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OBJECTIVEdWe examined if chronic cannabis smoking is associated with hepatic steatosis,
insulin resistance, reduced b-cell function, or dyslipidemia in healthy individuals.

RESEARCH DESIGN AND METHODSdIn a cross-sectional, case-control study, we
studied cannabis smokers (n = 30; women, 12; men, 18; 27 6 8 years) and control subjects
(n = 30)matched for age, sex, ethnicity, and BMI (276 6). Abdominal fat depots and intrahepatic
fat content were quantified by magnetic resonance imaging and proton magnetic resonance
spectroscopy, respectively. Insulin-sensitivity indices and various aspects of b-cell function were
derived from oral glucose tolerance tests (OGTT).

RESULTSdSelf-reported cannabis use was: 9.5 (2–38) years; joints/day: 6 (3–30) [median
(range)]. Carbohydrate intake and percent calories from carbohydrates, but not total energy
intake, were significantly higher in cannabis smokers. There were no group differences in percent
total body fat, or hepatic fat, but cannabis smokers had a higher percent abdominal visceral fat
(186 9 vs. 126 5%; P = 0.004). Cannabis smokers had lower plasma HDL cholesterol (496 14
vs. 55 6 13 mg/dL; P = 0.02), but fasting levels of glucose, insulin, total cholesterol, LDL
cholesterol, triglycerides, or free fatty acids (FFA) were not different. Adipocyte insulin resistance
index and percent FFA suppression during an OGTT was lower (P , 0.05) in cannabis smok-
ers. However, oral glucose insulin sensitivity index, measures of b-cell function, or incretin con-
centrations did not differ between the groups.

CONCLUSIONSdChronic cannabis smoking was associated with visceral adiposity and
adipose tissue insulin resistance but not with hepatic steatosis, insulin insensitivity, impaired
pancreatic b-cell function, or glucose intolerance.
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C annabinoid receptors (CB1R and
CB2R) and their endogenous li-
gands, the endocannabinoids, play

an important role in regulating energy
balance, appetite, insulin sensitivity,
pancreatic b-cell function, and lipid me-
tabolism (1–4). Endocannabinoids (anan-
damide and 2-arachidonoyl glycerol) and

CB1Rs are present in peripheral tissues in-
volved in energy homeostasis, such as adi-
pose tissue, liver, skeletal muscle, and
pancreas (1,2). CB1R activation promotes
lipogenesis in the liver and adipose tissue
(1,2,5), reduces insulin responsiveness in
skeletal muscle (3), and impairs insulin ac-
tion and secretion in pancreatic b-cells (4).

Consistent with these findings, clinical in-
terventional trials suggest that CB1R antag-
onism reduces body weight, improves
dyslipidemia, and attenuates insulin resis-
tance in humans (6,7).

D9-Tetrahydrocannabinol (D9-THC),
the primary psychoactive component of
Cannabis sativa, activates peripheral and
central CB1Rs (2). Acute treatment of
healthy human volunteers with cannabis
induces glucose intolerance (8,9). Simi-
larly, short-term (13 days) marijuana
smoking increases appetite, food intake,
and body weight in healthy men (10). In
individuals with chronic hepatitis C, daily
marijuana abuse was associated with a
higher risk for hepatic steatosis (11). These
findings from animal and human studies
suggest that chronic cannabis use and
CB1R activation may negatively affect
metabolic actions of insulin and facilitate
hepatic steatosis. Cannabis (marijuana) is
the most commonly used illicit drug in
the U.S. with ;17 million current users
(12). Despite such widespread use, rela-
tively little is known about the metabolic
effects associated with chronic cannabis
use. To that end, in a cross-sectional,
case-control study, we examined if chronic
cannabis smoking is associated with he-
patic steatosis, insulin resistance, reduced
b-cell function, and dyslipidemia in healthy
individuals.

RESEARCH DESIGN AND
METHODS

Study design and study subjects
This cross-sectional, case-control study
was conducted at the Clinical Research
Center, National Institutes of Health
(NIH), in Bethesda, MD (ClinicalTrials.
gov Identifier: NCT00428987) and the
Johns Hopkins Behavioral Pharmacology
Research Unit (BPRU) in Baltimore, MD.
The study protocol was approved by the
NIH Central Nervous System Institu-
tional Review Board and Institutional
Review Boards of the National Institute
of Diabetes and Digestive and Kidney
Diseases-National Institute of Arthritis
and Musculoskeletal and Skin Diseases,
and all procedures followed were in ac-
cordance with institutional guidelines.
Written informed consent was obtained
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from all subjects. Adults who smoked
cannabis at least 4 days per week for the
last 6 months, with a self-reported history
of cannabis smoking for at least 1 year, and
not seeking active treatment were re-
cruited by the National Institute on
Drug Abuse. Exclusion criteria were de-
pendence on drugs other than nicotine,
caffeine, and cannabis within the past 6
months of screening visit; history of in-
travenous illegal drug use; alcohol intake
of more than five drinks per day on $3
days in a week (.15 drinks/week); his-
tory of hepatitis B or C or current hepa-
titis A, B, or C; history of diabetes (type 1 or
type 2), polycystic ovary disease, or other
conditions that may confound study out-
comes; professional or collegiate athletes
or active participation in .60 min/day
of vigorous exercise; use of prescribed or
over-the-counter or herbal/alternative
medications/preparations with effects
on glucose and lipid metabolism; and
pregnancy.

Cannabis smokers underwent history
and physical examination as well as lab-
oratory tests of blood and urine to ensure
that they were free of current somatic and
psychiatric illness and did not currently
abuse drugs other than cannabis (or
nicotine or alcohol). Eligible participants
were admitted to the BPRU, where they
were continuously monitored and not
allowed to leave the unit or receive visi-
tors during their stay to exclude illicit
drug use. Following an overnight stay at
BPRU, subjects were transported to the
NIH Clinical Center for metabolic studies
and imaging studies. After the study
procedures, the subjects were transported
back to BPRU. Control subjects with no
prior history of cannabis use and with
negative urine screens for illicit drug use
were recruited by National Institute of
Diabetes and Digestive and Kidney Dis-
eases in Bethesda, MD. Control subjects
were matched with cannabis smokers for
sex, ethnicity, age (6 5 years), and BMI
(6 2 kg/m2).

Study procedures
Dietary intake and dietary quality. A
24-h dietary recall was used for evaluation
of total daily energy intake (13). The
Healthy Eating Index (HEI) 2005 was
used to assess dietary quality. HEI is
based on the food patterns in the 2005
Dietary Guidelines for Americans (14).
The score is a composite measure of 12
energy-adjusted components, including,
total grains, whole grains, total fruit,
whole fruit, total vegetables, dark green

and orange vegetables and legumes,
milk, meat and beans, oils, saturated fat,
sodium, and calories from solid fats, alco-
holic beverages, and added sugars. HEI
scores range from 0–100, with a higher
score indicating a better-quality diet.
Assessment of body composition, adi-
pose tissue distribution, and hepatic
fat content. Body weight was measured
using a digital balance (Scale-Tronix
5702; Scale-Tronix, Carol Stream, IL).
Body composition was measured by dual-
energy X-ray absorptiometry with a Lunar
iDXA scanner (GE Healthcare, Madison
WI). Subcutaneous and visceral adipose
tissue volumes were assessed at the L4–L5
spine level by magnetic resonance imag-
ing using manual image segmentation
on a T1-weighted turbo-spin-echo image
as previously described (15). Hepatic fat
content was measured with single volume
magnetic resonance spectroscopy (MRS)
in an 8 ml volume in the posterior right
lobe of the liver as described previously
(16).
Oral glucose tolerance test. Each sub-
ject underwent 75-g oral glucose toler-
ance test (OGTT) after a 10-h overnight
fast. Samples for determination of plasma
glucose, insulin, C-peptide, free fatty
acids (FFA), and various incretin concen-
trations were drawn at210, 0, 15, 30, 45,
60, 90, 120, and 180 min relative to the
glucose load. Plasma was obtained from
blood samples by centrifugation and im-
mediately frozen on dry ice for storage at
2 808C.
Laboratory assays. Routine assays for
serum lipids, plasma glucose, insulin, and
hemoglobin A1c (A1C) were performed in
the Department of LaboratoryMedicine at
the Clinical Center, NIH. FFA were mea-
sured with a Wako HR Series NEFA-HR
kit (Wako Diagnostics, Wako Chemicals
USA, Inc., Richmond, VA) and run on a
COBAS FARA-II analyzer (Roche Diagnos-
tics, Indianapolis, IN). Adiponectin, leptin,
total peptide YY (PYY), active glucagon-
like peptide-1 (GLP-1), and acyl anddesacyl
ghrelin levels were measured in plasma by
ELISA.
Modeling and calculations. Quantitative
Insulin Sensitivity Check Index (QUICKI),
Oral Glucose Insulin Sensitivity (OGIS),
and Hepatic Insulin Resistance Index
(HIRI) were used as surrogate measures
of glucose insulin sensitivity/resistance
(17–19). QUICKI was calculated as de-
fined previously from fasting glucose and
insulin values (20). QUICKI = 1/(log[I0] +
log[G0]), where I0 is fasting insulin (mU/
mL) and G0 is fasting glucose (mg/dL).

OGIS was calculated from OGTT using
the 3-h OGIS equation (18). HIRI was
calculated as the product of total area un-
der curve (AUC) for glucose and insulin
during the first 30 min of the OGTT (19).
The trapezoidal method was used to
calculate AUC. HIRI = (G 0–30[AUC] 3
I 0–30[AUC]). Adipose tissue sensitivity to
the antilipolytic actions of insulin were
assessed by the adipocyte insulin resis-
tance index (AIRI) (21) and the degree of
suppression of plasma FFA during an
OGTT (22). AIRI is the product of the
fasting plasma insulin and fasting plasma
FFA (log-transformed) concentrations.
Suppression of lipolysis during an OGTT
was assessed as FFAAUC adjusted for
mean plasma insulin concentrations
and percent maximal suppression of
FFA levels.

b-Cell glucose sensitivity, rate sensi-
tivity, and the potentiation factor were
calculated with the model as described
previously (23). In addition, insulino-
genic index (IGI) was derived from
plasma insulin and glucose concentra-
tions during an OGTT as previously de-
scribed (24).
Statistical analyses. The primary out-
come measures were differences in in-
sulin sensitivity and hepatic fat content
between age-, sex-, ethnicity-, and BMI-
matched chronic cannabis smokers and
control subjects. There were no prior
studies examining the effects of chronic
cannabis use on insulin sensitivity or he-
patic fat content in healthy individuals. In
a study of hepatic steatosis (assessed by
biopsy) in hepatitis C virus (HCV)–infected
individuals, 33% of daily cannabis users
had marked steatosis compared with
16% of nonusers (odds ratio of 2.1) (11).
In healthy individuals, we expected the
effects of chronic cannabis smoking on
hepatic fat content to be larger than ob-
served in HCV-infected individuals. A
sample size of n = 60, with n = 30 in each
cohort was sufficient to provide 80%
power with a = 0.05 in detecting a stan-
dardized difference of ;0.75 in hepatic
fat content (estimated SD, 7%) (16).
Similarly, a sample size of n = 60 was suf-
ficient to detect a standardized difference
of ;1.0 in insulin sensitivity by QUICKI
(estimated SD, 0.037) (20) and OGIS (es-
timated SD, 60 mL z min21 z m22) (18)
with a power of 90% and a = 0.05. The
presence of skewed data were evaluated by
visual inspection of quantile–quantile
plots, stem and leaf plots, or box plots
and verified by the Shapiro-Wilk test for
normal distribution. After testing data for
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normality, we used Student unpaired
t, paired t, or appropriate nonparametric
tests for evaluation of differences between
the groups. Because of the exploratory na-
ture of this study, no adjustments were
made for multiple comparisons, and val-
ues of P , 0.05 were considered to rep-
resent statistical significance. The
statistical software StatsDirect version
2.7.2 (Chershire, U.K.) was used for
data analysis.

RESULTS

Clinical characteristics, cannabis
use, and energy intake of study
subjects
This study included age-, sex-, race-, and
BMI-matched chronic cannabis smokers
(n = 30) and control subjects (n = 30). The
median age of cannabis smokers was 25
years (25th–75th percentile: 21–28
years). Age at first cannabis smoking was
156 3 years (range, 11–20). Participants
smoked an average of 10 6 8 joints per
day (range 3–30) for 126 9 years (range,
2–38). The majority of cannabis smokers
in our cohort were African American
(73%) and men (60%) (Table 1). The me-
dian BMI of the cannabis smokers was 26
kg/m2 (range, 19–42). The participants in
the control group were matched for age,
sex, ethnicity, and BMI (Table 1). Seven-
teen of the cannabis smokers (56%) also
smoked tobacco, whereas only two

participants in the control group were to-
bacco smokers. Systolic and diastolic
blood pressures were significantly higher
in cannabis users when compared with
control participants (systolic blood pres-
sure, 1286 13 vs. 1206 12 mm Hg, P =
0.01; diastolic blood pressure, 76 6 10
vs. 71 6 8 mm Hg, P = 0.01).

Total daily energy intake, assessed by
24-h dietary recall, was not significantly
different between the groups. However,
carbohydrate intake and percent calories
from carbohydrates were significantly
higher in cannabis smokers (Table 1).
Diet quality was measured using the
HEI-2005. As seen in Table 1, the quality
of diet consumed by cannabis smokers
was lower than the control group, reflect-
ing differing food choices. Despite differ-
ences in total diet quality, the percent
total daily calories from fat and alcohol
were not significantly different between
the groups. In both groups, women con-
sumed less alcohol (% energy intake) than
men (control subjects: 1.7 6 2 vs. 5 6
11; cannabis: 1.9 6 4 vs. 2.7 6 3).

Cannabis use, adiposity, and body
fat distribution
In addition to being age- and BMI-
matched, total body fat (TBF) content
(regional percent fat) was similar between
the groups (28 6 12 vs. 28 6 11%; P =
0.75) (Fig. 1). Relative distribution of ab-
dominal fat was evaluated by magnetic

resonance imaging. While cannabis
smokers had a lower total (P = 0.003)
and subcutaneous (P = 0.008) fat in the
abdomen, the percent of visceral fat area
(visceral fat area/total abdominal fat area)
was higher (18 6 9 vs. 12 6 5%; P =
0.004) when compared with the control
group (Fig. 1). However, the percent of
visceral fat area was unrelated to age or
frequency or duration of cannabis use.
Contrary to our hypothesis, hepatic fat
content as assessed by MRS was not dif-
ferent between the groups (1.1 6 1.3 vs.
1.5 6 1.9%; P = 0.59) (Fig. 1). In the
combined cohort, age (age: r = 0.26; P =
0.05) and percent TBF (r = 0.35; P =
0.007) was associated with hepatic fat
content. Similar to percent visceral fat, he-
patic fat content was unrelated to age or
frequency or duration of cannabis use.

Chronic cannabis use, metabolic
parameters, and insulin sensitivity
Fasting plasma glucose and insulin as well
as a measure of glycemic control, A1C,
were comparable between the groups
(Table 2). Fasting levels of HDL choles-
terol (P = 0.02) were lower in cannabis
smokers (women: 49 6 12 vs. 61 6 12
mg/dL; men: 496 12 vs. 516 12mg/dL).
However, LDL cholesterol, triglycerides,
and FFA levels were comparable between
the groups (Table 2). Likewise, circulat-
ing levels of high-sensitivity C-reactive
protein (cannabis: women, 5.6 6 9.3 and
men, 0.8 6 0.7 mg/L; control subjects:
women, 1.5 6 1.9, men, 1.26 1.4 mg/L),
leptin (cannabis: women, 29.5 6 20.0
and men, 5.9 6 8.4 ng/mL; control sub-
jects: women, 28.2618.4 andmen, 5.16
5.4 ng/mL), and adiponectin were similar
(Table 2). Although, levels of liver trans-
aminases, alanine aminotransferase, and
aspartate aminotransferase were not dif-
ferent, plasma levels of alkaline phospha-
tase were significantly higher in cannabis
smokers (Table 2).

Measures of hepatic insulin resis-
tance, QUICKI, HIRI, and OGIS, a mea-
sure of peripheral glucose disposal, were
not significantly different between the
groups (Table 3). However, indices of ad-
ipose tissue insulin resistance, AIRI, and
FFA suppression index were significantly
higher in cannabis smokers (Table 3).

Chronic cannabis use, insulin
secretion, and pancreatic
b-cell function
Basal and postglucose load absolute in-
sulin secretory rates were comparable
between the groups. In order to assess

Table 1dDemographics, cannabis use, energy intake, and dietary quality in chronic
cannabis users and control nonusers

Variables
Control subjects

(n = 30)
Cannabis smokers

(n = 30) P value

Age (years) 27 6 7 27 6 8 0.47
Female/males 12/18 12/18
African American (n) 22 22
Whites 7 7
BMI (kg/m2) 27 6 6 27 6 6 0.91
Obese, BMI .30 (%) 26 26
Cannabis use
Age at first use (years) 15 6 3
Years of use 12 6 9
Joints per day 9.5 6 8.4

Energy intake (kcal/day) 2,423 6 2,280 2,980 6 1,689 0.33
Protein (% energy intake) 15.3 6 4.3 11.2 6 4.6 0.002
Carbohydrate (% energy intake) 50.9 6 10.8 58.8 6 15.8 0.02
Fat (% energy intake) 32.2 6 8.5 29.6 6 11.7 0.07
Alcohol (% energy intake) 3.7 6 8.6 2.4 6 3.2 0.47
HEI 56.7 6 11.3 48.4 6 7.9 0.002

Data shown are unadjusted means 6 SD. P values indicate significance for comparisons between chronic
cannabis smokers and age-, sex-, race-, and BMI-matched control subjects with Student t orWilcoxon signed
rank test, as appropriate.
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insulin secretion in response to a dynamic
change in plasma glucose levels, we mea-
sured rate sensitivity and IGI. IGI, the
ratio of the rise of the insulin and glucose
concentrations over basal level at 30 min
(DI/DG), and rate sensitivity were not dif-
ferent between the groups (Table 3). In-
sulin secretion and its relationship to
plasma glucose concentrations were eval-
uated by model-derived b-cell glucose
sensitivity parameter. Other measures of
b-cell function, b-cell glucose sensitivity,
and potentiation factor in chronic canna-
bis smokers were also similar to control
subjects.

Incretin secretion in chronic
cannabis smokers
Incretins play an important role in regu-
lating appetite and pancreatic b-cell func-
tion. To examine if chronic cannabis
smoking affects incretin levels, we mea-
sured fasting and post-OGTT incretin
concentrations. Fasting levels of acyl-
ghrelin (10.6 6 2 vs. 13.2 6 8.2 pg/mL;
P = 0.29), desacyl ghrelin (2826 152 vs.
2796 200 pg/mL; P = 0.64), PYY (68.26
22.4 vs. 77.9 6 46.2 pg/mL; P = 0.44),
and active GLP-1 (4.56 3.8 vs. 6.16 7.2
pmol/L; P = 0.52) were not different be-
tween the groups. Also, post-OGTT

concentrations of ghrelin and active
GLP-1 were similar between the groups
(data not shown).

CONCLUSIONSdIn the current
study, we demonstrated that chronic
cannabis smokers had relative visceral
adiposity and adipose tissue insulin re-
sistance but not hepatic steatosis, glucose
insulin insensitivity, impaired pancreatic
b-cell function, glucose intolerance, or
dyslipidemia compared with age-, sex-,
ethnicity-, and BMI-matched control in-
dividuals. Our study results suggest that
chronic, daily cannabis use may have dif-
ferential tissue-specific effects on insulin
sensitivity, but these effects appear to
have minimal impact on glucose or lipid
metabolism.

Marijuana use and clinical
characteristics of study participants
Cannabis is the most frequently used illicit
drug, especially in younger individuals,
and accounts for the main reason for
admission into substance abuse treat-
ments (12). Moreover, during the past
few years there have been further increases
in the prevalence of marijuana use in the
U.S. (12). Consequently, understanding
the chronic metabolic effects of marijuana
smoking are important, a topic that has
not been adequately studied.We designed
this study to metabolically phenotype
healthy chronic cannabis users. Marijuana
users in the general population are more
likely to be younger (,30 years old), be
male, have an average age at first use of
;18 years, and to frequently use other
illicit drugs (12). In this study, we ex-
cluded individuals who currently abused
other illicit drugs other than cannabis and
with history of alcohol abuse or depen-
dency. In 2010, an ;6.9 million current
marijuana users used the drug on $20
days in the past month (12). However, as
noted in the Coronary Artery Risk Devel-
opment in Young Adults (CARDIA) Study
(25) and Third National Health and Nu-
trition Examination Survey (NHANES III)
participants (26), only 1–3% of current
marijuana smokers are heavy users. In
our cohort of daily cannabis smokers,
the dose and frequency of marijuana use
(average ;10 joints/day) and chronicity
(;12 years) was substantial.

Marijuana use is associated with
higher daily caloric intake. In the
NHANES III and CARDIA study, heavy
cannabis users had ;20% higher calorie
intake than nonusers (25,26). The in-
crease in calories was from higher intake

Figure 1dTotal adiposity and regional fat distribution in chronic cannabis smokers and control
subjects. A: Abdominal total fat, subcutaneous fat, and visceral fat content. B: TBF (regional
percent), visceral fat (percent of total abdominal fat), and hepatic fat content. Values shown are
means 6 SE. *P , 0.05, paired t test; ns, not significant.
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of all macronutrients. Specifically, the fre-
quency and amount of consumption of
soda, cheese, salty snacks, pork, and alco-
hol was higher in cannabis users.

Consistent with other studies, the quality
of diets consumed by cannabis users was
poor (27). Furthermore, the percent of
daily calories derived from carbohydrates

relatively rich in simple sugars was signif-
icantly higher in marijuana smokers.
These findings are consistent with human
and animal studies demonstrating that
cannabinoids stimulate food intake, spe-
cifically highly palatable sweet-tasting
foods (28). Cannabis smokers in our study
exhibited characteristics typically ob-
served inmarijuana smokers in the general
population. In particular, the degree and
duration of cannabis exposure in our
study participants provided us the oppor-
tunity to clearly assess any significant met-
abolic effects of chronic and heavy
marijuana use in healthy individuals.

Effects of marijuana on adiposity
and abdominal fat distribution
D9-THC, the lipophilic active ingredient
of cannabis, is known to accumulate in
adipose tissue of heavy marijuana users
(29). This may explain adipose tissue–
specific effects of chronic marijuana use.
In in vitro studies, D9-THC has been
shown to increase adipocyte hypertrophy
and lipogenesis (30). Based on extant lit-
erature, mainly from in vitro and animal
studies (2,3), we hypothesized that
chronic cannabis users may have higher
amounts of hepatic fat and abdominal vis-
ceral fat. Using MRS, we did not observe
any significant differences in hepatic fat
content between chronic cannabis users
and age-, sex-, ethnicity-, and BMI-
matched nonusers. In one recent epide-
miological study of several hundred
patients with hepatitis C infection, daily
cannabis use was found to be a predictor
of hepatic steatosis (by microscopy) (11).
However, there was a higher prevalence of
hepatic steatosis in nonmarijuana users
with HCV infection, suggesting that mar-
ijuana use may exacerbate the pathologi-
cal effects of HCV infection in the liver.
Alkaline phosphatase, but not hepatic
transaminase, levels were higher in can-
nabis users in our study. This is consistent
with a prior report demonstrating ele-
vated hepatic enzymes and hepatomegaly
in cannabis smokers (31). But for this sol-
itary study, there are no other human
studies that help interpret or refute the
likelihood of a false-positive finding of
higher levels of alkaline phosphatase.

In animal studies, chronic CB1R stim-
ulation by endocannabinoids favors adi-
posity independent of its effects on
appetite stimulation, as deduced from the
opposite effects of chronic CB1R blockade.
This contrasts with the effects of chronic
marijuana use as reported in NHANES III
(27), the National Epidemiologic Survey

Table 2dMetabolic parameters in chronic cannabis users and control nonusers

Variables
Control subjects

(n = 30)
Cannabis smokers

(n = 30) P value

Metabolic parameters
Fasting plasma glucose (mmol/L) 4.8 6 0.4 4.8 6 0.5 0.49
Fasting plasma insulin (pmol/L) 22.6 6 15.9 41.4 6 45.7 0.07
A1C (%) 5.4 6 0.4 5.4 6 0.3 0.64
A1C (mmol/mol) 35.2 6 4.2 35.7 6 3.7 0.67

Lipids (mmol/L)
Total cholesterol 4.2 6 0.7 3.9 6 1.0 0.17
LDL cholesterol 2.4 6 0.7 2.2 6 0.8 0.26
HDL cholesterol 1.4 6 0.3 1.3 6 0.4 0.02
Triglycerides 0.8 6 0.4 1.0 6 0.7 0.24
FFA (mEq/L) 578 6 210 689 6 339 0.16

Hepatic enzymes (IU/L)
Alkaline phosphatase 59 6 16 69 6 12 0.004
ALT 28 6 11 26 6 16 0.47
AST 17 6 7 18 6 10 0.56
hsCRP (mg/L) 1.3 6 1.6 2.7 6 6.3 0.31
Adiponectin (mg/mL) 5.3 6 4.0 3.8 6 4.5 0.10
Leptin (ng/mL) 14.7 6 16.9 15.3 6 18.2 0.78

Data shown are unadjusted means 6 SD. P values indicate significance for comparisons between chronic
cannabis smokers and age-, sex-, race-, and BMI-matched control subjects with Student t orWilcoxon signed
rank test, as appropriate. ALT, alanine aminotransferase; AST, aspartate aminotransferase; hsCRP, high-
sensitivity C-reactive protein.

Table 3dIndices of insulin sensitivity/resistance, insulin secretion, and b-cell function in
chronic cannabis users and control nonusers

Variables
Control subjects

(n = 30)
Cannabis smokers

(n = 30) P value

Measures of insulin sensitivity/
resistance

Insulin sensitivity, skeletal
muscle/hepatic

QUICKI 0.415 6 0.039 0.400 6 0.061 0.23
OGIS (mL z min21 z m22) 444 6 67 459 6 75 0.48
HIRI (Matsuda) 32.0 6 17.5 32.2 6 22.5 0.90

Insulin sensitivity, adipocyte
AIRI 61.7 6 43.1 110 6 113 0.05
FFA suppression (%) 91 6 5 86 6 10 0.02
FFA suppression index
(FFAAUC/insulinAUC) 153 6 92 289 6 295 0.01

Measures of insulin secretion
IGI, OGTT 155 6 119 127 6 97 0.36
Basal insulin secretion rate
(pmol z min21 z m2) 69 6 27 79 6 46 0.29

Total insulin secretion (nmol z m22) 64 6 25 56 6 25 0.16
Glucose sensitivity (pmol z min21 z m2

z mmol21) 185 6 117 148 6 81 0.12
Rate sensitivity (pmol z m2 z mmol21) 1,254 6 817 1,418 6 981 0.43
Potentiation (fold) 1.12 6 0.34 1.16 6 0.58 0.59

Data shown are unadjusted means 6 SD. P values indicate significance for comparisons between chronic
cannabis smokers and age-, sex-, race-, and BMI-matched control subjects with Student t or Wilcoxon
signed rank test, as appropriate.
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on Alcohol and Related Conditions, the
National Comorbidity Survey–Replication
(32), and the CARDIA (25) studies, which
show that despite an increase in caloric in-
take, prevalence of obesity is lower in can-
nabis users as compared with nonusers.
Moreover, in NHANES III, higher fre-
quency of marijuana use was significantly
associated with lower BMI (27). This neg-
ative association of cannabis use and BMI
remained even after adjustment for poten-
tial confounders such as age, sex, educa-
tion, caloric intake, tobacco smoking, and
alcohol use.

In our study, nonmarijuana users had
comparable amounts of percent TBF, but
the total abdominal fat content (subcuta-
neous and visceral combined) was signif-
icantly lower in cannabis smokers.
However, when we examined the relative
amounts of abdominal fat distribution,
cannabis smokers had significantly higher
percentage of visceral fat. This finding is
consistent with the observation that mar-
ijuana use is associated with larger waist
circumference (25). In obese individuals,
endocannabinoid levels are higher in ab-
dominal (33–36), but paradoxically lower
in subcutaneous adipose tissue (37,38).
These findings have led to the suggestion
that such depot-specific upregulation of
endocannabinoid system (ECS) may favor
partition of lipids toward visceral and away
from subcutaneous fat depots during
states of caloric excess (39). Interestingly,
D9-THC–induced decrease in AMP-
activated protein kinase, an enzyme that
activates fatty acid oxidation, is greater in
visceral adipocytes (40), suggesting a depot-
specific effect. Although not known, such
depot-specific actions of phytocannabi-
noids may explain the effects of chronic
cannabis smoking on regional fat distribu-
tion. In addition, non–D9-THC phytocan-
nabinoids (e.g., cannabidiol [CBD]) may
also play a role in adipogenesis (41). How-
ever, the ratio of D9-THC versus CBD ex-
ceeded 10:1 in the vast majority of
marijuana samples seized in Maryland
(M. A. ElSohly, personal communication).
This makes it unlikely that non–D9-THC
cannabinoids such as CBD contributed to
the relative visceral adiposity observed in
our study. These novel and intriguing
findings from our study should be consid-
ered hypothesis-generating that need fur-
ther confirmation in larger studies.

Effects of marijuana use on insulin
action and secretion
Daily smoking of marijuana for 7 days or
acute intravenous administration of

D9-THC induces glucose intolerance in
men (8,9). However, the effects of chronic
marijuana smoking on glucose disposal,
insulin action, and b-cell function have
not been previously investigated. In our
study, chronic cannabis impaired adipose
tissue insulin sensitivity but not insulin
sensitivity parameters related to glucose
metabolism. These tissue-specific effects
of marijuana may be due to: 1) higher lev-
els ofD9-THC and prolonged retention in
adipose tissue (29); 2) higher sensitivity
to antilipolytic effects of insulin in adi-
pose tissue compared with its action in
the liver (suppression of glucose produc-
tion) or skeletal muscle (stimulation of
glucose disposal); and 3) varying expres-
sion of CB1R in insulin-sensitive tissues
(e.g., expression of CB1Rs in liver is min-
imal in healthy individuals) (42).

Pancreatic CB1R activation leads to
b-cell death and impairs insulin secretion
in mice (4). Whether chronic marijuana
smoking affects insulin secretion in hu-
mans is not known. Using C-peptide de-
convolution and OGTT modeling, total
insulin secretion, b-cell glucose sensitiv-
ity, rate sensitivity, and potentiation of in-
sulin secretion were evaluated. Chronic
cannabis smoking does not appear to im-
pair b-cell glucose sensitivity, rate sensi-
tivity, or insulin secretion. Thus, chronic
marijuana smokers manifest normal glu-
cose tolerance due to intact peripheral in-
sulin sensitivity and b-cell function. The
lack of adverse effects of chronic cannabis
use on glucose tolerance is consistent with
the lower prevalence of type 2 diabetes in
heavy marijuana smokers (26). Likewise,
heavymarijuana use did not impair fasting
glucose levels in the CARDIA study (25).

Marijuana use, blood pressure, and
dyslipidemia
Chronic marijuana users had higher
blood pressure but near-normal lipid
parameters compared with nonusers.
Similar findings have also been reported
from the NHANES III and CARDIA study
(25,26). One potential confounder in in-
terpreting these findings is the frequent
association of tobacco smoking in chronic
cannabis smokers in our and other’s stud-
ies (12,25).

Marijuana use and appetite-
modifying incretins
Appetite stimulating actions of cannabis
are well established, but the effects of
chronic cannabis use on appetite hor-
mones are unknown. In a recent study,
administration of medicinal cannabis

acutely increases plasma ghrelin and lep-
tin and decreases PYY levels in individuals
with neuropathic pain (43). Although we
did not assess appetite ratings, fasting and
post-OGTT levels of ghrelin, GLP-1, and
PYY were unaffected by marijuana smok-
ing. It is probable that the duration of
cannabis exposure (acute vs. chronic)
may differentially affect levels of circulat-
ing appetite hormones. Further studies
are needed to confirm these findings.

Metabolic effects of
phytocannabinoids versus
endocannabinoids
Phytocannabinoids are plant-derived nat-
ural products that are chemically similar
to cannabinoids and interact with CB
receptors. The two major cannabinoids
from cannabis sativa are D9-THC and
CBD. D9-THC is a CB1R and CB2R partial
agonist, and CBD produces a broad range
of effects not mediated by either CB1R or
CB2R, although in some systems it may
behave as a CB2R inverse agonist (44).
However, when CB receptor expression
is low, D9-THC blocks CB receptor acti-
vation by other cannabinoids (44).
Chronic cannabis use downregulates
CB1Rs (45) and may induce tolerance to
the effects of D9-THC. This is the most
likely explanation of the discrepant effects
of cannabis on glucose metabolism in
short-term studies and after chronic ex-
posure. Although the possibility of CB1R
desensitization exists, definitive conclu-
sions cannot be made due to lack of
data regarding cannabis dose over time
(stable vs. scaling up), especially at the
time of metabolic assessment. The abil-
ity of D9-THC to block or activate CB
receptors, differential downregulation
of CB1Rs, role of non-CB1R activation
by phytocannabinoids, varying tissue-
specific expression of CB receptors, and
the development of tolerance to some
effects of D9-THCmay explain the differ-
ential effects of ECS upregulation in ro-
dents and chronic cannabis use in
humans.

Limitations
Our study has several limitations aside
from the small cohort size and lack of
multiplicity corrections for exploratory
outcomes. First, the accuracy of self-
reported substance use is frequently ques-
tioned due to substantial underreporting.
However, in our study, cannabis use was
elicited by experienced investigators and
underreporting minimized through assur-
ances of confidentiality, lack of adverse
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consequences, appropriate recall cues,
and other confirmatory biological markers
for confirmation (46). Even if underrepor-
ted, cannabis use was significant in our
study. Second, although the effect of to-
bacco smoking on insulin sensitivity is
equivocal (47,48), the high prevalence of
concurrent tobacco use in cannabis users
is inevitably a major confounder. None-
theless, the metabolic parameters were
not different between tobacco users and
nonusers in cannabis users. Third, con-
sumption of a diet rich in carbohydrates
with high glycemic index may have had
independent effects on adipose tissue in-
sulin sensitivity and visceral adiposity.
However, carbohydrate consumption
was assessed by dietary history, which is
highly variable, especially in our cannabis
cohort. Fourth, we used surrogate mea-
sures of insulin sensitivity and secretion.
Although these indices andb-cell function
modeling have been extensively validated
and used, the findings from our explor-
atory study need to be confirmed using
gold-standard techniques such as euglyce-
mic hyperinsulinemic and hyperglycemic
clamp techniques. Fifth, given the high
proportion of African Americans in our
cohort, our results may have also been af-
fected by the relative resistance of African
Americans to hepatic steatosis (49). Fi-
nally, confounding effects of varying com-
position of cannabis preparations and the
relative amounts and activities of non-
THC cannabinoids (e.g., CBD, cannabi-
gerol, and tetrahydrocannabivarin) and
even noncannabinoids such as terpenoids
on glucose metabolism is an unavoidable
limitation.

In healthy young individuals, chronic
cannabis smoking was associated with
visceral adiposity and adipose tissue in-
sulin resistance but not with hepatic
steatosis, insulin insensitivity, impaired
pancreatic b-cell function, or glucose in-
tolerance.
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