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OBJECTIVEdTo assess the glucagon response to hypoglycemia and identify influencing
factors in patients with type 1 diabetes compared with nondiabetic control subjects.

RESEARCH DESIGN AND METHODSdHyperinsulinemic hypoglycemic clamp stud-
ies were performed in all participants. The glucagon response to both hypoglycemia and arginine
was measured, as well as epinephrine, cortisol, and growth hormone responses to hypoglycemia.
Residual b-cell function was assessed using fasting and stimulated C-peptide.

RESULTSdTwenty-eight nonobese adolescents with type 1 diabetes (14 female, mean age
14.9 years [range 11.2–19.8]) and 12 healthy control subjects (6 female, 15.3 years [12.8–18.7])
participated in the study. Median duration of type 1 diabetes was 0.66 years (range 0.01–9.9).
The glucagon peak to arginine stimulation was similar between groups (P = 0.27). In contrast, the
glucagon peak to hypoglycemia was reduced in the groupwith diabetes (95%CI): 68 (62–74) vs.
96 (87–115) pg/mL (P, 0.001). This response was greater than 3 SDs from baseline for only 7%
of subjects with type 1 diabetes in comparison with 83% of control subjects and was lost at a
median duration of diabetes of 8 months and as early as 1 month after diagnosis (R =20.41, P,
0.01). There was no correlation in response with height, weight, BMI, and HbA1c. Epinephrine,
cortisol, and growth hormone responses to hypoglycemia were present in both groups.

CONCLUSIONSdThe glucagon response to hypoglycemia in adolescents with type 1 di-
abetes is influenced by the duration of diabetes and can be lost early in the course of the disease.
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Hypoglycemia is a complication of
insulin therapy of type 1 diabetes
that can cause significant morbidity

and rarely, mortality; as a result, it proves a
significant barrier to contemporary targets
for glycemic control (1). Young people
with type 1 diabetes are especially prone
to hypoglycemia due to the nonphysiolog-
ical nature of insulin therapy, as well as
defective counterregulation (1–4). Impair-
ment of the glucagon response to hypogly-
cemia is well documented in adult patients

with long-standing diabetes (2,5); however,
the natural history and underlying path-
ophysiology have not beenwell character-
ized in children and adolescents. Studies
with small sample numbers suggested
that the glucagon response to hypoglyce-
mia is lost during the first months after
diagnosis of type 1 diabetes (6,7), but
this remains to be studied further.

The purpose of this study was to 1)
assess the glucagon response to both hypo-
glycemia and arginine as an independent

stimulus in adolescents with type 1 diabetes
with a range of diabetes duration, as well as
in healthy control subjects, and 2) identify
clinical anddemographic factors that predict
the glucagon response to hypoglycemia.

RESEARCH DESIGN AND
METHODSdAdolescents with type 1
diabetes were identified from theWestern
Australian Children’s Diabetes Database.
Eligible patients aged 12–16 years attend-
ing the Diabetes Service at Princess
Margaret Hospital for Children were ap-
proached to participate in the study. Ex-
clusion criteria included a history of
seizures not related to hypoglycemia, any
episode of hypoglycemia (blood glucose
level,3.5 mmol/L) in the 24 h preceding
the study, and a history of severe hypogly-
cemia within the preceding 3 months.
Clinical and demographic factors are pro-
spectively recorded from diagnosis and
recorded in the Western Australian Child-
ren’s Diabetes Database. These data were
used to determine the factors included in
the multivariate analysis. The control sub-
jects were siblings of children with type 1
diabetes recruited from the community.
The cross-sectional study design involved
admission for a hypoglycemic hyperinsu-
linemic clamp study followed by an ar-
ginine stimulation test. The protocol was
approved by the local ethics committee
and signed informed consent was ob-
tained for all subjects.

Protocol
Hyperinsulinemic hypoglycemic
clamp study. A modification of the glu-
cose clamp technique described by Amiel
et al. (8) was used. Patients were advised
to fast for at least 8 h prior to admission to
the research laboratory on the morning of
the study. Only short-acting insulin was
used in the 12 h preceding the study.
Fasting samples were taken for plasma
glucose, C-peptide, HbA1c, and islet cell/
glutamic acid decarboxylase antibodies.

The subjects were given an intravenous
infusion of insulin (Humalog; Eli Lilly) at a
continuous rate of 80 mU/m2/min, with
doubling of the rate for the first 5 min.
Plasma glucose was measured bedside at
5-min intervals and the glucose infusion
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rate (20% dextrose in saline) adjusted to
achieve the target plasma glucose concen-
tration. Blood samples were taken at 10- to
20-min intervals for measurement of coun-
terregulatory hormones (glucagon, epi-
nephrine, cortisol, and growth hormone)
and free insulin levels.

The plasma glucose was initially sta-
bilized between 5.0 and 5.5 mmol/L (90–
108 mg/dL) for 60 min (euglycemic
phase) and then reduced over a period
of 30–40 min to achieve a target nadir of
2.8 mmol/L (50.4 mg/dL). Hypoglycemia
was maintained for 40 min (hypoglyce-
mic phase). On completion of the hypo-
glycemic phase, the insulin infusion was
stopped and the plasma glucose was sta-
bilized between 5.0 and 5.5 mmol/L (90–
108 mg/dL) for at least 20 min.

Arginine stimulation test
To assess glucagon release to stimuli other
than hypoglycemia and residual insulin
reserve, arginine was used as an alterna-
tive stimulus (9,10). Baseline samples for
plasma glucagon were taken at 5 (t =25)
and 2 min (t = 22) prior to infusion of
10% arginine solution (5 g in 50 mL 0.9%
sodium chloride over 30 s) (11). Stimu-
lated plasma glucagon was measured at
2, 3, 4, and 5 min postarginine (11).

Assays
Plasma glucose was assessed at bedside by
the glucose oxidasemethod (YSI analyzer;
YSI, Yellow Springs, OH). Blood for
plasma glucagon was collected in EDTA
with trasylol, immediately stored on ice,
separated within 4 h, and stored at2708C
until assay. Under these conditions, glu-
cagon immunoreactivity is preserved
(12). Plasma glucagon was analyzed
using a radioimmunoassay (Glucagon
RIA; Linco Research, Inc., St. Charles,
MO). The coefficient of variation for the
glucagon assay was 13.9% at 51.5 pg/mL
and 10.2% at 70.1 pg/mL.

Plasma epinephrine levels were mea-
sured by ELISA (Diagnostika GmbH,
Hamburg, Germany), and samples were
analyzed in duplicate according to the
manufacturer’s instructions (13). Blood
was collected into tubes containing
EDTA preservative. Samples were stored
in an ice bath until they were centrifuged
to separate the plasma within 2 h and then
stored at2708C prior to assay. The inter-
assay coefficient of variation (CV) at 10
pmol/L and 5,460 pmol/L were 2 and
5.5%, respectively.

We assessed residualb-cell function based
on both fasting- and arginine-stimulated

C-peptide values. Cortisol, growth hor-
mone, and C-peptide were measured by
immunoassays (Immulite; Diagnos-
tic Products Corporation, Los Angeles,
CA) (14).

Free and total insulin were measured
by radioimmunoassay after precipita-
tion of endogenous antibodies with poly-
ethylene glycol. Analytical recovery of
free insulin was 99.3%, of total insulin

Figure 1dA and B: Glucagon response to hypoglycemia and arginine. The line diagrams show
glucagon levels from clamp studies as mean and SEM during euglycemia and in response to
hypoglycemia and arginine infusion, respectively. n = 28 for type 1 diabetes and n = 12 for control
subjects. A linear mixed model was used for analysis.
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96.4%. For free insulin, assay precision
(CV) was 4.0–13.0% (intra-assay) and
7.8–10.7% (interassay); for total insu-
lin, 3.6–9.5 and 6.6–11.7%, respec-
tively (15). Glycated hemoglobin was
measured by agglutination inhibi-
tion immunoassay (Ames DCA 2000,
non–type 1 diabetes reference interval
,6.2%).

Data analysis
Demographic data were expressed as mean
and range. Duration of diabetes was also
expressed as median and range to allow a
more detailed analysis. All other results
were described as mean and 95% CIs.

For the calculation of baseline and
stimulated values, we used the average of
time points 0–60 min for euglycemia and
130–150 min for hypoglycemia. A posi-
tive response to hypoglycemia was de-
fined as a stimulated value greater than
3 SDs from the respective baseline during
euglycemia. This approach was used by
the Diabetes in Children Network Study
Group (16) (see Table 2).

The glucagon responses to hypoglyce-
mia and arginine were compared between
the groups for each time point of analysis
and are illustrated in Fig. 1A and B.

A linear mixed model was used for
analysis of the glucagon responses. Step-
wise linear regression was used in the
subjects with type 1 diabetes to identify
influencing factors. Statistical significance
was set at P , 0.05 (Stata Statistical Soft-
ware, release 12; StataCorp, College, Sta-
tion, TX).

RESULTS

Subjects
A total of 28 individuals with type 1
diabetes (14 females and 14 males) and
12 healthy volunteers (6 females and 6
males) were studied. Clinical character-
istics are summarized in Table 1. All pa-
tients with type 1 diabetes were islet cell
and/or glutamic acid decarboxylase anti-
body positive and on regular insulin ther-
apy: short-acting insulin via insulin pump
(n = 6) and combinations of long- and
short-acting insulin using two (n = 7),
three (n = 6), or four (n = 9) injections
per day. One subject was taking thyroxine
for autoimmune hypothyroidism. Me-
dian duration of type 1 diabetes was
0.66 years (range 0.01–9.9).

Counterregulatory response
The glucagon peak to arginine stimula-
tion was similar between groups (P =
0.27) (Fig. 1B). In contrast, the glucagon
peak to hypoglycemia was reduced in the
groupwith diabetes (95%CI): 68 (62–74)
vs. 96 (87–115) pg/mL (P , 0.001) (Fig.
1A). A positive response was defined as
greater than 3 SDs from baseline (25 pg/mL
for control subjects and 48 pg/mL for the
group with type 1 diabetes). Based on
these values, only 7% of subjects with
type 1 diabetes demonstrated a positive
response in comparison with 83% of con-
trol subjects (Table 2). The response was
lost at a median duration of diabetes of 8
months and as early as 1 month after di-
agnosis (R = 20.43, P , 0.01) (Table 3).

Fasting and stimulated C-peptide were
higher in the control group (Table 1).

Epinephrine, cortisol, and growth hor-
mone responses to hypoglycemia were
present, consistent with the generation
of an adequate hypoglycemic stimulus
(P , 0.05) (Table 2).

Regression analysis
Stepwise linear regression revealed a
significant correlation between gluca-
gon response, duration of diabetes, and
weight. There was no significant correla-
tion with HbA1c, BMI, fasting and stimu-
lated C-peptide, height, and insulin level
during hypoglycemia (Table 3).

CONCLUSIONSdThis study demon-
strates that in adolescents with type 1
diabetes, the glucagon response to an
arginine stimulus is similar to healthy
control subjects. However, adolescents
with type 1 diabetes have a blunted glu-
cagon response after hypoglycemia. Al-
though this finding is not novel, this, to
our knowledge, is the first study to show
that the glucagon response to hypoglyce-
mia was lost as early as 1 month after
diagnosis and at a median duration of
diabetes of 8 months. The glucagon re-
sponse to hypoglycemia decreased with
increasing duration of diabetes.

We assessed the counterregulatory
response to hypoglycemia using clamp
studies in adolescents with type 1 diabe-
tes early in the course of the disease.
Hoffman et al. (6) and Singer-Granick
et al. (7) also demonstrated an impaired
glucagon response to hypoglycemia in
adolescents with type 1 diabetes. To fur-
ther analyze and specify the participants’
response, Hoffman et al. (17) also in-
cluded the pancreatic polypeptide release
after hypoglycemia and the glucagon re-
sponse to a mixed-meal stimulus. The in-
terpretation of these studies, however, is
limited by the methodology that used an
insulin bolus to induce hypoglycemia.
Compared with using clamp studies, this
does not produce a reproducible hypogly-
cemic stimulus, resulted in a wide range of
insulin levels, and is a technique in which
the response to hypoglycemia cannot be
compensated. This is why the stimulus
may be modified. The Diabetes Research
in Children Network Study Group dem-
onstrated that the counterregulatory re-
sponse can be lost in children aged 4–7
years with a diabetes duration of 3.3 6
1.1 years (16). Hypoglycemiawas induced
using a subcutaneous insulin infusion
protocol. In contrast to our study, that

Table 1dClinical characteristics

Control
subjects

Type 1
diabetes

P
value

Number and sex of subjects 12 (6 female/6 male) 28 (14 female/14 male)
Age at study date (years) 15.3 (12.8–18.7) 14.9 (11.2–19.8) 0.21
Duration of diabetes (years) d 1.87 (0.01–9.9)

Median: 0.66
d

HbA1c (%) 5.0 (4–6) 7.6 (5–11) ,0.001
Fasting C-peptide (nmol/L) 0.37 (0.33–0.41) 0.22 (#0.2–0.23) ,0.001
Stimulated C-peptide (nmol/L) 0.52 (0.38–0.66) 0.22 (#0.2–1.5) 0.001
Insulin during euglycemia
(mU/L) 118 (18–224) 77 (23–165) 0.05

Insulin during hypoglycemia
(mU/L) 91 (57–148) 83 (27–147) 0.54

Height (cm) 1.69 (1.58–1.79) 1.67 (1.5–1.85) 0.37
Weight (kg) 67.1 (48–126) 64.6 (41–90) 0.67
BMI (kg/m2) 23.3 (17.7–41) 23.1 (16.2–32) 0.93
Data are presented as mean and range, except duration of diabetes, which is mean and median with range.
P values refer to differences between healthy control subjects and patients with type 1 diabetes.
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group focused on hypoglycemia-associated
autonomic failure. Data on the glucagon
release suggest a blunted response to hy-
poglycemia similar to our findings. How-
ever, in contrast to our study, this was not
compared with a control group of healthy
individuals (16).

As has been shown repeatedly in
humans (5) and animal models (18), the
preservation of the release of glucagon af-
ter arginine stimulation in all participants
demonstrates that a-cells of patients with
type 1 diabetes maintain their capability
to release glucagon.

Importantly, the insulin infusion dur-
ing clamp studies in itself can negatively
impact the response to both hypoglyce-
mia and arginine (19). Liu et al. (20) de-
scribed that the glucagon response is
suppressed by insulin levels of 125 mU/L.
In a study by Diamond et al. (21), the glu-
cagon response was negatively affected at

insulin levels .279 mU/L. Mean insulin
levels in this study were 91 and 83 mU/L
in the control subjects and the type 1 pa-
tients with diabetes, respectively, and glu-
cagon responses in the control group were
greater after arginine than the hypoglyce-
mic stimulus, suggesting that a-cell func-
tion was not significantly blunted by
circulating insulin. Prior to the arginine
stimulation, insulin was stopped and nor-
moglycemia established.

The exactmechanisms regulating glu-
cagon secretion in vivo remain to be
identified. Several hypotheses have been
proposed to explain the blunted response
of glucagon release to hypoglycemia in
type 1 diabetes patients. Changes to the
intraislet insulin concentration as the re-
sult of b-cell loss is the most favored con-
cept (22–24). Recent studies focused on
the importance of zinc as a cofactor; how-
ever, this remains controversial (25,26).
Looking at the central detection of hypo-
glycemia to induce and regulate counter-
regulatory responses, it appears from rat
models that signal transduction in the
ventromedial hypothalamus plays an im-
portant role. Proposed transmitters in-
clude glutamate, g-aminobutyric acid,
and catecholamines (27). They can be di-
rectly influenced by local glucose and in-
sulin concentrations (28,29). In addition,
the hypothalamus and brainstem might
be involved as well (27). Other areas of
research include the transcriptional con-
trol of pancreatic cell development and of
the glucagon gene as well as proglucagon
processing (30).

With respect to alternative stimuli
of glucagon release, Pörksen et al. (31)
conducted a large prospective study on

the effect of a mixed-meal stimulus on
glucagon release in adolescents with
type 1 diabetes 1, 6, and 12 months after
diagnosis. No association with residual
b-cell function, age, and sex was noted,
but blood glucose and glucagon-like
peptide-1 were observed to be influencing
factors. Similarly, Brown et al. (32) ana-
lyzed the change in glucagon response
to a mixed-meal stimulus in young pa-
tients on five occasions during the first
year after the diagnosis of diabetes. They
observed a decline in C-peptide secretion
paralleled by an increase in glucagon re-
sponse over time, also suggesting that the
a-cell secretory reserve had not been af-
fected by the autoimmune process in type
1 diabetes. Neither study included an
analysis of the response to hypoglycemia.

Several demographic and clinical fac-
tors were identified as predictors of the
counterregulatory response to hypogly-
cemia. Consistent with our findings, the
impact of duration of diabeteswas reported
previously.Most studies focused on adults
(5,33,34). Results for children and adoles-
cents vary; a loss of the counterregulatory
response was detected as early as at the
diagnosis of type 1 diabetes and shortly
thereafter (6,35). Singer-Granick et al.
(7) demonstrated a positive correlation
with age but did not find a correlation be-
tween glucagon response and duration of
type 1 diabetes in children and adoles-
cents. This may be explained by a signifi-
cant number of prepubertal participants,
indicating a possible effect of puberty that
could not be replicated in our group. Un-
like Ross et al. (36) and Singer-Granick
et al. (7), we did not find a relationship be-
tween glycemic control and the preservation

Table 2dCounterregulatory hormone response to hypoglycemia

Euglycemia
Peak response
to hypoglycemia

Comparison
eu/hypoglycemia

Response (change
from baseline)

Participants with response
.3 SDs n/total (percentage)

Glucagon (pg/mL)
Control subjects 51 (42–59) 96 (87–115) ,0.0001 53 (39–66) 10/12 (83%)
Type 1 diabetes 53 (48–58) 68 (62–74)† 0.027 16 (8–25) 2/28 (7%)

Epinephrine
Control subjects 32 (13–51) 167 (88–247) 0.03 117 (56–179) 4/5 (80%)
Type 1 diabetes 31 (16–47) 133 (67–199) 0.006 61 (22–99) 4/11 (36%)

Cortisol (mmol/L)
Control subjects 259 (203–316) 414 (321–508) 0.02 152 (17–286) 0/12
Type 1 diabetes 272 (236–308) 386 (324–447) 0.004 103 (19–188) 3/28 (11%)

Growth hormone (units/L)
Control subjects 3 (4–9) 32 (5–56) 0.04 29 (4–46) 1/12 (8%)
Type 1 diabetes 7 (3–11) 29 (22–36)† ,0.001 19 (3–33) 0/28

Data are presented as mean values with 95% CIs. P values in column 4 refer to differences between euglycemia and hypoglycemia. †Significant difference (P, 0.001)
between groups.

Table 3dRegression analysis

Factor R
P value

(ANOVA)

Duration of diabetes 20.43 0.008
Weight 0.35 0.029
HbA1c 20.27 0.10
BMI 20.12 0.47
Fasting C-peptide 20.12 0.49
Age at study 0.11 0.52
Height 0.09 0.56
Stimulated C-peptide 20.05 0.78
Insulin level during
hypoglycemia 20.03 0.88

This table includes the detailed regression analysis
against the glucagon response to hypoglycemia with
R and P values resulting from an ANOVA.
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of counterregulation in children and
adolescents.

We conclude that adolescents with
type 1 diabetes have impaired glucagon
responses to hypoglycemia within 12
months of diagnosis. Prospective studies
in children and adolescents starting from
the onset of type 1 diabetes are needed to
further characterize themechanisms influ-
encing the change over time in the gluca-
gon response to hypoglycemia.
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