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OBJECTIVEdMetabolite predictors of deteriorating glucose tolerance may elucidate the
pathogenesis of type 2 diabetes. We investigated associations of circulating metabolites from
high-throughput profiling with fasting and postload glycemia cross-sectionally and prospec-
tively on the population level.

RESEARCH DESIGN AND METHODSdOral glucose tolerance was assessed in two
Finnish, population-based studies consisting of 1,873 individuals (mean age 52 years, 58%
women) and reexamined after 6.5 years for 618 individuals in one of the cohorts. Metabolites
were quantified by nuclear magnetic resonance spectroscopy from fasting serum samples. Asso-
ciations were studied by linear regression models adjusted for established risk factors.

RESULTSdNineteen circulating metabolites, including amino acids, gluconeogenic substrates,
and fatty acid measures, were cross-sectionally associated with fasting and/or postload glucose (P,
0.001). Among thesemetabolic intermediates, branched-chain amino acids, phenylalanine, anda1-
acid glycoprotein were predictors of both fasting and 2-h glucose at 6.5-year follow-up (P, 0.05),
whereas alanine, lactate, pyruvate, and tyrosine were uniquely associated with 6.5-year postload
glucose (P = 0.003–0.04). None of the fatty acid measures were prospectively associated with
glycemia. Changes in fatty acid concentrations were associated with changes in fasting and postload
glycemia during follow-up; however, changes in branched-chain amino acids did not follow glucose
dynamics, and gluconeogenic substrates only paralleled changes in fasting glucose.

CONCLUSIONSdAlterations in branched-chain and aromatic amino acidmetabolism precede
hyperglycemia in the general population. Further, alanine, lactate, and pyruvate were predictive of
postchallenge glucose exclusively. These gluconeogenic precursors are potential markers of long-
term impaired insulin sensitivity that may relate to attenuated glucose tolerance later in life.
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Type 2 diabetes is characterized by a
long progression period before overt
disease onset (1,2). Metabolic per-

turbations characterizing and contribut-
ing to the disease development may be
observed already in the prediabetic state
(3,4). Knowledge on systemic metabolites
associated with deteriorating glucose tol-
erance may elucidate the pathogenesis of
diabetes and holds potential for preven-
tion. Comprehensive metabolic profiling
is therefore increasingly used to provide
hypotheses implicating novel pathways in
the disease etiology (5).

Using high-throughput metabolite
quantification, we have demonstrated met-
abolic signatures of insulin resistance in
young adults beyond the traditional char-
acteristics of the metabolic syndrome
(6). Further, metabolite profiling in the
Framingham Heart Study recently linked
five branched-chain (leucine, isoleucine,
and valine) and aromatic (phenylalanine
and tyrosine) amino acids with the risk
for future diabetes (7). A lipid signature
of triacylglycerols with lower carbon
number and double-bond content was
also associated with increased risk for di-
abetes (8). Nonetheless, it remains un-
known whether these metabolites are
associated with the development of hyper-
glycemia in nondiabetic individuals and
whether the effects would bemore specific
to fasting or postload glycemia.

Elevated fasting and postchallenge
glucose both increase the risk for diabe-
tes; however the mechanisms regulating
fasting and stimulated glycemia are partly
distinct and the glucose measures have
different consequences in terms of risk for
cardiovascular mortality (9–11). Patho-
physiological differences related to insu-
lin sensitivity and secretion have been
suggested to underpin the dissimilarities
in glucose tolerance (1,3,11,12). Here, we
studied metabolite profiles of glycemia in
the general population. The aim was to
investigate associations of circulating me-
tabolites from high-throughput profiling
separately for fasting and 2-h glucose
cross-sectionally and prospectively in
middle-aged Finnish men and women.
We further assessed whether changes in
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metabolite levels paralleled changes in
glycemia during the 6.5-year follow-up
period.

RESEARCH DESIGN AND
METHODSdThe study was composed
of two Finnish population-based cohorts,
the Pieksämäki cohort and the Health
2000 Study. A flowchart of the study
design is illustrated in Supplementary
Fig. 1. The Pieksämäki cohort originally
consisted of 1,294 subjects from the town
of Pieksämäki in Eastern Finland (13,14).
The eligible population consisted of all
individuals born in 1942, 1947, 1952,
1957, and 1962, of which 71% (923)
participated in the initial examination in
1997 and 690 of these attended a follow-
up survey in 2003–2004. The Health
2000 Study is a Finnish cross-sectional
health survey carried out in 2000–2001
(15). The overall Health 2000 Study
(8,028 persons) was representative of
the Finnish population 30 years of age
and above. A supplemental study of
1,353 participants 46–76 years of age
was carried out in order to study diabetes
risk factors more thoroughly; this group
was analyzed in the current study. In
total, 2,090 participants from the two
cohorts had glucose tolerance and com-
prehensive metabolite data measured. All
individuals treated for diabetes (n = 46)
or on lipid medication (n = 162) were
excluded from analyses. The two studies
served as mutual replication of cross-
sectional findings. In the longitudinal
substudy, 618 individuals (59% women)
from the Pieksämäki cohort had data on
oral glucose tolerance test (OGTT) at the
6.5-year follow-up (1997–2003) and
were not treated pharmacologically for
diabetes. All participants gave written
informed consent, the study protocols
were approved by the local ethics com-
mittees, and the studies were conducted
in accordance with the Declaration of
Helsinki.

Glucose tolerance test and
metabolite quantification
Blood samples were drawn in the morning
after at least a 12-h fast. Serum was sepa-
rated and frozen on site prior to storage at
2708C. All participants underwent a 2-h
OGTT using a 75-g glucose load with the
zero time point in a fasting condition.
Plasma glucose concentrations were deter-
mined using an automated hexokinase
method (intercoefficient of variation [inter-
CV] 1.9%) (Peridochrom Glucose GOD-
PAP; Boehringer Ingelheim, Mannheim,

Germany) for the Pieksämäki cohort and a
dehydrogenase assay for the Health 2000
Study (inter-CV 1.7%) (Merck, Darm-
stadt, Germany). Insulin concentrations
at 0, 30, and 120 min during the OGTT
were determined by radioimmunoassay
(inter-CV 5.7%) (Phadeseph Insulin
RIA; Pharmacia, Uppsala, Sweden) in the
Health 2000 Study. Alanine aminotrans-
ferase was assayed by a kinetic method
using a Cobas 6000 analyzer (Hitachi,
Tokyo, Japan).

Circulating metabolites were quanti-
fied from fasting serum samples using
high-throughput nuclear magnetic reso-
nance (NMR) spectroscopy (16). This
NMR platform has been applied in vari-
ous epidemiological and genetic studies
(6,17–21). Detection of small molecule
solutes from native serum, such as various
amino acids and glycolysis substrates, was
enabled by spectroscopy settings that
suppress the broad spectral signals from
lipoprotein particles. Lipid constituents
and the diversity of fatty acid saturation
were measured from serum lipid extracts
(17). Baseline and follow-up samples
from the Pieksämäki cohort were mea-
sured in a single measurement series
(13). Details of the NMR experimentation
and metabolite quantification have been
described previously (16–18).

Statistical analyses
Peripheral insulin sensitivity index was
estimated based on Matsuda ISI (22) and
insulin secretion index calculated as total
insulin area under the curve per total glu-
cose area under the curve during the
OGTT (3). Metabolite measures, insulin
indices, and glucose were log transformed
prior to analyses. Metabolite tracking (the
likelihood of maintaining the original
fractile over time) was assessed with
Spearman correlation coefficients be-
tween the baseline and follow-up con-
centrations. Associations of circulating
metabolites with glucose levels as out-
comes were assessed with linear regression
models separately for each metabolite. All
models were adjusted for sex, age, BMI,
systolic blood pressure, HDL cholesterol
(HDL-C), and triglycerides. Adjustment
for HDL-C and triglycerides was omitted
for serum lipid extract measurements to
minimize collinearity. The 2-h glucose as-
sociations were tested with and without
adjustment for fasting glucose. Cross-
sectional analyses were conducted sepa-
rately for the two cohorts and combined
using inverse variance–weighted meta-
analysis assuming fixed effect size. For these

cross-sectional analyses, statistical signifi-
cance was inferred at P, 0.001. To ensure
replication, an additional criterion was
that each metabolite was nominally signif-
icant (P, 0.05) in both cohorts with con-
cordant direction of effect. We tested for
sex differences but did not find significant
metabolite 3 sex interactions. To ease
comparison of effects, b-regression coeffi-
cients are reported throughout in units of
1-SD increase in glucose levels (outcome)
per 1-SD increase inmetabolite concentra-
tion (predictor).

Metabolites displaying cross-sectional
associations with glycemia were analyzed
for association with insulin sensitivity and
insulin secretion indices for 975 individu-
als from the Health 2000 Study. The same
metabolites were further analyzed for the
subset of 618 individuals with longitudinal
data on glucose tolerance at the 6.5-year
follow-up. Changes in metabolite levels
during the follow-up period were tested
for association with changes in glucose
levels. The dynamics analyses were addi-
tionally adjusted for baseline glucose and
insulin. Finally, the metabolites were an-
alyzed to assess whether baseline metab-
olite levels would be predictive of fasting
andpostload glucose at the 6.5-year follow-
up. These longitudinal analyses were also
adjusted for baseline glucose and insulin
levels, and statistical significance was in-
ferred for two-tailed P , 0.05.

RESULTSdBaseline characteristics of
the 1,873 individuals from the two popu-
lation-based studies are shown in Table 1.
The study population represents middle-
aged, community-dwelling men and
women free of lipid-lowering medication
and diabetes treatment. There were similar
risk factor profiles in the two cohorts. Ab-
solute concentrations and interquartile
ranges of the fasting metabolite levels in
both cohorts and at the follow-up survey
are given in Supplementary Table 1 along
with tracking coefficients of the metabo-
lites over the 6.5-year follow-up. Metabo-
lite levels were similar between the two
cohorts and between the two time points.
Most metabolites displayed tracking com-
parable to that of glucose during the follow-
up period, suggesting that the metabolite
levels are not solely reflecting immediate
dietary intake.

Metabolites associated with fasting
and/or 2-h glucose at baseline are listed
in Table 2. In total, 19 metabolite meas-
ures were cross-sectionally associated
with glycemia (meta-analyzed P , 0.001)
and nominally significant with the same
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direction of effect in both cohorts. The
significant metabolites comprise a spectrum
of gluconeogenesis substrates, branched-
chain and aromatic amino acids, a1-acid
glycoprotein, as well as fatty acid species
and saturation measures. Metabolites
were positively associated with increased
glycemia with the exceptions of glycine,
v-6 fatty acids/total fatty acids, and double
bonds/fatty acid chain. Associationmagni-
tudes reached up to b = 0.19 for fasting
as well as postload glucose, where the unit
of b-regression coefficient indicates in-
crease in SDs of glucose (0.9 and 2.1
mmol/L for fasting and 2-h glucose, re-
spectively) per 1-SD increase inmetabolite
concentration. For comparison, the asso-
ciation magnitude of BMI with glycemia
wasb = 0.21 for both fasting and postload
glucose, yet the metabolite associations
were adjusted for this established risk
factor. The majority of metabolites dis-
played similar magnitude of association
for fasting and postload glucose; how-
ever, fatty acid metabolites tended to be
more strongly associated with postload
glycemia. Further, the associations were
generally stronger for amino acids and
gluconeogenesis precursors than for the
fatty acid measures. To assess whether
the fasting state metabolite levels reflect
postload glycemia independently of fast-
ing glucose, we tested 2-h glucose associ-
ations with additional adjustment for
fasting glucose, as shown in Table 2. Albeit
attenuated, most metabolite associations
remained significant, in particular for
gluconeogenic substrates and fatty acid
measures. Associations of all analyzed
metabolites with fasting and 2-h glucose

are illustrated separately for the two cohorts
along with cross-sectional associations at
the follow-up survey in Supplementary
Fig. 2. The metabolite associations were
coherent for both cohorts, and the associ-
ations remained essentially unaltered at
the follow-up survey, thus indicating con-
sistency of the associations across study
setting and time.

Deficiencies of insulin action and in-
sulin secretion may underpin the me-
tabolite associations with fasting and
postload glucose (6,23). Associations of
the metabolites with peripheral insulin
sensitivity and total insulin secretion indi-
ces in the Health 2000 Study are shown in
Supplementary Fig. 3. Most of the metab-
olites were associated with both insulin
sensitivity and total insulin secretion dur-
ing OGTT; however, all associations with
insulin secretion vanished when condi-
tioning on insulin sensitivity, whereas
the insulin sensitivity associations re-
mained significant upon conditioning on
insulin secretion.

The regulation of fasting metabolite
levels may follow changes in glucose
tolerance over time (24). Associations be-
tween the changes in metabolites and
changes in glucose during the follow-up
period are shown in Fig. 1. The changes in
the majority of the metabolites were asso-
ciated with changes in fasting glucose
during the 6.5-year follow-up period,
and changes in fatty acid metabolites
also paralleled changes in postload glu-
cose. Notably, changes in branched-chain
amino acids and phenylalanine levels were
not associated with changes in glycemia
during follow-up.

The metabolites linked with glycemia
in cross-sectional analyses (Table 2) could
potentially be markers of perturbations in
glucose homeostasis associated with glu-
cose tolerance later in life. To address this
question, we tested whether the metabo-
lites would be predictive of 6.5-year fast-
ing and 2-h glucose in 618 individuals
from the Pieksämäki cohort who attended
follow-up. Results of these longitudinal
analyses are shown for significant metabo-
lites (P, 0.05) in Table 3. Branched-chain
amino acids predicted both 6.5-year fasting
and postload glycemia (b = 0.14/0.11 for
fasting/2-h glucose for the sum of leucine,
isoleucine, and valine). The most promi-
nent association was observed for leucine
(b = 0.18/0.15, corresponding to 0.11/
0.24 mmol higher glucose per 17 mmol/L
leucine higher than the median). In addi-
tion, phenylalanine and a1-acid glycopro-
tein were prospectively associated both
with fasting and 2-h glucose (P , 0.05).
In contrast, alanine, lactate, and pyruvate
as well as tyrosine were exclusive pre-
dictors of 6.5-year postload glucose (P ,
0.05 for all). Of notice, none of the fatty
acid measures exhibited significant associ-
ations in prospective settings. Interestingly,
the prospective associations displayed a
pattern opposite to that observed for the
changes of metabolites with glycemia; the
changes in those metabolites, which were
predictors of either fasting or postload
glycemia, were not associated with the
changes in the corresponding glucose
level during the follow-up period (Fig. 1).
The ability of the metabolites to predict
6.5-year glycemia may be compared with
the predictive ability of baseline glucose
for estimating glycemia at follow-up. The
prospective metabolite associations were
up to 40% of the magnitude of that for
baseline glucose versus 6.5-year glycemia
(Table 3). The moderate association mag-
nitudes are partly accounted for by the ad-
justment for baseline glucose as well as
insulin and other established risk factors.
All results were essentially similar when
excluding individuals with newly diag-
nosed diabetes at baseline. Thus, the asso-
ciations were not solely driven by the
small number of individuals with overt di-
abetes. The results were virtually un-
changed when excluding individuals on
blood pressure–lowering medication and
hormone treatment (data not shown).

CONCLUSIONSdThismetabolic pro-
filing study identified 19 circulating me-
tabolite measures associated with fasting or
postload glucose in a general population

Table 1dBaseline characteristics of the study population

Characteristic
Pieksämäki cohort

(n = 864)
Health 2000 Study

(n = 1,009)

Men/women 379/485 (44%/56%) 412/598 (41%/59%)
Age (years) 45.9 (6.2) 57.6 (7.8)
BMI (kg/m2) 26.4 (4.6) 27.0 (4.5)
Systolic blood pressure (mmHg) 136 (20) 141 (24)
Diastolic blood pressure (mmHg) 82 (11) 86 (12)
Total cholesterol (mmol/L) 5.0 (0.8) 5.6 (1.1)
HDL-C (mmol/L) 1.5 (0.3) 1.7 (0.4)
Triglycerides (mmol/L) 1.3 [1.0–1.6] 1.3 [1.0–1.7]
Fasting glucose (mmol/L) 5.7 [5.4–6.1] 5.6 [5.2–6.0]
2-h glucose (mmol/L) 5.4 [4.6–6.4] 6.2 [5.1–7.5]
Fasting insulin (mmol/L) 8.7 [6.8–11.2] 7.4 [5.5–10.3]
6.5-year fasting glucose (mmol/L) 5.7 [5.3–6.1] d
6.5-year 2-h glucose (mmol/L) 5.6 [4.8–6.5] d

Values are mean (SD) and median [interquartile range] for normally distributed and skewed variables,
respectively. Absolute metabolite concentrations and ranges are given in Supplementary Table 1.
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setting of middle-aged men and women.
Amino acids, gluconeogenesis precursors,
and fatty acids displayed metabolic foot-
prints of both elevated fasting glucose and
attenuated glucose tolerance. Differences in
metabolite associations emerged between
fasting and postload glucose in longitudi-
nal analyses. Alanine, lactate, pyruvate, and
tyrosine were selective predictors of 6.5-
year postload glucose, suggesting that these
metabolites could be markers of deteri-
orating glucose tolerance later in life.
Branched-chain amino acids predicted
both fasting and postchallenge glucose
levels, confirming their suspected role as
markers of future glycemia (7).

Multiple metabolic abnormalities are
associated with the progression toward
type 2 diabetes (25). Hence, it is to be
expected that circulating levels of numer-
ous metabolites are reflective of the degree
of glycemia (5). Our results exemplify the
diversity of metabolites associated with

glucose levels in a nondiabetic population
independent of conventional metabolic
risk factors (Table 2). Despite differences
in cardiovascular morbidity and mortality
between individuals with impaired fasting
glucose and impaired glucose tolerance,
their cardiometabolic risk factor profiles
are similar (4,26). Correspondingly, we
found the cross-sectional metabolite as-
sociations with baseline fasting and 2-h
glucose to be of comparable magnitude.
Importantly, the fasting metabolite con-
centrations were reflecting the degree of
postchallenge glucose, thus indicating
that glucose tolerance may partly be ob-
served in the fasting metabolite profile.
However, the small effect sizes also sug-
gest that OGTT response cannot be accu-
rately inferred from the fasting metabolite
profile.

Gluconeogenesis plays a pivotal role
in glucose homeostasis (27). In this study,
three precursors of gluconeogenesis,

alanine, lactate, and pyruvate, were pre-
dictors of postchallenge glucose after
6.5-year follow-up (Table 3). The molec-
ular mechanisms of how these gluconeo-
genic substrates are related to future
glucose tolerance remain elusive. Lactate
has been associated with the prevalence of
diabetes in older adults, and decreased ox-
idative capacity has been proposed to un-
derpin this association (28). Fasting levels
of alanine and pyruvate are highly corre-
lated (r = 0.59), which could suggest that
the metabolites are reporters of the same
pathophysiological effect. On the other
hand, pyruvate is involved in multiple
glycolytic pathways, including pyruvate
cycling pathways in the mitochondria
that might underlie the prospective asso-
ciation (25,29). The interconversion be-
tween pyruvate and alanine is catalyzed by
alanine amino aminotransferase, a liver en-
zyme for which the plasma levels have been
linked with obesity, liver fat extent, and

Table 2dCross-sectional associations of metabolites with fasting and postload glucose

Metabolite

Fasting glucose Postload glucose

b (SE) P b (SE) P b (SE)Adj* PAdj*

Gluconeogenesis substrates
Alanine 0.17 (0.024) 6 3 10213 0.14 (0.025) 3 3 1028 0.075 (0.023) 0.001
Glycine 20.0059 (0.022) 0.79 20.083 (0.023) 0.0002 20.081 (0.021) 8 3 1025

Lactate 0.18 (0.022) 1 3 10216 0.15 (0.023) 2 3 10211 0.077 (0.021) 0.0003
Pyruvate 0.19 (0.022) 5 3 10218 0.19 (0.023) 5 3 10217 0.12 (0.021) 1 3 1028

Citrate 0.088 (0.021) 4 3 1025 0.13 (0.022) 4 3 1029 0.095 (0.020) 2 3 1026

Branched-chain amino acids
Sum of branched-chain amino acids 0.15 (0.026) 2 3 1028 0.072 (0.027) 0.008 0.036 (0.025) 0.15
Leucine 0.13 (0.029) 1 3 1025 0.094 (0.029) 0.001 0.069 (0.027) 0.01
Isoleucine 0.19 (0.030) 1 3 10210 0.10 (0.031) 0.001 0.058 (0.029) 0.04
Valine 0.12 (0.024) 2 3 1027 0.045 (0.025) 0.071 0.013 (0.023) 0.57

Aromatic amino acids
Phenylalanine 0.076 (0.024) 0.001 0.10 (0.024) 2 3 1025 0.068 (0.022) 0.002
Tyrosine 0.14 (0.023) 1 3 1029 0.035 (0.024) 0.15 20.0096 (0.022) 0.66

Glycoproteins
a1-acid glycoprotein 0.072 (0.030) 0.02 0.18 (0.030) 4 3 1029 0.14 (0.027) 4 3 1027

Fatty acids
Total fatty acids 0.057 (0.022) 0.009 0.084 (0.022) 0.0002 0.078 (0.048) 0.11
Monounsaturated fatty acids 0.077 (0.022) 0.0006 0.12 (0.023) 7 3 1028 0.18 (0.046) 9 3 1025

Polyunsaturated fatty acids
other than linoleic acid 0.038 (0.022) 0.08 0.089 (0.022) 6 3 1025 0.079 (0.027) 0.004

v-7, v-9, and saturated fatty acids 0.075 (0.022) 0.0008 0.11 (0.023) 4 3 1027 0.17 (0.048) 0.0003
v-6 fatty acids/total fatty acids 20.10 (0.022) 4 3 1026 20.19 (0.023) 4 3 10217 20.15 (0.025) 2 3 1029

v-7, v-9, and saturated fatty
acids/total fatty acids 0.10 (0.022) 8 3 1026 0.17 (0.023) 1 3 10213 0.12 (0.025) 1 3 1026

Fatty acid saturation measures
Methylene groups/double bond 0.066 (0.022) 0.002 0.085 (0.022) 0.0001 0.042 (0.023) 0.07
Double bonds/fatty acid chain 20.062 (0.022) 0.004 20.077 (0.022) 0.0005 20.034 (0.023) 0.15

Metabolite associations with glucose levels adjusted for sex, age, BMI, systolic blood pressure, HDL-C, and triglycerides. Adjustment for HDL-C and triglycerides was
omitted for fatty acid measures. b-Regression coefficients (SE) are in units of 1 SD glucose per 1 SDmetabolite concentration. Associations were meta-analyzed for the
Pieksämäki cohort and the Finnish Health 2000 Study (total n = 1,873). Metabolites were denoted significant at P , 0.001 for either fasting or 2-h glucose. *2-h
glucose associations additionally adjusted for fasting glucose.
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the risk for diabetes (21,30); however,
the correlations between alanine amino-
transferase and alanine and pyruvate
were modest (r = 0.12 for both metab-
olites).

Alanine, lactate, and pyruvate were
predictive of postchallenge glucose, but
not fasting glycemia, at the follow-up sur-
vey. Elevation of postload glucose is char-
acterized by peripheral insulin resistance,

whereas individuals with isolated high
fasting glucose have been linked with
attenuated insulin secretion and hepatic
insulin resistance (1,3,8–12). The promi-
nent associations of the gluconeogenesis
substrates with the peripheral insulin sen-
sitivity index support this connection
(Supplementary Fig. 3). On the other
hand, essentially all the metabolites linked
with glycemia were associated with

impaired insulin sensitivity rather than in-
sulin secretion. These results therefore do
not fully elucidate the differences between
fasting and postload glycemia observed
in the longitudinal analyses. Despite the
cross-sectional associations with insulin
sensitivity, the gluconeogenesis substrates
remained predictors of postload glucose
even when adjusting for baseline glucose
and insulin. Because glucose regulation is
essential in metabolic fuel homeostasis,
the circulating levels of gluconeogenesis
precursors could potentially reflect im-
paired insulin sensitivity prior to eleva-
tion of fasting glucose and insulin levels.
Analyses of the changes in metabolites
during follow-up indicated that alanine,
lactate, and pyruvate levels were following
changes in fasting but not postload glu-
cose (Fig. 1). These findings support that
the gluconeogenic substrates contain a
component of information that is not
only related to immediate glucose levels
but also reflects future glucose tolerance.
In a nested case-control setting, alanine
was predictive of incident diabetes more
than a decade later (P = 0.04) (7). Together
with our population-based results, this sug-
gests that metabolic perturbations caus-
ing elevated circulating alanine, lactate,
and pyruvate could be early markers of
attenuated glucose tolerance that may
eventually progress to diabetes.

Circulating levels of five branched-
chain and aromatic amino acids have
been associated with insulin resistance
(6,23,31,32) and reported to predict the
development of future diabetes (7). Leu-
cine, isoleucine, valine, phenylalanine,
and tyrosine were all associated with
glycemia and insulin sensitivity at base-
line and predictors of fasting and/or post-
challenge glucose in this study. These
findings indicate that the amino acids are
not only markers of the risk for overt diabe-
tes but also predictors of future glycemia
in the general population. Importantly,
the changes in branched-chain amino
acids and phenylalanine concentrations
did not parallel changes in fasting glu-
cose during the follow-up. Thus, whereas
fasting glucose changes are accompanied
by altered levels of fatty acids and gluco-
neogenic substrates, the regulation of
branched-chain amino acids appears to
be less tightly connected to changes in
glycemia (Fig. 1). These results suggest
that abnormalities in branched-chain
amino acid metabolism precede the
development of hyperglycemia, and this
may partly explain how the amino acids
mediate the risk for future diabetes.

Figure 1dAssociations of 6.5-year changes in metabolite levels with changes in fasting and 2-h
glucose. Changes in metabolite concentrations vs. change in fasting glucose (blue triangle) and 2-h
glucose (red triangles) during 6.5-year follow-up adjusted for sex, age, baseline BMI, systolic blood
pressure, HDL-C, triglycerides, insulin, and glucose. Fatty acid measures were not adjusted for
HDL-C and triglycerides. Association magnitudes are in units of 1-SD change in glucose level per
1-SD change in metabolite concentration.
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Experimental animal studies have sug-
gested a mechanistic role of branched-chain
amino acids in the development of insulin
resistance (32); however, it remains unset-
tled whether the amino acids are causally
implicated in humans. Although our re-
sults are compatible with a functional
role of branched-chain and aromatic
amino acids in the pathogenesis of hy-
perglycemia, the elevated amino acid
concentrations could also potentially be
secondary markers of metabolic abnor-
malities that may not be fully observed
in baseline glucose and insulin levels
from a single time point. In this relation,
we have recently shown that branched-
chain amino acids as well as alanine, py-
ruvate, and a1-acid glycoprotein all are
regulated by a variant in the gene encoding
glucokinase regulatory protein (GCKR),
which is suspected to affect the glucose sen-
sory mechanism and indirectly affect lipid
and amino acid metabolism (6,20,21,33).
In a similar manner, the prospective asso-
ciations of amino acids and gluconeogene-
sis substrates with glycemia could reflect
perturbations in glucose sensing, which
eventually may lead to hyperglycemia.

Low-grade, systemic inflammation has
been associated with the risk for diabetes
(34,35). The acute-phase protein a1-acid
glycoprotein (orosomucoid) is an abun-
dant immunomodulator protein in circu-
lation, which is induced by stressful

conditions such as infections and inflam-
mation, and elevated levels have been
found in diabetic patients (36,37). Expres-
sion of a1-acid glycoprotein has been
linked with metabolic signaling, including
hyperglycemia, and has been suggested to
modulate immune responses to protect
adipose tissue from inflammation and
metabolic dysfunction (37). In this study,
a1-acid glycoprotein was prospectively
associated with both fasting and postchal-
lenge glucose (Table 3). a1-acid glycopro-
tein has previously been linkedwith the risk
for incidence of diabetes in the Atheroscle-
rosis Risk in Communities (ARIC) study;
however, the association was not indepen-
dent of baseline BMI, insulin, and glucose
(35). Our results suggest that a1-acid
glycoprotein is not only related tometabolic
dysfunction cross-sectionally but also a pre-
dictor of future glycemia, and thus highlight
the role of prolonged inflammation as a risk
marker for attenuating glucose tolerance.

The role of metabolic dysfunction in
the pathogenesis of diabetes has primarily
focused on lipoproteins and lipid-induced
mechanisms (5,38,39). In contrast to
this notion, the metabolites predictive of
glycemia in this study were amino acids
and gluconeogenesis substrates rather
than lipid composition measures. Compre-
hensive lipid profiling was recently used to
identify a pattern of triacylglycerides associ-
ated with insulin resistance and the risk for

future diabetes (8). Our results are some-
what surprising in this respect; whereas
several fatty acid species and saturation
measures were cross-sectionally associated
with glycemia and impaired insulin sensitiv-
ity (Table 2 and Supplementary Fig. 3),
none of the lipid measures predicted future
glycemia in this study. However, the triacyl-
glycerol signature linked with the risk for
diabetes was composed of lipid species not
quantifiable by the high-throughput meta-
bolic profiling platform. These results may
suggest that information on the molecular
character of lipid components, including
specific chain length and saturation con-
tent, is beneficial for elucidating the etiol-
ogy of lipid-mediated hyperglycemia.

As a limitation, we note that our study
was inadequately powered to assess the
risk for incidence of diabetes. Although the
cross-sectional associations were mutually
replicated in two cohorts, the prospective
associations merit further validation in in-
dependent populations. Insulin action was
approximated by OGTT-based surrogates,
which have limited ability to separate con-
tributions from peripheral and hepatic
insulin resistance (1). Our study was con-
ducted in a homogenous Finnish popu-
lation and care must be taken before
generalization to other age groups and
ethnicities.

In conclusion, high-throughput pro-
filing revealed a diverse metabolic foot-
print of glycemia in middle-aged men
and women. Alanine, lactate, and pyruvate
were predictors of postchallenge glucose
after a 6.5-year follow-up, indicating that
early signs of attenuating glucose toler-
ance may be observed in gluconeogenesis
precursors quantified from fasting serum
samples. a1-acid glycoprotein as well as
branched-chain and aromatic amino
acids predicted both fasting and postload
glycemia, but the changes in amino acid
levels did not follow glucose changes over
time. These findings support the notion
that alterations in amino acid metabolism
precede perturbations in glucose homeo-
stasis, and the circulating amino acid lev-
els may serve as predictors of future
glycemia in a general population setting.

AcknowledgmentsdThis study was sup-
ported by the Academy of Finland (grants
250422, 137870, and 129429) and the Re-
search Programme of the Academy of Fin-
land Responding to Public Health Challenges,
the Instrumentarium Science Foundation, the
Antti and Jenny Wihuri Foundation, the Tam-
pere University Hospital Medical Fund, the
Emil Aaltonen Foundation, the Orion-Farmos

Table 3dBaseline metabolites as predictors of 6.5-year fasting and postload glucose

Metabolite
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