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The prevalence and incidence of type
2 diabetes, representing.90% of all
cases of diabetes, are increasing rap-

idly throughout the world. The Interna-
tional Diabetes Federation has estimated
that the number of people with diabetes is
expected to rise from 366 million in 2011
to 552million by 2030 if no urgent action
is taken. Furthermore, as many as 183
million people are unaware that they
have diabetes (www.idf.org). Therefore,
the identification of individuals at high
risk of developing diabetes is of great im-
portance and interest for investigators
and health care providers.

Type 2 diabetes is a complex disorder
resulting from an interaction between
genes and environment. Several risk factors
for type 2 diabetes have been identified,
including age, sex, obesity and central
obesity, low physical activity, smoking,
diet including low amount of fiber and
high amount of saturated fat, ethnicity,
family history, history of gestational di-
abetes mellitus, history of the nondiabetic
elevation of fasting or 2-h glucose, elevated
blood pressure, dyslipidemia, and different
drug treatments (diuretics, unselected
b-blockers, etc.) (1–3).

There is also ample evidence that type
2 diabetes has a strong genetic basis. The
concordance of type 2 diabetes in mono-
zygotic twins is ~70% compared with 20–
30% in dizygotic twins (4). The lifetime
risk of developing the disease is ~40% in

offspring of one parent with type 2 diabe-
tes, greater if the mother is affected (5),
and approaching 70% if both parents
have diabetes. In prospective studies, we
have demonstrated that first-degree fam-
ily history is associated with twofold in-
creased risk of future type 2 diabetes
(1,6). The challenge has been to find ge-
netic markers that explain the excess risk
associated with family history of diabetes.

Advances in genotyping technology
during the last 5 years have facilitated
rapid progress in large-scale genetic stud-
ies. Since 2007, genome-wide association
studies (GWAS) have identified .65 ge-
netic variants that increase the risk of type
2 diabetes by 10–30% (7,8). Most of these
variants are noncoding variants, and
therefore their functional consequences
are challenging to investigate. Many of
the variants identified to date regulate in-
sulin secretion and not insulin action in
insulin-sensitive tissues.

In a review by Noble et al. (3), a total
of 43 different studies were presented
where nongenetic prediction models for
type 2 diabetes, including known risk fac-
tors for type 2 diabetes with different
combinations, had been analyzed. Het-
erogeneity of data and highly variable
methodology of primary studies pre-
cluded meta-analysis. Altogether, 84 dif-
ferent risk prediction models were
presented in 43 studies. C statistics varied
from 0.60 to 0.91 (from 0.60 to 0.69 in 5

models, from 0.70 to 0.79 in 44 models,
from 0.80 to 0.89 in 32 models, and
$0.90 in 3 models). These results indi-
cate that clinical, laboratory, and other
easily collected information by interview
constitutes in most cases a solid basis for
nongenetic prediction models in type 2
diabetes.

Identification of a large number of
novel genetic variants increasing suscep-
tibility to type 2 diabetes and related traits
opened up opportunity, not existing thus
far, to translate this genetic information to
the clinical practice and possibly improve
risk prediction. However, available data
to date do not yet provide convincing evi-
dence to support use of genetic screening
for the prediction of type 2 diabetes.

In this review, we summarize the
current evidence on the role of genetic
variants to predict type 2 diabetes above
and beyond nongenetic factors and dis-
cuss the limitations and future potential
of genetic studies.

Genetic prediction models for type 2
diabetes: evidence from cross-sectional
and longitudinal studies
Several studies have indicated that differ-
ent genetic variants (single nucleotide
polymorphisms [SNPs]) are associated
with type 2 diabetes. Genetic risk models
for type 2 diabetes, based on both cross-
sectional (9–17) and longitudinal (1,17–
24) studies, are summarized in Table 1.
Cross-sectional studies. In cross-
sectional studies including 3,000–9,000
individuals with and without type 2
diabetes, the discriminatory ability of
the combined SNP information has been
assessed by grouping individuals based
on the number of risk alleles and deter-
mining relative odds of type 2 diabetes, as
well as by calculating the area under the
receiver operating characteristic curve
(AUC). As shown in Table 1, the AUC of
the genetic risk score (GRS), which com-
bines the information from all risk var-
iants included in the study, has ranged
from 0.54 to 0.63, indicating that genetic
factors have limited use in predicting an
individual’s risk of the disease. In con-
trast, the AUC has been considerably
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larger (from 0.61 to 0.95) for clinical
models including different combinations
of clinical and laboratory parameters (age,
sex, and BMI in all models and family his-
tory of diabetes and fasting glucose in
most of the models) predicting the risk
of type 2 diabetes. Adding the GRS in
the same model shows that in addition
to clinical and laboratory parameters,
risk variants increase only minimally the
predictive value at the population level,
although the model improvement could
be statistically significant (P , 0.05) in
some cases.

Perhaps the most important clinical
question in cross-sectional studies is try-
ing to identify undiagnosed individuals
with type 2 diabetes. We addressed this
question in our large population-based
Metabolic Syndrome in Men (METSIM)
Study (16). We identified undiagnosed
type 2 diabetic patients using the Finnish
Diabetes Risk Score alone (25), which was
the best single indicator of prevalent un-
diagnosed diabetes among all variables
tested in our study. The AUC based on
logistic regression models for the identi-
fication of previously undiagnosed type
2 diabetic subjects with the Finnish

Diabetes Risk Score alone was 0.727, and
it was 0.772 after adding total triglycerides,
HDL cholesterol, adiponectin, and alanine
transaminase in the model. Adding type 2
diabetes risk alleles (20 SNPs) did not fur-
ther improve the model (0.772) (16).
Therefore, in our study common genetic
variants did not seem to add any informa-
tion on the identification of people having
undiagnosed diabetes.
Longitudinal studies. Longitudinal
studies can address the question of what
the nongenetic and genetic risk factors
predicting incident type 2 diabetes are.
Several large population-based follow-up
studies have been published aiming to
investigate the predictive power of com-
mon genetic variants on the risk of in-
cident type 2 diabetes (Table 1). These
studies, including genetic information
from 2 to 40 SNPs, reported results sur-
prisingly similar to those from cross-
sectional case-control studies. Estimates of
C statistics have ranged from 0.54 to 0.63.
Different clinical predicting models gave/
provided more significant C statistic values
from 0.63 to 0.917, which are also quite
similar to those based on cross-sectional
studies. Risk variants did not essentially

increase the AUC to predict type 2 diabe-
tes when combined with clinical risk fac-
tors. In one study, type 2 diabetes risk
prediction of a combined clinical and ge-
netic model was somewhat better in youn-
ger (,50 years) than in older ($50 years)
individuals (19) and in women than in
men (18). Most of these prospective stud-
ies were performed in Caucasian popula-
tions, with only one in Chinese (17).

Are genetic prediction models for
type 2 diabetes worthless?
Both cross-sectional and longitudinal
studies published thus far (Table 1) dem-
onstrate that genetic screening for the pre-
diction of type 2 diabetes in high-risk
individuals is currently of little value in
clinical practice. Table 2 lists several lim-
itations of GRSs published (Table 2).
Small effect size of genetic loci. Effect
sizes of common genetic variants for type
2 diabetes identified to date are rather
modest, ranging from 10 to 35% (7,8). An
attempt to compose a GRS combining
several genetic variants has shown
only a 10–12% increased risk of disease
with increasing number of the risk alleles.
In theMalmö Preventive Project study (1),

Table 1dComparison of clinical and genetic prediction models for type 2 diabetes

Studies N N SNPs AUC GRS AUC clinical model
AUC GRS plus
clinical model

Significant
improvement

Prevalent type 2 diabetes
Lango et al. (11) 4,907 18 0.60 0.78 0.80 Yes
Lin et al. (12) 5,360 15 0.59 0.86 0.87 Yes
Sparso et al. (15) 9,395 19 0.60 0.92 0.93 NA
Wang et al. (16) 7,232 19 0.55 0.727 0.730 No
Qi et al. (14) 3,210 17 0.62 0.77 0.79 Yes
Miyake et al. (13) 4,686 11 0.63 0.68 0.72 NA
Hu et al. (9) 2,891 11 0.621 0.614 0.668 NA
Janipalli et al. (10) 3,357 32 0.634 0.959 0.963 Yes
Xu et al. (17) 4,025 4 NA 0.714 0.73 NA

Incident type 2 diabetes
Lyssenko et al. (1) 16,061 11 0.63 0.74 0.75 Yes
Meigs et al. (20) 2,377 0.581 0.900 0.901 No
de Miguel-Yanes et al. (19) 3,471 40 0.606 0.903 0.906 No
,50 years 0.908 0.911 No
$50 years 0.883 0.884 No

Balkau et al. (18) 3,817 2 NA 0.850 (M), 0.917 (W) 0.851 (M), 0.912 (W) No
van Hoek et al. (23) 2,500 18 NA 0.8626 0.8628 Yes
Schulze et al. (21) 2,500 20 NA 0.8626 0.8628 No
Talmud et al. (22) 5,535 20 0.54 0.78 0.78 No
Vaxillaire et al. (24) 3,442 3 0.56 0.82 0.83 NA
Xu et al. (17) 734 4 NA 0.634 0.663 NA

Nested case-control
Cornelis et al. (55) 6,310 10 NA 0.78 0.79 NA

M, men; NA, information not available; W, women.
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the effect was approximately twofold in-
creased when carriers of the highest and
the lowest number of risk alleles were
compared (top 20% $12 vs. bottom
20%#8 risk alleles). Increasing the num-
ber of novel genetic variants up to 40 did
not seem to largely improve the risk pre-
diction (19). The observed modest effect
sizes could be partially attributed to the
fact that low frequency or rare variants
have not yet been reported. Also, it is
worth mentioning that the majority of
the identified loci from GWAS are not, in
fact, genes. The type 2 diabetes–associated
loci represent an associated SNP, and
there are still no data on whether the
top associated signal represents the
“causal gene”dmuch less the “causal
variant.”
Low discriminative ability of the GRS.
A good diagnostic test in clinical practice
has high sensitivity and specificity. Con-
sistently across all studies, the C statistics
of the AUC for genetic models are typi-
cally ~0.60 suggesting that a genetic test
performs just a little better than flipping a
coin. These results demonstrate that the
performance of a genetic test remains
rather poor even after adding all recently
identified genetic variants in the model
(19). This may not be very surprising,
since these variants explain only ~10–
15% of the heritability of type 2 diabetes
(7). The application of the genome-wide
effects taking into account all SNPs and
not just those that reach a Bonferroni
level of significance has recently been
used in studies on height (26). The results
suggested that this approach can reduce
the amount of missing heritability and

may permit a better GRS. However, the
clinical utility of this application for the
prediction of type 2 diabetes needs to be
tested and validated. Finally, type 2 dia-
betes represents a heterogeneous condi-
tion defined by hyperglycemia, and there
may be several subtypes of diabetes yet to
be defined. Genetic variants operating
through different pathways in the disease
pathogenesis, such as obesity, and con-
tributing to variation in glycemic traits
together may have greater predictive
value for diabetes and its different sub-
types. Therefore, the analyses evaluating
prediction models based on all reported
variants associated with type 2 diabetes
(8) and glycemic traits including glucose
and insulin levels during an oral glucose
tolerance test (OGTT) (27) but also obe-
sity (28) should be performed.
Small added value of GRS compared
with clinical risk factors. Another ques-
tion that rises about the usefulness of a
genetic screening in clinical practice is
whether genetic information improves
the discriminative accuracy of a test using
traditional routine clinical risk factors
alone. Both prospective and cross-
sectional studies have reported somewhat
different discriminatory values across dif-
ferent studies depending on study ascer-
tainment (inclusion and exclusion criteria
of different metabolic risk factors), the
length of the follow-up period in the
prospective cohorts, obesity, and the
presence of family history of diabetes.
A consistent finding in all of these has
been that GRS has added very little to the
information provided by clinical risk fac-
tors alone. Thus, the addition of data from

genotyped genetic variants to the clinical
model only slightly improved the discrim-
inative power of the AUC in the largest
prospective studies from 0.74 to 0.75 in
the Swedish Malmö Preventive Project
study (1), from 0.900 to 0.901 in the Fra-
mingham Offspring study (20), and from
0.66 to 0.68 in the Rotterdam study (23).
One explanation for these findings could
be that clinical risk factors themselves,
such as obesity and elevated glucose lev-
els, harbor a substantial genetic compo-
nent, and therefore different GRS models
underestimate the true significance of ge-
netic variation as a predictor for type 2 di-
abetes.
Questionable clinical relevance of some
genetic variants in disease prediction.
Once genetic loci are identified in the
case-control studies, it is very important
to validate their ability to predict disease
in prospective studies. Prospective stud-
ies represent a more controlled setting
where both case and control subjects are
ascertained in the same way and have
similar environmental exposure and
therefore give the true incidence of the
disease in a population. In the Malmö
Preventive Project study (1), 11 of 16 ge-
netic loci studied, in the Framingham
Offspring study (20) 2 of 18, and in the
Rotterdam study (12) 9 of 18 were asso-
ciated with the risk of developing future
type 2 diabetes. These results may sug-
gest that not all genetic variants that
were significantly associated with type 2
diabetes in case-control studies are clini-
cally relevant in the processes responsible
for the conversion to type 2 diabetes.
However, we could not rule out a lack
of power, since similar observations
have also beenmade in case-control stud-
ies. We are currently conducting the larg-
est to date meta-analysis of prospective
cohorts in European consortia (ENGAGE)
including a total of ~55,000 individuals,
followed for.15 years, to increase sample
size and, thus, improve statistical power.
Our preliminary findings support the
notion that the validation and characteriza-
tion of genetic variants identified in case-
control studies should be performed before
any claims of their clinical relevance are
made.
Lack of appropriate models for studies
of gene-gene and gene-environment
interactions in risk prediction. There is
very little information on how much
gene-gene and gene-environment inter-
actions contribute to the prediction of
type 2 diabetes. The success in the appli-
cation of the methodological techniques

Table 2dLimitations and potential of GRS studies

Limitations
Small effect size of genetic loci
Low discriminative ability of the GRS
Small added value of GRS compared with clinical risk factors
Questionable clinical relevance of some genetic variants in disease prediction
Lack of appropriate models for studies of gene-gene and gene-environment interactions in
risk prediction

Potential in the future
Genetic studies will help to subtype individuals with diabetes
New sequencing techniques will identify low-frequency and rare variants with large
effect sizes

Studies in non–European ancestry populations will help to identify new variants relevant to
type 2 diabetes prediction

Studies of structural variation and epigenetics may help to identify new variants relevant to
type 2 diabetes prediction

Large population-based studies and development of statistical methods will improve
analyses of gene-gene and gene-environment interactions
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to study epistatic effects in different pop-
ulations has been limited. Given the
excessive calculation and power capacity
required for running these tests, research-
ers have mainly studied interaction be-
tween genomic loci that have already been
found (29). However, studies in plants
and animals clearly demonstrate that ep-
istatic/interactions effects are often detec-
ted in the absence of main effects (30).
Our recent studies demonstrate that the
risk of disease conferred by genetic var-
iants might be neutralized by their con-
comitant beneficial effects in other key
organs and tissues involved in the patho-
genesis of type 2 diabetes or having dif-
ferent responses to nutritiondso-called
pleiotropic effects (31,32). For example,
insulin secretion reducing effect of a ge-
netic variant in GIPR is ameliorated by its
beneficial effects on body composition,
including BMI, waist, and fat mass (31).
Furthermore, the carriers of theGIPR var-
iant seem to respond differently to food
rich in carbohydrates and fat (32,33).
Similar observations have been reported
for an interaction between a variant in the
FTO gene and physical activity on the risk
of obesity and cardiovascular diseases
(34,35). Carriers of the obesity-associated
allele in FTO have a higher risk for cardio-
vascular risk only in women who are
physically inactive but not in those who
are physically active, suggesting that the
risk for developing cardiovascular disease
can be prevented or delayed in the risk
allele carriers if they are physically active.
Thus, defining the nature of the gene-
gene and gene-environment interactions
can clearly help to improve prediction
and identify persons at increased risk of
type 2 diabetes (36).

Genetic prediction models for
type 2 diabetes can be valuable
in the future
Previously published genetic studies have
severe limitations that underestimate the
true significance of genetic variants in
predicting type 2 diabetes (Table 2).
Genetic prediction models can be im-
proved by increasing the precision of the
diagnosis of type 2 diabetes, by identifica-
tion of low-frequency and rare genetic var-
iants, by identification of risk variants for
type 2 diabetes in non–European ancestry
populations, by increasing knowledge on
structural variation and epigenetics, and
by developing statistical techniques to eval-
uate gene-gene and gene-environment
interactions.

Necessity of improving the precision
of the diagnosis of individuals with
diabetes. Type 2 diabetes is a chronic
hyperglycemic condition that is not type
1 diabetes or other subtypes of diabetes,
which include genetic defects of insulin
secretion and action, diseases of exocrine
pancreas, endocrinopathies, drug- or
chemically induced diabetes, diabetes in
connection with infections, uncommon
forms of immunomediated diabetes,
other genetic syndromes sometimes asso-
ciated with diabetes, or gestational di-
abetes mellitus (37). In other words, there
is no precise definition of type 2 diabetes.
In fact, this main subtype of diabetes is
defined by excluding all other conditions
leading to chronic hyperglycemia.

Differential diagnosis between differ-
ent subtypes of diabetes is challenging,
especially between type 2 diabetes and
late-onset and slowly developing type 1
diabetes. Patients having this subtype of
diabetes, also called latent autoimmune
diabetes in adults, have a progressive
insulin secretion defect, share a genetic
predisposition with both type 1 and type
2 diabetic patients, and are often diag-
nosed erroneously as type 2 patients (38).
These patients, positive for GAD antibod-
ies, may include ~10% of all diabetic
patients (39) and are the most important
subtype of diabetes leading to misclassifi-
cation of diabetic patients. Additionally,
recent exome sequencing studies have
demonstrated that there is a continuously
increasing number of monogenic forms of
diabetes, which implies that the definition
of type 2 diabetes in previous genetic
studies may have been imprecise
(40,41). Thus, it is very likely that every
study population includes a varying num-
ber of individuals who have monogenic
diabetes and who have been misclassified
as having type 2 diabetes. Finally, it is im-
portant to note that several large-scale
case-control or cohort studies have not ap-
plied an OGTT, which implies that their
nondiabetic control group includes a vary-
ing number of individuals having type 2
diabetes. Imprecise classification of indi-
viduals with diabetes into subtypes and
poor diagnostic procedures to find or ex-
clude individuals with diabetes have con-
siderably weakened the power of previous
genetic prediction models. More careful
phenotyping and classification of partici-
pants into different subtypes of diabetes
are needed in future studies aiming to im-
prove genetic prediction models. Dy-
namic measures of b-cell function (i.e.,
glucose-stimulated insulin secretion

during an OGTT) and insulin resistance
(i.e., during clamp) among nondiabetic in-
dividuals will be largely insightful for the
design of future studies.
New sequencing techniques will identify
low-frequency and rare variants with
large effect sizes. Genome-wide associ-
ation studies are based on the “common
disease, common variant” hypothesis, as-
suming that common diseases are attrib-
utable in part to allelic variants present in
.5% of the population (42). These stud-
ies have been able to identify only rela-
tively common variants that essentially
contributed to the generation of different
genetic risk models for complex diseases,
including type 2 diabetes. Therefore,
new technologies (exome sequencing,
custom-made exome chips) are needed
to identify low frequency (,5%) or rare
(,0.5%) variants having larger effect
sizes that could potentially explain a
part of the “missing heritability” (43).
Importantly, as previously mentioned,
the GRS that emerges from GWAS may
not, in fact, be using the “true” causal
variant (or may not even be in the true
causal gene). As a result, through fine-
mapping and sequencing, perhaps the
true genes/variants can be identified
and, with use of these in a GRS, the pre-
diction ability might increase. It has been
estimated that 20 variants with risk allele
frequency of 1% and allelic odds ratio of
3.0 could account for most familial ag-
gregation of type 2 diabetes (43). Results
from exome sequencing and custom-
made exome chip studies soon to be pub-
lished will clarify the role of variants
with a population frequency ,5% in
chronic diseases, including type 2 diabe-
tes. This work will be facilitated by the
comprehensive catalog of variants with
the minor allele frequency .1% gener-
ated by the 1000 Genomes Project
(http://www.1000genomes.org/page.
php). Identification of low frequency and
rare variants makes it possible to search
for causal variants in gene regions having
simultaneously common variants associ-
ated with the disease.

Studies on monogenic forms of di-
abetes have clarified the relative impor-
tance of rare mutations having large
effects sizes versus common SNPs having
small effect sizes. Lango et al. (44)
included a total of 410 individuals having
causal mutations in the hepatic nuclear
receptor 1a (maturity-onset diabetes of
the young 3) in their study. They
generated a single GRS representing the
combined genetic susceptibility for type 2
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diabetes, based on 17 SNPs known to in-
fluence the risk of type 2 diabetes. Each
additional type 2 diabetes risk allele was
associated with a 0.35-year reduction in
age at diagnosis (P = 0.005) in all individ-
uals and with a 0.28-year reduction in un-
related probands (P = 0.094). These
results imply that the age of onset of
monogenic diabetes caused by rare muta-
tions having large effect sizes is not sub-
stantially modified by common polygenic
variants. This example emphasizes the
potential significance of rare variants hav-
ing large effect sizes over common var-
iants having small effect sizes in the risk
prediction of diabetes.
Studies on non–European ancestry
populations will help identify new
variants relevant to type 2 diabetes
prediction. Most of the GWA studies
have been performed in European ances-
try populations, and therefore current
type 2 diabetes genetic risk models are
not likely to be applicable to all popula-
tions. Genetic variation is greatest in re-
cent African ancestry populations (45),
but there are no large GWAS where risk
variants for type 2 diabetes in African
populations have been investigated in de-
tail. This information could greatly facili-
tate the identification of trait-defining
variants as shown by a recent study in
an African American type 2 diabetic
case-control population (46). The inves-
tigators resequenced the critical chromo-
somal region for association and by
haplotype analysis showed that rs7903146,
originally found in Caucasian populations,
was indeed a causal variant and sufficient to
explain the haplotype association. The
identification of causal variants, instead of
their originally identified proxy SNPs, can
potentially improve type 2 diabetes predic-
tion models (47). Furthermore, the differ-
ences in genetic architecture among the
populations could help to identify variants
that are relatively rare in the Europeans but
are more common in other ethnic groups.
Thus, for example, the KCNQ1 gene was
first identified in Asians where the minor
allele frequency of the associated variants
ranged between 30 and 40%, which was
much higher than in Europeans with a fre-
quency 10% (48,49).
Studies of structural variation and
epigenetics may help identify new variants
relevant to type 2 diabetes prediction.
The contribution of structural variation,
including copy no. variants (CNVs) (in-
sertions and deletions) and copy neutral
variants (inversions and translocations),
to the risk of type 2 diabetes is poorly

known. To date, robustly replicated find-
ings of CNVs associated with type 2
diabetes have not been reported. The
reason for this is, in part, that most of
the CNV analysis has been based onCNVs
that are “tagged” by GWAS SNPs and thus
covering only a small well-behaved geno-
mic regions (in Hardy-Weinberg equilib-
rium), whereas the amount of “structural
dark matter” remains relatively un-
touched by arrays or sequencing of those
genomic regions that are not amenable to
GWAS arrays (48). Next-generation se-
quencing has a considerably better poten-
tial than conventional sequencing to find
structural variation, which could contrib-
ute to the understanding of the genetics of
type 2 diabetes. However, it is not very
likely that CNVs play a major role in the
genetics of type 2 diabetes, given the fact
that CNVs have been estimated to affect
up to 5% of the human genome (43).

Epigenetics means heritable changes in
gene function attributable to chemical
modifications of DNA and its associated
proteins, independent of the DNA se-
quence. The most investigated epigenetic
modifications are methylation of cytosine
residues in DNA and histonemodifications
(50). Changes in DNA methylation have
been shown to be linked with some var-
iants increasing the risk of type 2 diabetes.
Hypermethylation of the maternal allele of
KCNQ1 results in monoallelic activity of
the neighboring maternally expressed pro-
tein-coding genes and is associatedwith the
risk of type 2 diabetes (51). Similarly, ma-
ternally expressedKLF14 only increases the
risk when carried on the maternal chromo-
some and acts as a master trans regulator of
adipose tissue expression (52). These ex-
amples demonstrate the possibility that
several other genes, yet to be discovered,
can contribute to the risk of type 2 diabetes
via epigenetic mechanisms. Combining the
advantages of GWAS and epigenome anal-
yses might pave the way to better under-
standing of the pathogenesis of type 2
diabetes and improve genetic risk models.
Unfortunately, methods to estimate whole-
genome methylation are still under devel-
opment and catch only a minor fraction
of all methylation sites. Technical im-
provements in near future might make
genome-wide methylation scans more ex-
tensive and reliable.
Large population-based studies and
development of statistical methods will
improve analyses of gene-gene and
gene-environment interactions. Most
previous studies on the genetics of type
2 diabetes, especially before the era of

GWAS, applied a single-locus analysis
strategy and thus ignored interactions.
Recent advances in genotyping have con-
siderably improved the opportunity to
investigate the genetic architecture of type
2 diabetes and have made it possible to
perform meta-analyses of several popula-
tion-based studies often including
.100,000 participants. Although these
studies exhibit considerable heterogene-
ity, which weakens their power, they
have paved the way to studies of gene-
gene and gene-environment interactions.
Recent advances include Metabochip, a
custom-made Illumina array (Illumina,
San Diego, CA), including 217,000
SNPs, and Illumina Human Exome Bead-
Chip including .250,000 putative func-
tional exonic variants that are especially
suited for genetic studies of type 2 diabetes.
These large populations allowmeta-analyses
based on identical genetic platforms, which
minimize the heterogeneity of genotyping
results.

Gene-gene and gene-environment in-
teraction analyses based on large popula-
tions increase the power to detect novel
variants and more accurately characterize
the genetic effects. They also may help to
elucidate the biological and biochemical
pathways responsible for complex disea-
ses, e.g., type 2 diabetes, and identify the
environmental effects. Risk prediction
models including significant interactions
also improve disease risk prediction. In-
teraction analyses require sophisticated
statistical methods to analyze genetic
interactions. For example, exhaustive
evaluation of all two-marker models in
GWAS data are already challenging, given
the fact that 5 3 10211 possible models
from a set of 1 million SNPs need to be
calculated (53). The ultimate goal is to in-
tegrate modern statistical methods with ge-
netic data and biological knowledge, which
will further improve the power to detect
complex interactions (54).

Conclusions
Genetic testing for the prediction of type 2
diabetes in high risk individuals is cur-
rently of little value in clinical practice.

The limitations of genetic risk models
are small effect size of genetic loci, low
discriminative ability of the genetic test,
small added value of genetic information
compared with the clinical risk factors,
questionable clinical relevance of some
genetic variants in disease prediction, and
the lack of appropriate models for studies
of gene-gene and gene-environment in-
teractions in the risk prediction.
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For improvement of the genetic risk
models in the future, the definition of type
2 diabetes and classification of subtypes of
diabetes should be more precise, new
sequencing techniques should be applied
to identify low-frequency and rare variants
having a large effect size, non–European
ancestry populations should be investi-
gated to identify new variants relevant to
type 2 diabetes prediction, studies of struc-
tural variation and epigenetics should be
performed to identify new variants relevant
to type 2 diabetes prediction, and modern
statistical methods should be developed
and applied in studies of gene-gene
and gene-environment interaction in large
populations.
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