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The placenta is a complex fetal organ
that fulfills pleiotropic roles during
fetal growth. It separates the mater-

nal and fetal circulation, with which it is
in contact through different surfaces, i.e.,
the syncytiotrophoblast exposes the pla-
centa to the maternal circulation and the
endothelium is in contact with fetal
blood. Because of this unique position,
the placenta is exposed to the regulatory
influence of hormones, cytokines, growth
factors, and substrates present in both cir-
culations and, hence, may be affected by
changes in any of these. In turn, it can
produce molecules that will affect mother
and fetus independently.

The human placenta expresses virtu-
ally all known cytokines including tumor
necrosis factor (TNF)-�, resistin, and lep-
tin, which are also produced by the adi-
pose cells. The discovery that some of
these adipokines are key players in the
regulation of insulin action suggests pos-
sible novel interactions between the pla-
centa and adipose tissue in understanding
pregnancy-induced insulin resistance.
The interplay between the two systems
becomes more evident in gestational dia-
betes mellitus (GDM).

In diabetes, the placenta undergoes a
variety of structural and functional
changes (rev. in 1–3). Their nature and
extent depend on a range of variables in-
cluding the quality of glycemic control
achieved during the critical periods in
placental development, the modality of
treatment, and the time period of severe

departures from excellent metabolic con-
trol of a nondiabetic environment.

Placental development is character-
ized by three distinct periods. At the be-
ginning of gestation, a series of critical
proliferation and differentiation pro-
cesses predominantly of the trophoblast
eventually lead to the formation of villous
and extravillous structures. The latter an-
chor the placenta in the uterus and re-
model the uterine spiral arteries into low
resistance vessels. Then the newly formed
villi differentiate through various steps of
maturation. The end of gestation is asso-
ciated with placental mass expansion, i.e.,
villous growth (Fig. 1). During the first
half of gestation, the trophoblast is the key
tissue that undergoes the most profound
alterations, whereas extensive angiogene-
sis and vascularization occur in the
second half of gestation, i.e., the endo-
thelium is the site of the more prominent
processes, although there is overlap. This
period is also accompanied by extensive
vascular remodeling and stabilization of
the vascular bed (4,5).

Diabetic insults at the beginning of
gestation as in many pregestational dia-
betic pregnancies may have long-term ef-
fects on placental development. These
adaptive responses of the placenta to the
diabetic environment, such as buffering
excess maternal glucose or increased vas-
cular resistance, may help limit fetal
growth within a normal range. If the du-
ration or extent of the diabetic insult,
including maternal hyperglycemia, hy-

perinsulinemia, or dyslipidemia, exceeds
the placental capacity to mount adequate
responses, then excessive fetal growth
may ensue.

Diabetic insult at later stages in gesta-
tion, such as may occur in gestational di-
abetes, will foremost lead to short-term
changes in a variety of molecules for key
functions including gene expression (6).

The diabetic environment can be re-
garded as a network of substances (hor-
mones, nutrients, cytokines) with altered
concentrations. The current view is that
the abnormal maternal metabolic envi-
ronment may generate stimuli within the
adipose tissue and the placental cells re-
sulting in the increased production of in-
flammatory cytokines whose expression
is minimal under normal pregnancy. One
leading hypothesis is that changes in cir-
culating TNF-�, adiponectin, leptin, and
resistin link inflammation to metabolic
changes by enhancing insulin resistance
in the mother. Likewise, the fetal environ-
ment is also changed in diabetes, and el-
evated levels of insulin, leptin, and other
cytokines have been well documented.
This review will concentrate on insulin
and cytokines as contributors to this net-
work and potential regulators of placental
function in GDM.

THE INSULIN RECEPTOR
NETWORK — Despite improvements
in care over the past decades to achieve
adequate maternal glucose control, fetal
hyperinsulinemia is quite common in
GDM pregnancies. Intensive research has
tried to establish alterations in maternal-
fetal transport of the most important in-
sulin secretagogues, i.e., glucose and
amino acids. Although the placental glu-
cose transporter GLUT1 is subject to
changes by the ambient level of glycemia,
i.e., it can be downregulated and translo-
cated into the cell interior by hyperglyce-
mia in vitro (7–9), maternal-fetal glucose
transport is lower than normal in diet-
treated GDM subjects and near normal in
insulin-treated GDM subjects. This will
only have an effect if maternal glucose
concentrations are high above postpran-
dial glucose levels (10,11), because of the
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high capacity of the transplacental glu-
cose transport system (12). Changes in
placental amino acid transporters, if at all,
are not associated with maternal diabetes,
but rather with elevated fetal weight (13).
However, because of the complex nature
of amino acid transporter systems in the
human placenta, any generalization has to
be avoided, and perfusion studies across
the intact organ are still pending. Yet, ac-
cording to current knowledge, fetal hy-
perinsulinemia in diabetes is the result of
the steeper transplacental glucose gradi-
ent associated with maternal hyperglyce-
mia and is not accounted for by placental
transporter changes.

The placenta expresses high amounts
of insulin receptors relative to other tis-
sues in the body. Their location under-
goes developmental changes. At the
beginning of gestation, they are located at
the microvillous membrane of the syncy-
tiotrophoblast, whereas at term, they are
predominantly found at the endothelium
(14,15). This strongly suggests a shift in
control of insulin-dependent processes
from the mother at the beginning of preg-
nancy to the fetus at the end. The spatio-
temporal change in insulin receptor
location is paralleled by a change in func-
tion, since insulin-induced gene expres-
sion is highest in first trimester trophoblast
(16). At term, insulin has a stronger effect
on the endothelium than on the tropho-
blast. This is important for diabetic preg-

nancies in general and for GDM in
particular, because it can be assumed that
the fetal hyperinsulinemia will affect the
placental endothelium.

As a current concept (Fig. 2), at the
beginning of pregnancy, maternal insu-

lin will regulate the placenta by inter-
acting with the syncytiotrophoblast.
This may lead to altered synthesis and
secretion of hormones and cytokines
that in turn will act back on the mother,
thus forming a feedback loop. As gesta-
tion advances, the fetus, i.e., fetal insu-
lin, will gradually take over control
from the mother and directly or indi-
rectly affect the endothelium or tissue-
resident macrophages (Hofbauer cells).
Whether one of the results will be the
placental release of molecules or nutri-
ents to the fetus as another feedback
loop is currently under investigation.
Changes in the number, affinity, and
signaling properties of placental insulin
receptors may confound this concept,
but available information is scant. In
diet-treated GDM, the amount of tro-
phoblast insulin receptors is lower than
in nondiabetic pregnancies, whereas in
insulin-treated GDM, the placenta con-
tains more insulin receptors (17).
Whether endothelial insulin receptors
are also altered is unknown.

Recent evidence demonstrated that
insulin receptors at the different locations
preferentially activate different intracellu-
lar signaling pathways. Whereas in the
trophoblast compartment the mitogen-
activated protein kinase pathway is pre-
dominantly activated, insulin stimulates

Figure 1—Placental growth and development are separated in three distinct, yet overlapping
phases, which are predominantly associated with the trophoblast in the first half of gestation and
with the endothelium in the second half of gestation. Any insult of the diabetic environment early
in pregnancy will alter the placenta in a period critical for later development and, hence, have
long-term effects unless counteracted by adaptive responses. Diabetic insults at later stages in
gestation such as in GDM will only have short-term effects predominantly on placental function
rather than its structure.

Figure 2—Generalized hypothetical model of the gestational shift in placental control from
mother to fetus. The maternal changes in the diabetic environment will predominantly alter
placental development at the beginning of gestation. Changes in placenta function may include
altered synthesis and/or secretion of growth factors, hormones, and cytokines that will act back on
the mother. As gestation advances, the placenta is beginning to be affected by the diabetic envi-
ronment in the fetus. Whether this results in altered release of placental signals to the fetus is
currently unknown. Taken from Hiden et al. (16) with kind permission of Springer Science and
Business Media.

Desoye and Hauguel-de Mouzon

DIABETES CARE, VOLUME 30, SUPPLEMENT 2, JULY 2007 S121

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/30/Supplem
ent_2/S120/467661/zdc1070700s120.pdf by guest on 18 April 2024



the protein kinase B/Akt pathway in the
endothelium (18). This may indicate a
mitogenic effect of insulin on the tropho-
blast, predominantly at the beginning of
pregnancy, whereas fetal insulin will
stimulate metabolic processes within the
endothelium. In fact, in vitro studies con-
firmed the mitogenic potency of insulin in
trophoblast models (19). This may ex-
plain the biphasic growth of the placenta
and fetus at around mid-gestation in type
1 and experimental diabetes (20,21).

Fetal insulin in normal pregnancies
and even more so in diabetic pregnancies
with hyperinsulinemia may have direct
and indirect effects on the placenta (Fig.
3). In addition to altering the expression
of genes (16), it will stimulate endothelial
glycogen synthesis (22). Although diet-
treated GDM is associated with even
lower than normal glycogen levels, eleva-
tion of placental glycogen levels in all
other forms of diabetes has been well es-
tablished (rev. in 3). In this respect, the
placenta is a paradoxical tissue, since in
the classic insulin target tissues, glycogen
levels are reduced in diabetes because of
the insulin resistance. Insulin does not
change glycogen levels in the trophoblast.
Glycogen increments in diabetes are
found around the villous vessels and cap-
illaries, suggesting that the glycogen
stores are built up by glucose derived
from the fetal circulation. In fact, not only

the ubiquitous glucose transporter
GLUT1, but also the high affinity trans-
porter GLUT3, is expressed in the placen-
tal endothelium, where it colocalizes with
glycogenin, the protein precursor for gly-
cogen synthesis (23). Increased glycoge-
nin gene expression in placenta with
GDM supports our hypothesis (6). In ad-
dition, the insulin-sensitive GLUT4 is lo-
cated on the endothelium (24). Fetal
glucose can be transported back into the
placenta (25), and this back transport is
increased in diabetic rats (26). The pla-
centa is the only fetal tissue that can store
excess fetal glucose. The buffer function
of the placental endothelium will be stim-
ulated by insulin, not only in vitro, as in
human, but also in vivo in the rodent
(27). This has led to a hypothesis propos-
ing that some types of fetal macrosomia
are the result of placental failure to store
excess fetal glucose (28).

In addition to the direct effects of fetal
insulin on the placenta that have been es-
tablished so far, i.e., gene expression and
glycogen synthesis, indirect effects can
also be seen.

Insulin stimulates fetal aerobic glu-
cose metabolism and will hence increase
oxygen demand of the fetus. If adequate
supply is not available because of reduced
oxygen delivery to the intervillous space
as a result of the higher oxygen affinity of
glycated hemoglobin (29), thickening of

the placental basement membrane
(30,31), and reduced utero-placental or
fetoplacental blood flow (32,33), fetal hy-
poxemia will ensue (34). Hypoxia is a po-
tent stimulator of hypoxia-sensitive
transcription factors such as the hypoxia
inducible factor (HIF) and will therefore
lead to the stimulated expression and syn-
thesis of a variety of molecules, some of
which are key players, especially in angio-
genesis (35,36). Diabetic pregnancies are
associated with elevated fetal levels of fi-
broblast growth factor-2 (37,38), which
will stimulate placental angiogenesis and
lead to the hypercapillarization seen in
placentas of type 1 diabetic pregnancies.
Reports in GDM are conflicting (39–41).
Some, but not all, studies found increased
longitudinal vascular growth and en-
hanced branching angiogenesis, which
may reflect different time points of GDM
onset in gestation either within or after
the critical developmental stages of vascu-
logenesis and angiogenesis (42).

One of the characteristic features of a
placenta in GDM is its increased weight,
which is accompanied by enlarged sur-
face areas of exchange on the maternal
(syncytiotrophoblast) and fetal (endothe-
lium) side (3). Teleologically, it may ap-
pear paradoxical that in a situation of
maternal nutritional oversupply, the pla-
centa increases its surface, thus poten-
tially contributing to enhanced maternal
fetal transport, but this reflects the prime
importance of adequate oxygen supply to
the fetus and the effect of excess growth
factors such as insulin, which collectively
dictate some of the placental changes even
at the cost of adverse side effects.

THE CYTOKINE NETWORK —Cy-
tokines are mainly but not exclusively
produced by cells of the immune system,
NK cells, and macrophages in response to
an external stimulus such as stress, injury,
and infection. Adipose tissue represents
an additional source of cytokines, mak-
ing possible a functional cooperation
between the immune system and metab-
olism (43,44). The placenta also synthe-
sizes a variety of cytokines, adding an
additional level of complexity to the im-
mune-metabolic network existing in
pregnant individuals. This raises the pos-
sibility that placenta cytokine production
contributes to a low-grade inflammation
developing during the third trimester of
pregnancy (45). In pregnancy compli-
cated with GDM or obesity, there is a fur-
ther dysregulation of metabolic, vascular,
and inflammatory pathways supported by

Figure 3—Fetal insulin will have direct effects on the placenta, such as inducing alterations in
gene expression and stimulating endothelial glycogen synthesis. In addition, indirect effects me-
diated by fetal hypoxia on placental structure can be regarded as adaptive feedback responses to
ensure adequate oxygen supply.
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increased circulating concentration of in-
flammatory molecules (46,47). Studies of
transcriptional profiling have shown that
adipose tissue and the placenta express a
common repertoire of cytokines and in-
flammation-related genes, which become
overexpressed in a diabetic environment
(48). The current view is that maternal
adipose tissue as well as the placenta
contribute to the inflammatory situa-
tion by releasing common molecules,
the relative contribution of which has
yet to be determined.

The placenta is a source of
cytokines: placental influence
The concept of the endocrine function of
the human placenta as being restricted to
the production of gestational hormones is
rapidly being challenged. The human pla-
centa has been found to express virtually
all known cytokines (49).

In addition to immune-related cyto-
kines and growth factors, the placenta
synthesizes resistin and leptin, two adi-
pose tissue–specific proteins (adipokines)
implicated in the regulation of insulin ac-
tion (50). Whether the placenta at term is
able to synthesize the insulin sensitizer,
adiponectin, is still being debated (Fig. 4)
(51). Cytokines are produced by three
different placental cell types: the Hof-
bauer cells, the trophoblast cells, and cells
of the vascular endothelium, albeit with
cell type–specific cytokine patterns. For
example, TNF-� is produced by the Hof-
bauer cells (52,53), whereas the syncy-
tiotrophoblast is the major site of leptin
synthesis, and interleukin (IL)-6 expres-
sion is found in both trophoblast and en-
dothelial cells (54 –56). Studies of the
pattern of production and release of pla-
cental cytokines into the systemic cir-
culation have provided valuable informa-
tion relating to their mechanism and site
of action. Leptin and IL-6 are released into
the fetal and maternal systemic circula-
tion. Thus, they can exert endocrine ac-
tion by acting at sites remote from the
production site (57–59). In contrast to
leptin, TNF-� is poorly released from the
placenta (Table 1) and hence is more
likely to exert local paracrine effects.
There is an overproduction of placenta
leptin and TNF-� in type 1 diabetes and
GDM (60; Fig. 5). In GDM, the overex-
pression of placenta TNF-� is associated
with increased fetal adiposity (6). The
stimuli and mechanisms responsible for
increased leptin and TNF-� gene expres-
sion and production are not known at
present; however, the consequences of

their overproduction are just beginning to
be unraveled (61). Both cytokines activate
phospholipase A2, a family of lipolytic en-
zymes that generate eicosanoid precur-
sors such as docosahexaenoic acid, an
essential �-3 polyunsaturated fatty acid.
Recent evidence demonstrated an accu-
mulation of �-3 fatty acids in placenta of
offspring of GDM mothers with increased
adiposity at birth (62).

This may be one potential mecha-
nism linking local placental inflamma-
tory responses with increased lipid
substrate availability for fetal fat depo-
sition, in addition to increased maternal
supply. TNF-� may also participate in
the endocrine mechanism of pregnancy-
induced insulin resistance by adding a
placental component to the insulin re-
sistance developing in the mother. The
TNF-� induction of IRS-1 serine phos-
phorylation links inflammation to de-
fective insulin action in pregnancy
(58,63). In GDM, the activation of the
proximal cytoplasmic proteins of
TNF-� signaling such as TNFR1 associ-
ated death domain (TRADD) protein,
TNFR2-assoc ia ted death domain
(TRAF2) protein, and Fas-associated
death domain (FADD) protein is an in-
dication of the recruitment of TNF-� R1
and R2 receptors (6). This raises the
possibility that placenta TNF-� down-
regulates insulin action through serine
phosphorylation of placental insulin re-

ceptors, as shown in skeletal muscle of
women with GDM (64).

The placenta is a target of cytokines:
maternal and fetal influences
The placenta is at the same time source
and target for cytokines. The type and the
location of the cytokine receptors present
on the placental cells will determine
whether signals are generated by placen-
tally (internal), maternally (presumably
adipose-derived), or fetally derived cyto-
kines. This emphasizes the possibility of
an external control of placental function
that can become dysregulated when the
cytokine levels are augmented, such as in
GDM or obesity (45,65).

One leading hypothesis is that in-
creased TNF-�, leptin, and resistin con-
tribute to enhancing insulin resistance in
the GDM mother (58). In addition, adi-
ponectin may be implicated in the loss of
insulin sensitivity with advancing gesta-
tion in normal pregnancy and in preg-
nancy with GDM through a decrease in
maternal concentrations (66–68). It is
worthwhile to emphasize here that,
whereas it will be difficult to dissect out
the relative contribution of the placental
and maternal tissues for regulation
through TNF-�, leptin, or resistin, the in-
fluence of adiponectin will be exclusively
of maternal origin because of the absence
of ligand but expression of adiponectin
receptors in the placenta (Fig. 4; 69,70).

Figure 4—Adiponectin expression. A: Adiponectin mRNA expression measured by real-time PCR
(amplification run of 40 cycles) is detected in maternal white adipose tissue (lane 1) but not in
human placenta at 39 weeks of gestation (lanes 3 and 4). B: Immunodectection of adiponectin
protein. Signals for monomeric (25 kDa) and dimeric (50 kDa) adiponectin complexes were
detected in maternal serum (1 �l) after electrophoresis under reducing conditions (lane 1), in
white adipose tissue (50 �g total protein, lane 2), and in crude placenta tissue (50 �g total protein,
lane 3). Once the placenta is being washed out from intervillous blood, the adiponectin signals are
no longer detectable (lanes 4 and 5). This indicates that adiponectin protein expression detected in
term placenta is accounted for by the systemic blood trapped within the intervillous blood space.
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Similar to other peptide hormones
such as insulin or glucagon, there is min-
imal trans-placental transfer of cytokines
from mother to fetus (71,72). Hence, the
origin of the cytokines found in the fetal
circulation can be twofold, either released
from the placenta or synthesized within
the fetus. There is a critical lack of infor-
mation regarding most fetal cytokines and
adipokines. There is now clear evidence
that placental leptin is poorly released
into the fetal circulation (Table 1) and that
leptin synthesized by fetal adipose tissue
can be taken as a marker of fetal adiposity
(61,73). Some of the stimuli that disturb
placental metabolism may also be con-
veyed through the vascular endothelium

as oxidative stress, endothelial injury,
etc., thus bringing into the picture a con-
trol from the fetus, through alterations in-
duced by circulating fetal TNF-�, leptin,
and IL-1 and IL-6 (74).

Thus, the maternal-fetal control of the
placenta is a cumulative result of cell co-
operation that may propagate a vicious
cycle for enhancement of cytokine pro-
duction, which may eventually have an
impact on insulin action in the feto-
placental unit and possibly obesity in
utero. The discovery that some adipo-
kines are produced by the placenta opens
novel perspectives for understanding the
specificity of pregnancy-induced insulin
resistance. It also emphasizes the impor-

tance of functional interplays between the
placenta and maternal white adipose tis-
sue in GDM. The signals that regulate the
secretion of these molecules are far from
clear. Further studies in this area may
provide a clue for understanding the in-
flammatory processes in GDM and obe-
sity and potentially in utero programming
of obesity.
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