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Two general approaches to the treat-
ment of type 2 diabetes mellitus
(T2DM) have been advocated. 1) A

“guideline” approach that advocates se-
quential addition of antidiabetes agents
with “more established use” (1); this ap-
proach more appropriately should be
called the “treat to failure” approach,
and deficiencies with this approach have
been discussed (2). And 2) a “pathophys-
iologic” approach using initial combina-
tion therapy with agents known to correct
established pathophysiologic defects in
T2DM (3). Within the pathophysiologic
approach, choice of antidiabetes agents
should take into account the patient’s
general health status and associated med-
ical disorders. This individualized ap-
proach, which we refer to as the ABCD(E)
of diabetes treatment (4), has been incor-
porated into the updated American Diabe-
tes Association (ADA) guidelines (5).

A = Age
B = Body weight
C = Complications (microvascular and

macrovascular)
D = Duration of diabetes
E = Life Expectancy
E = Expense

Even though physicians must be cogni-
zant of these associated conditions
(ABCDE) when initiating therapy in newly
diagnosed T2DM patients, we believe that
the most important consideration is to

select antidiabetes agents that correct
specific pathophysiologic disturbances
present in T2DM and that have comple-
mentary mechanisms of action. Although
it has been argued that the pathogenesis of
T2DM differs in different ethnic groups
(6), evidence to support this is weak. Al-
though the relative contributions of b-cell
failure and insulin resistance to develop-
ment of glucose intolerance may differ in
different ethnic groups (6), the core de-
fects of insulin resistance in muscle/liver/
adipocytes and progressive b-cell failure
(3) are present in virtually all T2DM pa-
tients and must be treated aggressively to
prevent the relentless rise in HbA1c that is
characteristic of T2DM.

In subsequent sections, we provide a
review of the natural history of T2DM,
specific pathophysiologic abnormalities
responsible for T2DM, currently available
antidiabetes agents and their mechanism
of action, recommended glycemic goals,
and use of combination therapy based
upon reversal of pathophysiologic defects
present in T2DM. We will not address ex-
pense but recognize that this is an im-
portant consideration in choosing any
antidiabetes regimen.

Overview of T2DM: pathophysiology
and general therapeutic approach
T2DM is a complex metabolic/cardiovas-
cular disorder with multiple pathophys-
iologic abnormalities. Insulin resistance

in muscle/liver and b-cell failure repre-
sent the core defects (7,8). b-Cell failure
occurs much earlier in the natural history
of T2DM and is more severe than previ-
ously thought (9–12). Subjects in the up-
per tertile of impaired glucose tolerance
(IGT) are maximally/near-maximally in-
sulin resistant and have lost .80% of
their b-cell function. In addition to mus-
cle, liver, and b-cells (“triumvirate”) (7),
adipocytes (accelerated lipolysis), gas-
trointestinal tract (incretin deficiency/
resistance), a-cells (hyperglucagonemia),
kidney (increased glucose reabsorption),
and brain (insulin resistance and neuro-
transmitter dysregulation) play important
roles in development of glucose intoler-
ance in T2DM individuals (3). Collec-
tively, these eight players comprise the
“ominous octet” (Fig. 1) and dictate that
1)multiple drugs used in combinationwill
be required to correct the multiple patho-
physiological defects, 2) treatment should
be based upon reversal of known patho-
genic abnormalities and not simply on re-
ducing HbA1c, and 3) therapy must be
started early to prevent/slow progressive
b-cell failure that is well established in
IGT subjects. A treatment paradigm shift
is recommended in which combination
therapy is initiated with agents that correct
known pathogenic defects in T2DM and
produce durable reduction in HbA1c

rather than just focusing on the glucose-
lowering ability of the drug.

Natural history of T2DM
Individuals destined to develop T2DM
inherit genes that make their tissues re-
sistant to insulin (2,8,13–15). In liver, in-
sulin resistance is manifested by glucose
overproduction during the basal state de-
spite fasting hyperinsulinemia (16) and
impaired suppression of hepatic glucose
production (HGP) by insulin (17), as oc-
curs following a meal (18). In muscle
(17,19,20), insulin resistance is manifest
by impaired glucose uptake after carbo-
hydrate ingestion, resulting in postpran-
dial hyperglycemia (18). Although the
origins of insulin resistance can be traced
to their genetic background (8,14,15), the
current diabetes epidemic is related to the
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epidemic of obesity and physical inactiv-
ity (21), which are insulin-resistant states
(22) and place stress on pancreatic b-cells
to augment insulin secretion to offset in-
sulin resistance (2,3,8). As long as b-cells
augment insulin secretion sufficiently to
offset the insulin resistance, glucose toler-
ance remains normal (2,3,8,23–29). How-
ever, with time b-cells begin to fail, and
initially postprandial plasma glucose lev-
els and subsequently fasting plasma glu-
cose begin to rise, leading to overt diabetes
(2,3,8). Thus, it is progressive b-cell fail-
ure that determines the rate of disease pro-
gression. The natural history of T2DM
described above (2,3) is depicted by a pro-
spective study carried out by DeFronzo

(3); Jallut, Golay, and Munger (30); and
Felber et al. (31) (Fig. 2).

b-Cell function
Although the plasma insulin response to
insulin resistance is increased early in the
natural history of T2DM (Fig. 2), this does
not mean that b-cells are functioning nor-
mally (3). Simply measuring the plasma
insulin response to a glucose challenge
does not provide a valid index of b-cell
function (32). b-Cells respond to an in-
crement in glucose (ΔG) with an incre-
ment in insulin (ΔI). Thus, a better
measure ofb-cell function isΔI/ΔG. How-
ever, b-cells also increase insulin section
to offset insulin resistance and maintain
normoglycemia (9,10,12,23,32,33). Thus,
the gold standard measure of b-cell func-
tion in vivo in man is the insulin secretion/
insulin resistance (disposition) index
(ΔI/ΔG 4 IR).

Figure 3 depicts the insulin secretion/
insulin resistance index in normal glucose
tolerant (NGT), IGT, and T2DM subjects
as a function of 2-h plasma glucose during
oral glucose tolerance test (OGTT)
(2,9,10,12). Subjects in the upper tertile
of NGT (2-h plasma glucose 120–139
mg/dL) have lost.50% ofb-cell function,
while subjects in upper tertile of IGT (2-h
plasma glucose 180–199 mg/dL) have lost
;80% of b-cell function (Fig. 3). Similar
conclusions are evident from other publi-
cations (24,27,34,35). The therapeutic
implications of these findings are obvious.
When the diagnosis of diabetes is made,
the patient has lost ;80% of their b-cell

function, and it is essential that physicians
intervene with therapies known to correct
established pathophysiological disturbances
inb-cell function. Evenmore ominous are
observations of Butler et al. (36), who
demonstrated that as individuals progress
from NGT to IFG, there is significant loss
ofb-cell mass that continues with progres-
sion to diabetes. Similar results have been
published by others (37,38) and indicate
that significant loss of b-cells occurs long
before onset of T2DM, according to cur-
rent diagnostic criteria (1).

In summary, although insulin resis-
tance in liver/muscle is well established
early in the natural history of T2DM, overt
diabetes does not occur in the absence of
progressive b-cell failure.

Insulin resistance
The liver and muscle are severely resistant
to insulin in T2DM (rev. in 2,3,8).
Liver. After an overnight fast, the liver
produces glucose at ;2 mg/kg/min
(2,16). In T2DM, the rate of basal HGP
is increased, averaging ;2.5 mg/kg/min
(2,16). This amounts to addition of an
extra 25–30 g glucose to the systemic cir-
culation nightly and is responsible for the
increased fasting plasma glucose concen-
tration. This hepatic overproduction of
glucose occurs despite fasting insulin
levels that are increased two- to three-
fold, indicating severe hepatic insulin
resistance.
Muscle. With use of the euglycemic in-
sulin clamp with limb catheterization
(2,3,17,19,20,39,40), it has conclusively
been demonstrated that lean, as well as
obese, T2DM individuals are severely re-
sistant to insulin and that the primary site
of insulin resistance resides in muscle.
Multiple intramyocellular defects in insu-
lin action have been documented in

Figure 1dThe ominous octet (3) depicting the mechanism and site of action of antidiabetes
medications based upon the pathophysiologic disturbances present in T2DM.

Figure 2dNatural history of T2DM. The
plasma insulin response depicts the classic
Starling’s Curve of the Pancreas. See text for
a detailed explanation (7). Upper panel: In-
sulin-mediated glucose disposal (insulin clamp
technique) and mean plasma insulin concen-
tration during OGTT. Lower panel: Mean
plasma glucose concentration during OGTT.
DIAB, T2DM; Hi, high; Lo, low; OB, obese.

Figure 3dInsulin secretion/insulin resistance
(disposition) index (DI/DG 4 IR) during
OGTT in individuals with NGT, IGT, and
T2DM as a function of the 2-h plasma glucose
(PG) concentration in lean and obese subjects
(9–12).
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T2DM (rev. in 2,3,8,40), including im-
paired glucose transport/phosphoryla-
tion (17), reduced glycogen synthesis
(39), and decreased glucose oxidation
(17). However, more proximal insulin
signaling defects play a paramount role
in muscle insulin resistance (3,40–42).

Ominous octet
In addition to the triumvirate (b-cell fail-
ure and insulin resistance in muscle and
liver), at least five other pathophysiologic
abnormalities contribute to glucose intol-
erance in T2DM (3) (Fig. 1): 1) adipocyte
resistance to insulin’s antilipolytic effect,
leading to increased plasma FFA concen-
tration and elevated intracellular levels of
toxic lipidmetabolites in liver/muscle and
b-cells that cause insulin resistance and
b-cell failure/apoptosis (17); 2) decreased
incretin (glucagon-like peptide [GLP]-1/
glucose-dependent insulinotropic poly-
peptide [GIP]) effect resulting from impaired
GLP-1 secretion (43) but, more impor-
tantly, severe b-cell resistance to the stim-
ulatory effect of GLP-1 and GIP (44,45);
3) increased glucagon secretion by a-cells
and enhanced hepatic sensitivity to gluca-
gon, leading to increased basal HGP and
impaired HGP suppression by insulin
(46,47); 4) enhanced renal glucose reab-
sorption contributing to maintenance of
elevated plasma glucose levels (48,49);
and 5) central nervous system resistance
to the anorectic effect of insulin and al-
tered neurosynaptic hormone secretion
contributing to appetite dysregulation,
weight gain, and insulin resistance inmus-
cle/liver (50–52).

Implications for therapy
The preceding review of pathophysiology
has important therapeutic implications:
1) effective treatment will require multi-
ple drugs in combination to correct the
multiple pathophysiological defects, 2)
treatment should be based upon estab-
lished pathogenic abnormalities and not
simply on HbA1c reduction, and 3) ther-
apy must be started early in the natural
history of T2DM to prevent progressive
b-cell failure.

Figure 1 displays therapeutic options
as they relate to key pathophysiological
derangements in T2DM (Fig. 1). In liver,
both metformin (53–55) and thiazolidi-
nediones (TZDs) (56–62) are potent in-
sulin sensitizers and inhibit the increased
rate of HGP. In muscle, TZDs are potent
insulin sensitizers (56–58,61,63), whereas
metformin is, at best, a weak insulin sen-
sitizer (53,55,64). Since TZDs work

through the insulin signaling pathway
(65), whereas metformin works through
the AMP kinase pathway (66), combina-
tion TZD/metformin therapy gives a com-
pletely additive effect to reduce HbA1c

(67–72). Further, hypoglycemia is not
encountered because these drugs are in-
sulin sensitizers and do not augment in-
sulin secretion. In adipocytes, TZDs are
excellent insulin sensitizers and potent
inhibitors of lipolysis (73). TZDs also
mobilize fat out of muscle, liver, and
b-cells, thereby ameliorating lipotoxicity
(57,62,63,74–76).

Although weight loss has the poten-
tial to improve both the defects in insulin
sensitivity and insulin secretion (77), two
meta-analyses involving 46 published
studies demonstrated that the ability to
maintain the initial weight loss is difficult
(78,79). In the following sections, we
will focus on pharmacologic agentsdas
monotherapy and combination therapyd
that have been proven to reverse patho-
physiologic abnormalities in T2DM.

In the b-cell, sulfonylureas and glinides
augment insulin secretion (80), but only
TZDs (81–83) and GLP-1 analogs (84–86)
improve and preserve b-cell function
and demonstrate durability of glycemic
control (70,82–85,87–93). Importantly,
TZDs and GLP-1 analogs cause durable
HbA1c reduction for up to 5 and 3.5 years,
respectively (82,93). Although dipeptidyl
peptidase inhibitors (DPP4i) augment in-
sulin secretion (94), their b-cell effect is
weak compared with GLP1 analogs and
they begin to lose efficacy (manifested by
rising HbA1c) within 2 years after initia-
tion of therapy (95,96). Despite the potent
effects of TZDs and GLP-1 agonists on
b-cells, the two most commonly pre-
scribed drugs in the U.S. and worldwide
are sulfonylureas and metformin, neither
of which exerts any b-cell protective ef-
fect. This is a major concern, since pro-
gressive b-cell failure is the primary
pathogenic abnormality responsible for
development of T2DM and progressive
HbA1c rise (Fig. 3).

GLP-1 analogs augment and preserve
b-cell function for at least 3 years (84).
This protective effect has its onset within
24 h (86) and persists as long as GLP-1
therapy is continued (84,85,93). Further,
both exenatide and liraglutide promote
weight loss, inhibit glucagon secretion,
and delay gastric emptying, reducing
postprandial hyperglycemia (45,93,97–
99). Weight loss depletes lipid from mus-
cle and liver, improving muscle and
hepatic insulin sensitivity (84,85). GLP-1

analogs also correct multiple cardiovascu-
lar risk factors (rev. in 100) and, thus,
have the potential to reduce cardiovascu-
lar events (101,102). Although DPP4i
share some characteristics with GLP-1 an-
alogs, they do not raise plasma GLP-1 lev-
els sufficiently to offset b-cell resistance to
GLP-1 (103). Not surprisingly, their abil-
ity to augment insulin secretion and re-
duce HbA1c is considerably less than
GLP-1 analogs (94,104,105), and they
do not promote weight loss (94). In a
1-year study involving 665 metformin-
treated T2DM patients, HbA1c reduction
with sitagliptin (0.9%) was significantly
less than liraglutide dosed at 1.2 mg/day
(ΔHbA1c = 1.2%) or 1.8 mg/day
(ΔHbA1c = 1.8%) (105). In a short-term,
mechanism-of-action, crossover study,
exenatide was far superior to sitagliptin
in reducing glucose area under the curve
and 2-h glucose after a meal, increasing
insulin secretion, inhibiting glucagon se-
cretion, and promoting weight loss (104).
Metformin increases GLP-1 secretion by
intestinal L-cells (106–108), and the com-
bination of metformin plus DPP4i may
exert a more durable effect on b-cell func-
tion. The major mechanism of action of
DPP4i to improve glycemic control is me-
diated via inhibition of glucagon secretion
with subsequent decline in HGP (109)

Although not yet approved by U.S.
regulatory agencies, sodium glucose trans-
porter 2 inhibitors (approved in Europe)
demonstrate modest efficacy in reducing
HbA1c, promote weight loss, reduce blood
pressure, and can be added to any antidia-
betes agent (48,110).

Instituting therapy in newly
diagnosed T2DM patients
When initiating therapy in newly diag-
nosed T2DM patients, the following con-
siderations are of paramount importance:

1. Therapy should have the ability to
achieve the desired level of glycemic
control, based upon starting HbA1c.
According to the ADA, European As-
sociation for the Study of Diabetes
(EASD), and American Association of
Clinical Endocrinologists (AACE), the
desired HbA1c is 6.5% (EASD and
AACE) or 7.0% (ADA) (5,111). How-
ever, we believe that in newly diagnosed
diabetic patients without cardiovascu-
lar disease, the optimal HbA1c should
be #6.0%, while avoiding adverse
events, primarily hypoglycemia. This
is consistent with the expanded ADA/
EASD statement (5).
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2. In most newly diagnosed diabetic pa-
tients, monotherapy will not reduce
HbA1c,6.5–7.0% or, most optimally,
,6.0%, and combination therapy will
be required.

3. Importantly, medications used in
combination therapy should have an
additive effect, and individual drugs
should correct established pathophysi-
ologic disturbances in T2DM. If anti-
diabetes medications do not correct
underlying pathogenic abnormalities,
long-term durable glycemic control
cannot be achieved.

4. Progressive b-cell failure is respon-
sible for progressiveHbA1c rise inT2DM
(3). Therefore, medications used to
treat T2DM should preserve or im-
proveb-cell function to ensure durable
glycemic control.

5. Because insulin resistance is a core
defect in T2DM and exacerbates the
decline in b-cell function, medications
also should ameliorate insulin resis-
tance in muscle/liver.

6. T2DM is associated with an increased
incidence of atherosclerotic cardio-
vascular complications. Therefore, it is
desirable that drugs exert beneficial
effects on cardiovascular risk factors
and decrease cardiovascular events.

7. Since obesity is a major problem in
diabetic individuals, combination ther-
apy should be weight neutral and, if
possible, promote weight loss.

8. Combination therapy should be safe
and not exacerbate underlying medi-
cal conditions.

No single antidiabetes agent can cor-
rect all of the pathophysiologic distur-
bances present in T2DM, and multiple
agents, used in combination, will be re-
quired for optimal glycemic control. Fur-
ther, the HbA1c decrease produced by a
single antidiabetes agent, e.g., metformin,
sulfonylurea, TZD, GLP-1 analog, is in the
range of 1.0–1.5% depending upon the
starting HbA1c (5). Thus, in newly diag-
nosed T2DM with HbA1c .8.0–8.5%, a
single agent is unlikely to achieve HbA1c

goal,6.5–7.0%, and virtually no onewill
achieve HbA1c ,6.0%. When maximal-
dose metformin, sulfonylurea, or TZD is
initiated asmonotherapy,,40%of newly
diagnosed T2DM subjects can be expec-
ted to achieve HbA1c ,6.5–7.0%. Thus,
most patients with HbA1c .8.0–8.5%
will require initial combination therapy
to reach HbA1c ,6.5–7.0%. Moreover,
because different agents lower plasma glu-
cose via different mechanisms, combination

therapy will have an additive effect to re-
duce HbA1c compared with each agent
alone. Simultaneous correction of the
b-cell defect and insulin resistance is
more likely to cause durable HbA1c reduc-
tion. Lastly, combination therapy allows
use of submaximal doses of each antidia-
betes agent, resulting in fewer side effects
(112).

In summary, initiating therapy with
multiple antidiabetes agents in newly di-
agnosed T2DM patients, especially those
with HbA1c .8.0–8.5%, represents a ra-
tional approach to achieve the target
HbA1c level while minimizing side effects.
Indeed, AACE recommends starting
newly diagnosed diabetic subjects with
HbA1c .7.5% on multiple antidiabetes
agents (111).

“Treat to fail” algorithm
The 2009 ADA/EASD algorithm (1) rec-
ommended initiation of therapy with
metformin to achieve HbA1c ,7.0%, fol-
lowed by, importantly, sequential addi-
tion of a sulfonylurea. If sulfonylurea
addition failed to reduce HbA1c ,7.0%,
addition of basal insulin was recommen-
ded. Although the revised 2012 ADA/
EASD algorithm (5) includes newer anti-
diabetes agents (GLP-1 receptor agonists,
DPP4i, and TZDs) as potential choices if
metformin fails, the initial box in the
treatment algorithm still depicts sequen-
tial addition of sulfonylurea and then in-
sulin to maintain HbA1c ,7.0%. This
algorithm has little basis in pathophysiol-
ogy and more appropriately should be
called the treat to fail algorithm. More-
over, it does not consider the starting
HbA1c or need for initial combination
therapy in most newly diagnosed T2DM
patients, especially if HbA1c goal ,6.0–
6.5% is desired, as suggested by us (4)
and by the 2012 ADA/EASD consensus
statement (5). Because b-cell failure is
progressive (9–12,24–30,34,35,113,114)
and results in loss of b-cell mass (36–
38), it is essential to intervene with
agents that normalize HbA1c and halt
the progressive b-cell demise (Fig. 3).
Failure to do so will result in the major-
ity of T2DM patients progressing to in-
sulin therapy, as demonstrated in the UK
Prospective Diabetes Study (UKPDS)
(113,114).
Sulfonylureas/glinides: the treat to fail
approach. Until recently (5), sulfonylur-
eas have been considered the drug of
choice for add-on therapy to metformin
(1). In large part, this is attributed to their
low cost and rapid onset of hypoglycemic

effect. However, they lack “glycemic du-
rability” and within 1–2 years lose their
efficacy, resulting in steady HbA1c rise to
or above pretreatment levels (107,108)
(Figs. 4 and 5). Although long-term stud-
ies examining glycemic durability with
glinides (nateglinide, repaglinide) in
T2DM are not available, nateglinide failed
to prevent prediabetic (IGT) patients
from progressing to T2DM (115). In a
2-year study in newly diagnosed T2DM
subjects, durability of netaglinide plus
metformin was comparable with glybur-
ide plus metformin (116) and both groups
experienced a small but progressive HbA1c

rise after the first year. Since deterioration
in glycemic control is largely accounted
for by progressive b-cell failure (3), it is
clear that both sulfonylureas and gli-
nides fail to prevent the progressive de-
cline in b-cell function characteristic of
T2DM. Consistent with this, in vitro stud-
ies have demonstrated a proapoptotic
b-cell effect of sulfonylureas and glinides
(117–120).

UKPDS conclusively demonstrated
that sulfonylureas exerted no b-cell pro-
tective effect in newly diagnosed T2DM
patients (starting HbA1c = 7.0%) over a
15-year follow-up (113,114). After an
initial HbA1c drop, sulfonylurea-treated
patients experienced progressive deterio-
ration in glycemic control that paralleled
HbA1c rise in conventionally treated indi-
viduals (Fig. 4). Moreover, some studies
have suggested that sulfonylureas may
accelerate atherogenesis (121,122).
Similarly, metformin-treated patients in
UKPDS, after initial HbA1c decline (sec-
ondary to inhibition of HGP), also expe-
rienced progressive deterioration in
glycemic control (123) (Fig. 4). With use
of homeostasis model assessment of b-cell
function, it was shown that the relentless

Figure 4dThe effect of sulfonylurea (gliben-
clamide = glyburide) and metformin therapy
on the plasma HbA1c concentration in newly
diagnosed T2DM subjects in UKPDS. Con-
ventionally treated diabetic subjects received
diet plus exercise therapy (113,114).
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HbA1c rise observed with sulfonylureas
and metformin resulted from progressive
decline in b-cell function and that within
3–5 years, ;50% of diabetic patients re-
quired an additional pharmacologic agent
to maintain HbA1c ,7.0% (114,124–
127). Although there is in vitro evidence
that metformin may improve b-cell func-
tion (128,129), in vivo data from UKPDS
and other studies (130) fail to support
any role for metformin in preservation of
b-cell function in humans. Metformin did
reduce macrovascular events in UKPDS
(123), although by today’s standards the
number of metformin-treated subjects
(n = 342) would be considered inadequate
to justify any conclusions about cardio-
vascular protection. Other than its effect
to reduce the elevated rate of basal and
postprandial HGP (53,55,64), metformin
does not correct any other component of
the ominous octet (Fig. 1), and even its
muscle insulin-sensitizing effect is difficult
to demonstrate in absence of weight loss
(53,55,64).

UKPDS was designed as a monother-
apy study. However, after 3 years it became
evident that monotherapy with neither
metformin nor sulfonylureas could pre-
vent progressiveb-cell failure and stabilize
HbA1c at its starting level (113,114,123–
127). Therefore, study protocol was al-
tered to allow metformin addition to
sulfonylurea and sulfonylurea addition
to metformin. Although addition of a
second antidiabetes agent initially im-
proved glycemic control, progressive
b-cell failure continued and HbA1c rose
progressively.

Numerous long-term (.1.5 years)
active-comparator or placebo-controlled
studies have demonstrated inability of
sulfonylureas to produce durable HbA1c

reduction in T2DM patients. These studies
(70,83,87–92,113,131–133) showed that

after initial HbA1c decline, sulfonylureas
(glyburide, glimepiride, and gliclazide)
were associated with progressive decline
in b-cell function with accompanying
loss of glycemic control (Fig. 5). There
are no exceptions to this consistent loss
of glycemic control with sulfonylureas af-
ter the initial 18 months of therapy. Thus,
evidence-based medicine demonstrates
that the glucose-lowering effect of sulfo-
nylureas is not durable and that loss of
glycemic control is associated with pro-
gressive b-cell failure.

Sulfonylurea treatment does not cor-
rect any pathophysiologic component of
the ominous octet (3) (Fig. 1) and is as-
sociated with significant weight gain and
hypoglycemia (89,90). Although no
study has clearly implicated sulfonylureas
with an increased incidence of cardio-
vascular events, a deleterious effect of
glibenclamide (glyburide) on the cardi-
oprotective process of ischemic precon-
ditioning has been demonstrated (134),
while some (121,122,135–142) but not
all (143,144) studies have suggested a
possible association between sulfonylureas
and adverse cardiovascular outcomes.
Since metformin was the comparator in
many of these studies (121,122,137,
138,140–142), it is difficult to determine
whether sulfonylureas increased or metfor-
min decreased cardiovascular morbidity/
mortality. In the study by Sillars et al. (143)
the increased cardiovascular mortality/
morbidity disappeared after adjusting for
confounding variables, and failure to do
so in other sulfonylurea studies may have
clouded their interpretation. Among the
sulfonylurea studies, the older sulfonylureas
(i.e., glibenclamide)more commonly have
been associated with increased adverse
cardiovascular outcomes than the newer
sulfonylurea agents (i.e., gliclazide and gli-
meperide) (139,144–146).

In summary, we believe that currently
available insulin secretagogues (sulfony-
lureas and glinides) represent a poor
option as add-on therapy to metformin.
However, in many countries newer anti-
diabetes agents are not available or are
expensive (ABCDE) (4). In such circum-
stances, sulfonylureas may be the only
option.

Antidiabetes agents known to
reverse pathophysiologic defects
Pioglitazone: unique benefits, unique
side effects. Rosiglitazone has been re-
moved from the market or its use severely
restricted because of cardiovascular safety
concerns (147). Therefore, pioglitazone is

the only representative TZD. Pioglitazone
is unique in that it both exerts b-cell
protective effects (81) and is a powerful
insulin sensitizer in muscle and liver
(56–61,65,74–76) Thus, it is the only an-
tidiabetes agent that corrects the core de-
fects of insulin resistance and b-cell failure
in T2DM. Not surprisingly, it has a dura-
ble effect to reduce HbA1c with low risk of
hypoglycemia.

Eight long-term (.1.5 years) studies
with TZDs (70,82,81–92) (Fig. 6) have
demonstrated that, after initial decline in
HbA1c, durability of glycemic control is
maintained because of preservation of
b-cell function in T2DM patients. Fur-
ther, five studies demonstrate that TZDs
prevent progression of IGT to T2DM
(148–152). All five studies showed that,
in addition to their insulin-sensitizing ef-
fect, TZDs had a major action to preserve
b-cell function. In Actos Now for Preven-
tion of Diabetes (ACT NOW), improved
insulin secretion/insulin resistance (dispo-
sition) index was shown both with OGTT
and frequently sampled intravenous glu-
cose tolerance test. Similar results were
documented in Troglitazone in Prevention
of Diabetes (TRIPOD) and Pioglitazone in
Prevention of Diabetes (PIPOD)
(148,151). Many in vivo and in vitro stud-
ies with human and rodent islets have
demonstrated that TZDs exert a b-cell–
protective effect (153–157).

Pioglitazone has additional beneficial
pleiotropic properties, including in-
creased HDL cholesterol, reduced plasma
triglyceride, decreased blood pressure,
improved endothelial dysfunction, anti-
inflammatory effects (76,158–161), and
amelioration of nonalcoholic steatohe-
patitis (75). In addition to reduced car-
diovascular events in PROactive and U.S.

Figure 5dDurability of glycemic control with
sulfonylureas. Summary of studies examining
the effect of sulfonylurea treatment versus pla-
cebo or versus active comparator on HbA1c in
T2DM. See text for a more detailed discussion
(70,82,87–92,113,114,124–127,131,132).

Figure 6dDurability of glycemic control with
TZDs. Summary of studies examining the effect
of TZDs versus placebo or versus active com-
parator on HbA1c in T2DM subjects. See text for
a more detailed discussion (70,82,87–92). Pio,
pioglitazone; Rosi, rosiglitazone.
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phase 3 trials (162,163), pioglitazone
slows progression of carotid intimal-
media thickness (87,152) and reduces
coronary atheroma volume (88).

Physicians must be cognizant of side
effects associated with TZDs including
weight gain (81,164), fluid retention
(162,165), bone fractures (166), and pos-
sibly bladder cancer (162,167,168) (see
article on peroxisome proliferator–
activated receptors in this supplement
[169]). The preferred starting dose of pio-
glitazone is 15 mg/day titrated to 30 mg/
day, which provides 70–80% of the glyce-
mic efficacy with minimal side effects
(170–174); titrating to 45 mg/day is not
recommended. HbA1c lowering has been
observed with a pioglitazone dose of 7.5
mg/day with minimal side effects. In a
26-week study (172) involving a Caucasian
population, 7.5 mg/day pioglitazone re-
duced the HbA1c by 0.9% compared with
placebo (P = 0.14), while 15 mg/day re-
duced the HbA1c by 1.3% vs. placebo
(P , 0.05). Similar HbA1c reduction with
pioglitazone, 7.5 mg/day, has been ob-
served in an Asian population (173,174).

In combination with metformin (in-
hibits hepatic gluconeogenesis), pioglita-
zone (improves insulin sensitivity in liver/
muscle and preserves b-cell function) of-
fers an effective, durable, and additive
therapy that retards progressive b-cell
failure with little risk of hypoglycemia.
In a 6-month trial comparing fixed-dose
combination with pioglitazone (30 mg)/
metformin (1,700 mg) in 600 drug-naïve
T2DM patients, HbA1c declined by 1.8%
(from baseline HbA1c 8.6%) and was sig-
nificantly greater than the 1.0% reduction
observed with metformin alone or piogli-
tazone alone (175). Similar results were
reported by Rosenstock et al. (176) using
initial combination therapy with rosiglita-
zone (8 mg)/metformin (2,000 mg).

Combining pioglitazone with GLP-1
analog curbs weight gain associated with
the TZD (177). Further, the natriuretic
effect of GLP-1 analogs (178) mitigates
against fluid retention observed with
TZDs. Therefore, we advocate combined
GLP-1 analog/pioglitazone therapy with
or without metformin in newly diagnosed
T2DM patients (3).
Intensive therapy with insulin plus
metformin: reversal of metabolic de-
compensation. Newly diagnosed T2DM
patients who present in poor metabolic
control are markedly resistant to insulin
and have severely impairedb-cell function.
Glucotoxicity (8), lipotoxicity (8,42,62),
and multiple metabolic abnormalities (3)

play an important role in the insulin resis-
tance and b-cell dysfunction. Institution
of intensive insulin therapy with or with-
out other antidiabetes agents to correct
these many metabolic abnormalities,
therefore, represents a rational approach
to therapy based upon pathophysiology.
After a period of sustained metabolic con-
trol, the insulin therapy can be continued
or the patient can be switched to a non-
insulin therapeutic regimen. This ap-
proach has recently been examined by
Harrison et al. (179). Fifty-eight newly di-
agnosed T2DM patients in poor metabolic
control (HbA1c 10.8%) initially were trea-
ted for 3 months with metformin plus in-
sulin to reduce the HbA1c to 5.9%.
Subjects then were randomized to contin-
ued therapy with insulin-metformin com-
bination therapy with pioglitazone/
metformin/glyburide. During 3 years of
follow-up, both groups maintained the re-
duction in HbA1c, but the insulin dose
had to be increased, indicating that, de-
spite excellent glycemic control, b-cell
failure continued in this group. Further,
glycemic control in both groups was
achieved at the expense of a relatively
high rate of hypoglycemia and weight
gain in the insulin/metformin group,
consistent with multiple studies
demonstrating a high incidence of hypo-
glycemia in sulfonylurea-treated and
insulin-treated subjects.
Metformin plus GLP-1 analog plus
pioglitazone: a pathophysiologic op-
tion that offers robust glycemic control
and weight loss. The combination of

biguanide (metformin), TZD (pioglita-
zone), and GLP-1 analog offers a rational
treatment choice, targeting multiple path-
ophysiologic abnormalities in T2DM:
muscle insulin resistance (pioglitazone),
adipocyte insulin resistance (pioglita-
zone), pancreaticb-cell failure (GLP-1 an-
alog, pioglitazone), hepatic insulin
resistance (metformin, pioglitazone, and
GLP-1 analog), and excessive glucagon
secretion (GLP-1 analog) (3) with weight
loss (GLP-1 analog) and low risk of hypo-
glycemia (93,97). Studies with exenatide
have demonstrated durable glycemic con-
trol for 3 years (84,93). b-Cells in T2DM
are blind to glucose, and GLP-1 analogs
have the unique ability to restore b-cell
glucose sensitivity (84–86) (Fig. 7) by
augmenting glucose transport, activating
glucokinase, increasing Pdx, and replen-
ishing b-cell insulin stores (180,181).
Because pharmacologic GLP-1 levels
(;80–90 pmol/L) are achieved with
GLP-1 analogs, they overcome b-cell in-
cretin resistance and augment insulin se-
cretion. Increased insulin and inhibited
glucagon secretion reduce basal HGP, re-
ducing fasting plasma glucose concentra-
tion and enhancing HGP suppression
after a meal (98,99). Although GLP-1 ana-
logs do not have a direct insulin-sensitizing
effect, they augment insulin-mediated glu-
cose disposal secondary to weight loss
(97). The combination of pioglitazone
plus exenatide reduces hepatic fat content
and markers of liver damage in T2DM
(182). In T2DM patients treated with ro-
siglitazone, exenatide, or both (as add-on

Figure 7dA single dose of liraglutide (Lira) (7.5 mg/kg or 0.75 mg for 100-kg person) ad-
ministered acutely completely restores b-cell sensitivity to glucose using the graded glucose in-
fusion technique to evaluate b-cell function (86).
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to metformin), improved b-cell function
and insulin sensitivity were noted, with
weight loss in all exenatide-treated groups
(177). Similar results have been reported
by others (182–185) with combined
GLP-1 analog/TZD therapy.

In an ongoing study, we compared
triple combination therapy with pioglita-
zone/metformin/exenatide with the stan-
dard ADA approach (metformin followed
by sequential addition of sulfonylurea
and then basal insulin) in 134 newly
diagnosed T2DM patients with starting
HbA1c 8.7% (186). After 2 years, HbA1c

reduction was greater in the triple therapy
versus sequential ADA group (2.7 vs.
2.2%, P , 0.01), triple therapy subjects
lost 1.5 vs. 4.1 kg weight gain with the
ADA approach, and hypoglycemia inci-
dence was 13.5-fold higher in the sequen-
tial ADA group. These preliminary results
indicate that a triple combination ap-
proach focused on reversing underlying
insulin resistance and b-cell dysfunction
is superior to sequential therapy (metfor-
min, add sulfonylurea, add basal insulin)
with agents that do not correct core path-
ophysiologic defects in T2DM.
DPP4i: weak but easy alternative to
GLP-1 analogs. DPP4i have gained wide-
spread use in combination with metfor-
min because of their weight neutrality,
modest efficacy, and safety (187,188).
Metformin has a modest effect to increase
GLP-1 secretion (107,189). Thus, combi-
nation metformin/DPP4i therapy may re-
sult in increased GLP-1 levels (190) and
an additive glucose-lowering effect
(191,192). When used in triple combina-
tion with metformin plus pioglitazone
(30 mg/day), alogliptin resulted in better
glycemic control and fewer pioglitazone
dose-dependent side effects (edema, weight
gain) compared with metformin with a
higher pioglitazone dose (45 mg/day)
(172). Because they correctmultiple compo-
nents of the ominous octet, have superior
glucose-lowering efficacy, promote weight
loss, and preserve b-cell function, we favor
GLP-1 analogs over DPP4i in the triple ther-
apy approach. Nonetheless, because of their
ease of administration and safety, DPP4i
represent a reasonable alternative.

Conclusions and recommendations
T2DM is a multifactorial, multiorgan dis-
ease, and antidiabetes medications should
address underlying pathogenic mecha-
nisms rather than solely reducing the
blood glucose concentration. Emphasis
should be placed on medications that
ameliorate insulin resistance and prevent

b-cell failure if durable HbA1c reduction is
to be achieved. Further, the long-practiced
glucocentric paradigm has become anti-
quated. Diabetic patients are at high risk
for cardiovascular events, and compre-
hensive evaluation/treatment of all cardio-
vascular risk factors is essential. Simply
focusing on glycemic control will not
have a major impact to reduce cardiovas-
cular risk (113,123). Therefore, we
favor a therapeutic approach based not
only on the drug’s glucose-lowering effi-
cacy/durability but also on its effect on
weight, blood pressure, lipids, cardiovas-
cular protection, and side effect profile,
especially hypoglycemia.

Initial therapy in newly diagnosed
T2DM patients without cardiovascular
disease should be capable of achieving
the desired glycemic goal, which should
be as close to normal as possible: HbA1c

#6.0%. This will require combination
therapy in the majority of T2DM patients
(3) (Fig. 1). While we favor the patho-
physiologic approach, physicians must
be cognizant of the ABCDE of diabetes
management (4). An approach that em-
phasizes pathophysiology but allows for
individualized therapy will provide opti-
mal results. Evidence-based medicine
(UPKDS) has taught us that sequential
therapy with metformin followed by sul-
fonylurea addition with subsequent insu-
lin addition represents the treat to fail
approach, and we do not recommend
this approach unless cost is the overriding
concern.
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