General Practice Re-
search Database, only half of patients
who initiated therapy with metformin
or a sulfonylurea achieved an HbA1c level
of,7% (58). The factors that account for
this variation are not well understood
(59). Because of the wide range of side
effects from different therapies and be-
cause of the person-to-person variability
in treatment response and adverse ef-
fects, pharmacogenomic testing for ge-
netic variants that define subgroups of
patients who are most likely to benefit
from or least likely to be harmed by spe-
cific drugs is an attractive potential appli-
cation of genomics in diabetes.

Pharmacogenomic studies have typi-
cally focused on candidate genes in-
volved in pharmacokinetics (absorption,
distribution, metabolism, and elimina-
tion) or pharmacodynamics (the biologic
effect of a drug on its target) (60). The
pharmacogenomics of oral diabetes
therapies has been reviewed in detail
elsewhere (61–63); selected findings
for the most extensively studied drugs,
sulfonylureas and metformin, are listed
in Table 2. Sulfonylureas undergometab-
olism by cytochrome P450 (CYP) enzyme
2C9, and loss-of-function variants in the
CYP2C9 gene have been associated with
greater glucose-lowering effects and an
increased risk of hypoglycemia (64,65).
The genes encoding the sulfonylurea re-
ceptor, KCNJ11 and ABCC8, have also
been associated with increased sulfonyl-
urea response in some studies (66,67)
but not others (68,69), and in one study
the association was in the opposite di-
rection (70). Unlike sulfonylureas, met-
formin does not undergo metabolism by
CYP enzymes; it is excreted intact by the
kidneys (71). Genes encoding several
transporters that facilitate the move-
ment of metformin into the bloodstream,
into target tissues, and into renal tubular
cells have been associated with effects
on serum levels of metformin, glucose-
lowering effect, and drug intolerance
(72,73).

Candidate gene studies of sulfonyl-
ureas and metformin have not typically
accounted for false positives frommultiple
comparisons, and most findings from
these studies have failed to replicate

Table 1—Classes of medications commonly used to treat diabetes

Drug classes Oral
Average HbA1c

reduction Other benefits Adverse effects Cost

Metformin Yes ;1.0–1.5 Weight loss, possible
cardiovascular benefit

Lactic acidosis (rare), gastrointestinal
side effects

Low

Sulfonylureas Yes ;1.0–1.5 Hypoglycemia, weight gain, potential
cardiovascular risk

Low

Meglitinides Yes ;1.0 Hypoglycemia, weight gain Moderate

Thiazolidinediones Yes ;1.0 Heart failure, myocardial infarction
(rosiglitazone), bone loss and fractures

Moderate

a-Glucosidase inhibitors Yes ;0.8 Flatulence, diarrhea Moderate

Amylin analog No ;0.6 Hypoglycemia, nausea High

DPP-4 inhibitors Yes ;0.6–0.8 Potential heart failure (saxagliptin) High

GLP-1 receptor agonists No ;1.0 Weight loss Nausea, vomiting, diarrhea High

SGLT2 inhibitors Yes ;0.6–0.8 Possible cardiovascular
benefit

Genitourinary infections,
ketoacidosis (rare)

High

Insulin No Unlimited Most potent treatment Hypoglycemia, weight gain Low-high

Adapted from refs. 49,50. DPP-4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide 1; SGLT2, sodium–glucose cotransporter 2.
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(68,74–77).Unfortunately, this low replica-
tion rate is consistentwith the rate inother
candidate gene studies, which may be as
low as 1–3% (78,79). The potential reasons
include small sample sizes, heterogeneity
of genetic architecture across different
populations, and publication bias. In con-
trast, large GWA studies that use rigorous,
prespecified statistical methods have pro-
ducedmore valid and reproducible results.
For example, the only GWA study of treat-
ment response to a diabetes therapy, con-
ducted in a Scottish observational cohort
with nearly 3,000 participants, identified a
locus for glucose-lowering response to
metformin near the ATM gene that met
a stringent threshold for statistical signifi-
cance (80), and this finding has replicated
in other populations (81). Well-powered

pharmacogenomic studies that use rig-
orous statistical methods may identify
genetic variants that result in greater
glucose-lowering effects or fewer adverse
effects from other diabetes therapies.

GWA studies rely on information about
the nonrandom association of alleles
(linkage disequilibrium) to “tag” common
and low-frequency variation throughout
the genome in a subset of directly geno-
typed variants. Because these studies
have identified only a small portion of
the known heritability of most complex
traits (82) and because theory predicts
that rare variants are more likely to be
damaging to gene function than common
variants (83,84), there has been growing
interest in studying rare variants. Ad-
vances in technology and informatics

have made possible the high-throughput
sequencing of whole exomes and whole
genomes, which provide a complete as-
sessment of both common and rare varia-
tion (85). A recent study that sequenced
202 genes encoding drug targets in
14,000 individuals identified on aver-
age one rare variant per 17 base pairs, and
90% of these variants were newly discov-
ered (86). Another exome-sequencing
study of 12 CYP genes, which are re-
sponsible for about 75% of all known
oxidative drug metabolism, identi-
fied 1,006 variants in these genes and
found that 73% were rare, a third were
predicted to affect protein structure,
and 9% of individuals had at least one
newly discovered functional variant
(87). Whether this abundance of rare

Table 2—Selected pharmacogenomic findings for sulfonylureas and metformin

Drug Locus Phenotype N Effect** Refs.

Sulfonylureas
Pharmacokinetic CYP2C9 HbA1c response 1,073 0.5% absolute greater reduction in HbA1c

(homozygous for variant alleles)
64

FBG response 475 No association 75

Hypoglycemia 357 OR 5.2 for hypoglycemia
(homozygous for variant alleles)

65

Pharmacodynamic KCNJ11/ABCC8* HbA1c and FBG response 1,268 3.5% relative greater reduction
in HbA1c and 7.7% relative greater reduction

in FBG (homozygous for variant alleles)

66

HbA1c response 101 0.2% absolute greater reduction
in HbA1c (per variant allele)

67

Insulin treatment 525 No association 68

FBG response 228 No association 69

HbA1c response 97 Less reduction in HbA1c 70

TCF7L2 On treatment HbA1c ,7% 901 OR 1.9 for treatment failure
(homozygous for variant allele)

164

On treatment HbA1c ,7% 189 OR 1.6 for treatment failure (per variant allele) 165

Metformin
Pharmacokinetic SLC22A1 HbA1c response 102 0.3% absolute lower reduction in HbA1c

(per variant allele)
166

HbA1c response 371 1.1% absolute lower reduction in HbA1c
(per variant allele)

77

On treatment HbA1c ,7% 1,531 No association 76

Drug intolerance 2,166 OR 2.4 for discontinuation
(homozygous for variant alleles)

73

SLC47A1 HbA1c response 116 0.3% absolute lower reduction in HbA1c
(per variant allele)

167

HbA1c response 371 No association 77

Risk of type 2 diabetes 2,994 Less reduction in diabetes risk

SLC47A2 HbA1c response 253 0.1% absolute lower reduction
in HbA1c (any variant allele)

168

HbA1c response 371 No association 77
GWA studies ATM HbA1c response, on

treatment HbA1c ,7%
2,896 0.1% absolute greater reduction in

HbA1c and OR 1.4 for treatment
success (per variant allele)

80

HbA1c response, on
treatment HbA1c ,7%

1,366 No association with HbA1c response,
OR 1.2 for treatment success (per variant allele)

81

FBG, fasting blood glucose. *Loss-of-function variants rs757110 in ABCC8 and rs5219 in KCNJ11 are in near-complete linkage disequilibrium. **Effect
listed only if reported as statistically significant in cited article.
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variation explains some of the interin-
dividual variability in drug response is
unknown at this time, but the topic
merits further evaluation.

CHALLENGES IN CONDUCTING
GENOMIC RESEARCH

Study Power and Sample Size
One major barrier to genomic discovery
in diabetes research has been the lim-
ited power to detect associations, which
is a function of the frequency of the ge-
netic variant, the magnitude of the ef-
fect to be detected, and the sample size
(88). Large GWA studies with study pop-
ulations of tens of thousands or more
have helped to unravel the biology un-
derlying many complex diseases, but
most genetic loci identified by these
studies have small effects. For example,
the largest GWA study of type 2 diabe-
tes, which included nearly 35,000 case
and 115,000 control subjects, identified
65 genetic loci; all but the TCF7L2 locus
had ORs of 1.2 or lower per copy of the
variant allele (15).
In pharmacogenomic studies, restric-

tion to users of a particular drug further
limits the available study population
(89). Rare immune-mediated adverse
drug reactions (ADRs) such as drug-
induced liver injury or severe skin reac-
tions may be caused by pathogenic
variants with ORs of 100 or greater, and
these associations can be detected with
fewer than 50 cases (90–92). For diabetes
therapies, rare adverse effects such as
metformin-associated lactic acidosis or
ketoacidosis related to sodium–glucose
cotransporter 2 inhibitors may be amena-
ble to pharmacogenomic discovery in
similarly small studies.
It has been more difficult to identify

pharmacogenomic associations with
complex phenotypes such as myocardial
infarction or stroke (93) or with quan-
titative traits such as QT interval pro-
longation or cholesterol lowering. For
example, a large GWA study with over
30,000 participants from 10 observa-
tional cohorts evaluated QT interval
prolongation from various drugs and
failed to identify any pharmacogenomic
loci at genome-wide levels of signifi-
cance (94), and a GWA study with over
40,000 statin-using participants discov-
ered and replicated two new loci for LDL
cholesterol lowering, but each variant
allele resulted in a relative change in
LDL lowering effect of less than 2%

(95). While these sorts of findings may
reveal new information about human
population biology, these effect sizes,
which cannot be distinguished from in-
traindividual variation or measurement
error in individual patients, are so small
that the effort to genotype these vari-
ants can be safely omitted from clinical
practice. As pharmacogenomic efforts
move towhole-exome andwhole-genome
sequencing, even larger sample sizes may
be required to identify associations with
rare variants.

Individual pharmacogenomic variants
often have small effects or fail to reach
stringent thresholds of statistical sig-
nificance, but they can be combined
within a gene or within a pathway of
several genes to identify clinically im-
portant effects. As an example, Dujic
et al. (73) evaluated the relationship be-
tween metformin intolerance and four
reduced-function variants in the gene
SLC22A1, which transports metformin
into the intestine and may mediate
some of the gastrointestinal side effects
from this drug. They found that the
presence of any two reduced-function
alleles increased the risk of metformin
discontinuation by 2.4-fold (73).

To assess associations with the large
number of variants identified by whole-
exome and whole-genome sequencing,
more innovative approaches are neces-
sary. Annotation tools have been used
to restrict analyses to variants that are
likely to be functional, on the basis of
expected protein structure, associations
with gene expression levels (96,97), and
information from the Encyclopedia of
DNA Elements (ENCODE) project, which
has systematically mapped nonprotein
coding regulatory functiondincluding
transcription factor binding sites, chroma-
tin structure, and histonemodificationsd
throughout the genome (98). Various
statistical methods have been devel-
oped that aggregate rare functional var-
iants for gene-based association tests,
which can improve the power to detect
an association if there are multiple dam-
agingvariantswithin a gene (99,100). Data
from whole-exome and whole-genome
sequencing have not yet been systemat-
ically evaluated in pharmacogenomic
studies, but for some complex traits
these methods have been used to iden-
tify rare variants with large effects, both
in new and previously unidentified loci
(101).

The studies of statin response and drug-
induced QT prolongation described in
the preceding paragraphs represent
one model for conducting genomic re-
search in large populations: local analysis
of deeply phenotyped cohorts followed
by a meta-analysis of summary results in
large research consortia (15,102). The in-
creasing availability of electronic health
data and a recognition of the large sam-
ple sizes required for genomic discovery
research have led to the emergence of
another model: biobank studies that ge-
notype tens or hundreds of thousands
of individuals and link these genetic
data with participants’ electronic health
data to create large data repositories.
Some of these studies include a baseline
visit for physical measurements, the col-
lection of specimens, and imaging tests
(103,104), similar to the traditional co-
hort studies, and they all rely on elec-
tronic health databases for longitudinal
information on health care encoun-
ters, laboratory tests, vital status, and
medication use. Two of the largest bio-
bank studies, the Million Veteran Pro-
gram (105) and the UK Biobank (104),
have recruited close to 500,000 individu-
als each.

Phenotyping With Electronic Health
Data
Electronic health data have been im-
mensely useful for research, but they
have important limitations. Results
from laboratory tests that are measured
in the course of clinical care, such as
HbA1c or cholesterol levels, are likely
to be recorded accurately and com-
pletely, but they may be related to the
clinical indications for the tests and lack
standardization across sites. Diagnosis
codes associated with health care en-
counters, an important source of in-
formation about disease status, are
assigned for clinical and billing rather
than research purposes; geographic lo-
cation (106), changes in reimbursement
(107,108), and other factors can influ-
ence the assignment of these codes.
For a given study design, different data-
bases can produce different estimates of
association between a drug exposure
and a health outcome, sometimes in op-
posite directions (109). Nonetheless, di-
agnosis code–based algorithms have
been used to identify some acute diabe-
tes complications, such as hypoglycemia
(110,111) and myocardial infarction
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(112,113), with a reasonably high degree
of accuracy (positive predictive value
[PPV] 80–90%).
For other diabetes complications,

such as heart failure, the accuracy of a
diagnostic algorithm may vary substan-
tially by the diagnosis code used and
even the position of the code (primary
vs. secondary) (114,115). The use of
low-PPV algorithms can attenuate esti-
mate of associations toward the null
(116), sometimes dramatically. When a
new diagnosis code was introduced for
rhabdomyolysis, a severe ADR related to
statin use, we evaluated the accuracy of
this code in a large health care systemby
reviewing electronic medical records
to validate potential cases, and we es-
timated the risk of rhabdomyolysis
associated with the 80-mg dose of sim-
vastatin, which was known to be high
from a recent RCT (117). The PPV of the
rhabdomyolysis code for the statin-
related ADR was only 8%. Moreover,
the relative risk for rhabdomyolysis asso-
ciated with high-dose versus low-dose
simvastatin was 12.2 when validated
cases were evaluated, replicating the
RCT estimate, but only 1.8 when the di-
agnosis code was used without valida-
tion (118). This marked attenuation
of a genuine association is not an iso-
lated finding; the quality (119) and sever-
ity (120) of disease phenotypes have also
been shown to impact the magnitude of
pharmacogenomic associations. For stud-
ies that evaluate genetic associations
with disease outcomes, including ADRs,
it may sometimes be necessary to con-
duct validation studies to assess the
accuracy of claims-based data (121).
Despite these limitations, the link-
age of genomic data with electronic
health data in large study populations
holds promise as a powerful tool for
research.

FRAMEWORK FOR EVALUATING
A GENOMIC TEST

For the regulatory approval of new ther-
apies directed at specific genetic defects,
such as ivacaftor for the treatment of
cystic fibrosis caused by a specific CFTR
mutation (122), the U.S. Food and Drug
Administration (FDA) requires the same
standard used to evaluate all new drugs:
substantial evidence of efficacy and
safety from well-controlled studies, typ-
ically rigorously conducted RCTs. For
therapies already in use that have

demonstrated efficacy and safety in non-
genetically determined populations, the
evidence standard for using genomic in-
formation to select the best drug or dose
is less certain. The FDA currently in-
cludes pharmacogenomic information
in the prescribing information for over
160 drugs (123), but its oversight of lab-
oratory-developed genetic tests is
concerned primarily with analytic val-
idity (i.e., ability to reliably measure a
genetic variant or a biomarker) (124),
which is inadequate to guide treat-
ment decisions. A recent study of
pharmacogenomic information in
drug labels found convincing evidence
of clinical validity (i.e., how accurately
and consistently genetic variation
predicts a phenotype) for only 36% of
these drugs, and evidence of clinical
utility (i.e., ability to improve out-
comes for patients) for only 15%
(125). The Centers for Disease Control
and Prevention Office of Public Health
Genomics has developed a more com-
prehensive framework for the evalua-
tion of a genetic test that includes
questions about analytic validity, clinical
validity, and clinical utility, as well as eth-
ical, legal, and social implications (ACCE),
which are summarized in Table 3
(126,127). These standards are important
to protect the health of the public.

As described earlier, most reported
pharmacogenomic findings fail to repli-
cate and therefore lack clinical validity.
Similarly, rare variants identified by se-
quencing and initially identified as
“pathogenic” are often downgraded
to “uncertain significance” or “benign”
after further study (128,129). For ex-
ample, in the FHS and the Jackson
Heart Study (JHS), seven genes respon-
sible for MODY were sequenced and
rare variants were identified that had
previously been identified as causal for
MODY or were predicted to be damag-
ing to protein function by using anno-
tation tools. These variants, present
among 2% of persons in these popula-
tion-based cohorts, were not associ-
ated with the risk of diabetes, and
only one variant carrier out of 68 met
the criteria for MODY (130).

Of the genomic findings for diabetes
that have clinical validity, most have ef-
fects on disease outcomes or surrogate
end points that are uncertain or too
small to be clinically meaningful. Genet-
ic risk panels for the prediction of type 2

diabetes are one example (131). An-
other example is the ATM locus for met-
formin treatment response, the most
widely replicated diabetes pharmacoge-
nomic finding; each copy of the variant
allele was associated with only a 0.1%
greater reduction in HbA1c (81). Even if
patients had whole-genome sequence
data already available in their medical
records, this treatment effect is still
too small to be clinically useful. For
MODY, which often has a clear genetic
cause, most cases appear to be undiag-
nosed, in part because of uncertainty
from clinicians about the clinical benefits
of genetic testing (132). Making treat-
ment decisions based on genetic tests
that lack clinical validity, clinical utility, or
both can have unintended consequences,
including withholding beneficial treat-
ments, an unnecessary increase in costs,
or the use of drugs with harmful effects.

For examples of actionable genetic
tests that meet the criteria for clinical
validity and clinical utility, areas of med-
icine other than diabetes are instructive.
Abacavir is a first-line treatment for HIV
that is effective andwell tolerated inmost
people, but about 5% of persons exposed
to this drug develop a serious hypersen-
sitivity reaction characterized by rash,
fever, and damage to multiple organ sys-
tems (133). Initial studies of men of
mostly European ancestry identified the
cause of this ADR to be the HLA-B*57:01
variant (91,134), with an OR of well over
100 (119), and this finding was later ex-
tended to other populations (135). A dou-
ble-blind RCT demonstrated that genetic
testing for the HLA-B*57:01 variant pre-
vented all cases of abacavir-induced hy-
persensitivity (136), and genetic testing
is now routinely conducted before initi-
ating treatment with this drug.

For another severe immune-mediated
ADR, the translation of genetic testing
into practice followed a different course.
Stevens-Johnson syndrome/toxic epi-
dermal necrolysis (SJS/TEN) related to
carbamazepine use was found to be
strongly associated with the HLA variant
HLA-B*15:02 in several Asian popula-
tions (92,137), and screening for this var-
iant can effectively prevent the ADR
(137). In 2008, Hong Kong instituted a pol-
icy of routine genetic screening before ini-
tiating carbamazepine treatment, but
providers simply avoided prescribing this
medication and instead prescribed other
antiepileptic drugs that can also cause
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severe skin reactions. As a result, the over-
all rate of SJS/TEN in Hong Kong did not
change (138). This unintended result of a
policy decision on a genetic test with
clinical validity and clinical utility demon-
strates that other concerns, such as con-
venience or cost, may influence the
harms or benefits for a population.

Even for well-replicated pharmacoge-
nomic findings with large effects, there
can be disagreement about what con-
stitutes clinical utility. Warfarin is an an-
ticoagulant drug that is notoriously
difficult to dose because of wide inter-
individual variability in the anticoagu-
lant effect, much of which is explained

by variation in the pharmacokinetic
genes CYP2C9 and VKORC1. The bene-
fits of testing for variants in these genes
have even been evaluated in three
large well-designed RCTs, two of which
demonstrated that genetic testing re-
sulted in a shorter time to therapeutic
effect but no reduction in thrombotic or

Table 3—ACCE criteria for the implementation of a genetic test

Key questions Example applications to diabetes

Analytic validity How often does the genetic test fail to give a
useable result?

ForaGRS for type2diabetes risk,howoftendoes the test result ina
genotype at each locus?

What is the sensitivity and specificity of the test for
a genetic variant?

For the rare HNF1A missense variant associated with diabetes
risk, how often does the test detect the variant when it is present
and how often does the test result in a false positive when the
variant is not present?

What is the within- and between-laboratory
precision?

Are standardized methods used in different laboratories? How
does the accuracy of the test vary from laboratory to laboratory?

Is confirmatory testing required? When apathogenic variant in aMODYgene is identified fromhigh-
throughput sequencing, is confirmatory genotyping by another
method required?

Clinical validity What is the quality of the disease phenotype or
treatment response measurement? What is the
quality of the study designs used to evaluate these
outcomes?

For a GRS that discriminates type 1 from type 2 diabetes, are
standardized definitions of diabetes type used? Was the study
design cross-sectional or longitudinal?

What is the prevalence of the phenotype or the
distribution of treatment response in the studied
populations?

For a pharmacogenomic test for metformin treatment response,
how is treatment failure/success defined and what is the rate of
treatment failure/success in the studied population?

What is the sensitivity and specificity of the test for
the disease phenotype or treatment response?
What is the magnitude and precision of the
genotype-phenotype relationship?

What is the relative change in HbA1c lowering associated with the
ATM locus for metformin treatment response?

Whatare thegenetic or environmentalmodifiersof
the genotype-phenotype relationship?

Do diabetes severity, obesity, the use of additional drug therapies,
or other factors modify the pharmacogenomic associations for
metformin treatment response?

Has the test been adequately validated on all
populations in which it may be offered?

For a GRS for type 2 diabetes risk, has the test been validated
among obese individuals and among persons from different
racial/ethnic populations?

Clinical utility What is the impact of a positive or negative test on
patient care in terms of health outcomes?

What is the absolute change inHbA1c lowering associatedwith the
ATM locus for metformin treatment response? Does this
pharmacogenomic test result in projected or tangible health
benefits in terms of clinical complications, such as a reduced risk
of blindness or cardiovascular disease?

What are thefinancial costs associatedwith testing
and the economic benefits associated with actions
resulting from testing?

What is the cost to test for the common TCF7L2 variant for type 2
diabetes risk, including laboratory, reporting, educational, and
counseling costs?What is the cost per case of diabetes predicted?
Does this test result in cost-effective screening or prevention of
diabetes later in life?

What educational materials for patients have been
developed and validated?

Do educational materials clearly explain the magnitude of the
increased risk of type 2 diabetes associated with the common
TCF7L2 variant in relation to other known risk factors?

Ethical, legal, and
social implications

What is known about how this test could lead to
stigmatization, discrimination, privacy/
confidentiality, and personal/family social
issues?

Does the identification of a pathogenic variant responsible for a
hereditary form of early-onset diabetes have implications for
family planning?

Are there legal issues regarding consent,
ownership of data and/or samples, patents,
licensing, proprietary testing, disclosure, or
reporting requirements?

Arephysiciansprovidingsufficient informationabout thepotential
risks and benefits from genetic testing so that patients can make
informed decisions?

What safeguards have been described and are
these safeguards effective?

Adapted from refs. 126,127.
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bleeding complications (139–141). Opin-
ions differ about whether pharmacoge-
nomic testing has a role in warfarin
treatment (142–144), and there has
been a broader debate about whether
RCTs are required to demonstrate the
utility of a genetic test (79,145,146).
Nonetheless, genetic testing for war-
farin treatment has been minimal in
practice. In the absence of consistent
recommendations about when to use
genetic information in prescribing and
other treatment decisions, health care
providers, patients, and also payers and
health care systems will have an impor-
tant voice in this discussion.

ADDITIONAL BARRIERS TO THE
IMPLEMENTATION OF GENOMICS

The implementation of genomics in
practice has generally involved a deci-
sion about whether to order a genetic
test before starting a new treatment.
For patientswho have already undergone
preemptive genotyping or sequencing,
which is not yet common but likely to
increase in the future (147–149), the de-
cision may be about whether to use a
patient’s existing genetic information
to guide treatment. With either ap-
proach, the main barrier to the imple-
mentation of genomics for diabetes
care at this time is a robust lack of action-
able findings in the areas of diabetes and
cardiovascular medicine. There are also
practical issues that must be addressed,
which include the storage and integra-
tion of complex genomic data into the
electronic health record, the interpreta-
tion of these data in an accessible for-
mat, and the creation of clinical decision
support (CDS) tools that aid health care
providers in using this information to
make treatment decisions at the point of
care (150). Various groups have made im-
portant contributions in developingmodel
systems that address these problems
(147,148,151,152).
CDS tools, which have been in use for

many years for diabetes management,
provide automated testing or treatment
recommendations based on informa-
tion in the electronic health record
(153). The CDS tools for genomics that
are under development rely on exter-
nally curated data resources, such as
PharmGKB (154) and ClinVar (155), to
determine which potentially action-
able variants to incorporate and how
to translate genotypes into expected

phenotypes. PharmGKB currently in-
cludes information about pharmacoge-
nomic associations for metformin and
sulfonylureas; however, none of the as-
sociations meet the criteria for the high-
est level of evidence, and there is no
recommendation for pharmacogenomic
testing for these drugs (156). In drug-
specific evidence summaries and guide-
lines, the Clinical Pharmacogenetics
Implementation Consortium has begun
to provide standardized terms, sample
text for electronic health record docu-
mentation and point of care alerts, and
clinical implementationworkflows, which
will be a valuable resource as the role of
pharmacogenomics expands in clinical
practice (157,158).

The increasing availability of CDS
tools and online databases with infor-
mation on actionable genomic findings
will facilitate the use of genomic testing
for diabetes by clinicians. However, be-
cause most clinicians are not yet com-
fortable using genomic information to
make clinical decisions (159,160), im-
proved education for both trainees and
practicing clinicians is needed, and
opportunities for both are improving
(161,162). Professional societies and
specialty boards will play an important
role in the integration of genomics in
physician training and continuing medi-
cal education; credentialing require-
ments for ordering genomic tests could
help to ensure that such tests are used
appropriately (163). If the use of geno-
mic information ultimately proves use-
ful in the care of patients with diabetes,
even with adequate educational and
training opportunities for clinicians, fi-
nancial incentives may be required to
spur widespread implementation, as
was the case with the increased adop-
tion of electronic health records after
legislation was passed that provided re-
imbursements to hospitals and pro-
viders for this purpose (9–11).

CONCLUSIONS

At this time, there are few if any action-
able genomic findings for diabetes that
are ready for implementation. However,
the increasing availability of genomic
data in large populations linked with
electronic health data may become a
powerful resource for genomic discovery,
and examples from other areas of medi-
cine offer lessons about the limitations
of these data that can help guide the

direction of future research. Whether ge-
nomic information should be used in clin-
ical practice requires a framework for
evaluating the validity and clinical utility
of this approach, an improved integra-
tion of genomic data into electronic
health records, and the clinical decision
support and educational resources for
clinicians to use these data. Efforts to
identify optimal approaches in all of
these domains are creating a grow-
ing body of evidence that may help to
bring diabetes into the era of genomic
medicine.
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