
Significance of Endothelial Progenitor Cells
in Subjects With Diabetes
GIAN PAOLO FADINI, MD

1

SAVERIO SARTORE, PHD
2

CARLO AGOSTINI, MD
1

ANGELO AVOGARO, MD, PHD
1

D iabetes complications represent a
huge burden for patients and health
services. The fight against each sin-

gle complication has led to significant im-
provements in diabetes care, especially
for microvascular complications, yet mac-
roangiopathy remains a major source of
morbidity and mortality. A common ap-
proach for the prevention and treatment
of diabetes complications relies on the un-
derstanding of their complex pathophys-
iology. A unifying biochemical theory
suggests that oxidative stress underlies
subsequent cellular damage pathways,
which leads to diabetes complications,
but common supracellular mechanisms
are still unclear. Endothelial progenitor
cells (EPCs) are circulating immature cells
that contribute to vascular homeostasis
and compensatory angiogenesis. During
the last decade, data have become avail-
able indicating that alterations in EPCs
may have an important causative role in
the development and progression of vir-
tually all diabetes complications. In this
review, we will focus on the mechanisms
of EPC reduction and dysfunction associ-
ated with diabetes by discussing their role
in each single complication and possible
therapeutic interventions.

A unified pathogenesis of late
diabetes complications
Diabetes is associated with a unique con-
stellation of disabling complications.
While it was originally thought that a sin-
gle patient tends to develop the cluster of

micro- or macrovascular complications,
recent prospective studies show that typ-
ical markers of microvascular dysfunc-
tion, such as microalbuminuria or retinal
vascular abnormalities, are associated
with an increased risk of macrovascular
events (1,2). These and other data suggest
that there must be a unifying pathogenetic
model underlying diabetes complica-
tions. To date, the most credited and sup-
ported model proposes that oxidative
stress originating from mitochondria acti-
vates all subcellular damage pathways (3).
However, subsequent events diverge for
each complication, and there is not a su-
pracellular unifying hypothesis.

The discovery that a subset of circu-
lating immature cells contributes to vas-
cular homeostasis has been a major
achievement in many fields of basic sci-
ence. In this review, we will focus the at-
tention on EPCs, emphasizing their
impressive role in virtually all diabetes
complications.

EPCs
EPCs were discovered in 1997 as circulat-
ing cells with the ability to differentiate
into mature endothelium and take part in
neoangiogenesis (4). EPCs share markers
of hematopoietic (CD34 and CD133) and
endothelial (KDR, CD31, and vWf) lin-
eages (5), are derived from bone marrow,
and can be mobilized to the peripheral
circulation in response to many stimuli
(6). Tissue ischemia, through the release
of growth factors and cytokines, mobi-

lizes EPCs, which, once in the peripheral
circulation, specifically home on the isch-
emic sites to stimulate compensatory an-
giogenesis (7). Moreover, EPCs constitute
a circulating pool of cells able to form a
cellular patch at sites of endothelial in-
jury, thus contributing directly to the ho-
meostasis and repair of the endothelial
layer (Fig. 1). Taken together, these ob-
servations suggest that EPCs have a major
role in cardiovascular biology; in fact, the
extent of the circulating EPC pool is now
considered a mirror of cardiovascular
health. Virtually all risk factors for athero-
sclerosis have been associated with de-
crease and/or dysfunction of circulating
EPCs (8), while an expanded EPC pool is
associated with a decreased cardiovascu-
lar mortality (9).

The study of EPC biology consists of
two related aspects: quantitative evalua-
tion of the EPC pool and functional as-
sessment. Circulating EPCs can be
quantified directly ex vivo using flow cy-
tometry, which is considered the gold
standard for this purpose (10); typical
surface antigens to identify EPCs are
CD34, CD133, and KDR. Functional
characteristics are explored in vitro using
standardized protocols (11). Proliferation
refers to the ability of EPCs to expand and
form colonies in culture: EPCs should
proliferate in response to growth factors
released locally after vascular damage or
tissue ischemia. Adhesion is a further step
required for both reendothelization and
angiogenesis; it is assessed as the ability of
EPCs to adhere to a monolayer of mature
endothelium in culture. Migration of
EPCs through the extracellular matrix is
crucial for the growth of new vessels and
is generally assessed in vitro as the ability
to invade the lower side of a Boyden-like
chamber. Finally, after EPCs have ad-
hered to the vessel wall, migrated into the
interstitium, and expanded locally, they
should spatially organize to form vascular
structures; this property can be assessed
in vitro as a tube formation assay in which
EPCs are seeded with human umbilical
vein endothelial cells on a gel of extracel-
lular matrix proteins. All these functions
are relevant to the comprehensive role of
EPCs, and their integrity can be explored
as a whole using an in vivo assay in which
EPCs are transplanted into a small labo-
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ratory animal subjected to experimental
endothelial damage or tissue ischemia.
This will definitively demonstrate the
global function of EPCs isolated from a
given patient or cultured in a specific con-
dition.

EPC alterations in diabetes
Both cytometric and culture methods
have extensively demonstrated that type 1
and type 2 diabetic patients have less cir-
culating EPCs than matched healthy sub-
jects. Moreover, diabetic EPCs display
functional impairment, such as reduced
proliferation, adhesion, migration, and
incorporation, into tubular structures
(12–14).

The mechanisms underlying EPC re-
duction in diabetes include weak bone
marrow mobilization, decreased prolifer-
ation, and shortened survival in periph-
eral blood (Fig. 2).

The release of EPCs from bone mar-
row in response to mobilizing stimuli de-
pends on complex interactions in the
local marrow microenvironment. Tissue
ischemia is considered the strongest stim-
ulus for EPC mobilization, through the
activation of hypoxia-sensing systems,
such as hypoxia-inducible factor (HIF)-1.
HIF-1 is a heterodimeric transcription
factor composed of � (HIF-1�) and �
(HIF-1�) subunits. While HIF-1� is con-
stitutively expressed, HIF-1� expression

is regulated by cellular oxygen concentra-
tions. Under normoxic conditions, HIF-1�
is rapidly degraded via the ubiquitine-
proteasome pathway, while cellular hyp-
oxia inhibits its ubiquitination and
proteasomal degradation, allowing
HIF-1� to dimerize with HIF-1�. The re-
sulting active HIF-1 binds to enhancer

DNA regions and promotes the transcrip-
tion of oxygen-sensible genes that en-
code, among others, vascular endothelial
growth factor (VEGF), stromal-derived
factor (SDF)-1, and erythropoietin (15).
Then, growth factors allow EPCs to un-
dergo transendothelial migration and to
pass into the peripheral blood by means
of attenuating stromal cell–stem cell in-
teractions and by rearranging extracellu-
lar matrix. Once in the bloodstream,
progenitor cell recruitment is mediated
by hypoxic gradients via HIF-1–induced
expression of SDF-1 (16). It has been
shown that the expression of angiogenic
factors VEGF and HIF-1� are reduced in
the hearts of diabetic patients during
acute coronary syndromes and that myo-
cardial infarct size in the rat is increased
due to a reduced expression of HIF-1�
(17,18). Therefore, poor collateral forma-
tion in diabetes may be attributed to
weaker bone marrow stimulation from
the ischemic tissue. We have recently
confirmed this hypothesis, showing that
bone marrow mobilization of EPCs after
ischemia-reperfusion injury is defective
in diabetic rats. Inability to mobilize EPCs
was associated with downregulation of
HIF-1� and weakened release of marrow-
stimulating factors, such as VEGF and
SDF-1, ultimately leading to insufficient
compensatory angiogenesis (19). Another
study has shown that progenitor cell mo-
bilization restored blood flow in diabetic
mice (20). It is conceivable that HIF-1�

Figure 1—The contribution of EPCs in the setting of endothelial damage and angiogenesis.

Figure 2—Diabetes impairs all the steps of EPC mobilization and function.

Endothelial progenitor cells and diabetes

1306 DIABETES CARE, VOLUME 30, NUMBER 5, MAY 2007

D
ow

nloaded from
 http://ada.silverchair.com

/care/article-pdf/30/5/1305/596775/zdc00507001305.pdf by guest on 10 April 2024



deregulation in diabetes depends on an
overproduction of reactive oxygen spe-
cies (ROS). In a recent study (21), ROS
inhibition was able to normalize postisch-
emic neovascularization in diabetes by
positive EPC modulation. Insulin treat-
ment to achieve normoglycemia during
ischemia and reperfusion partially re-
stored the ability to mobilize EPCs
through upregulation of growth factors.
Consistently, Humpert et al. (22) have
shown that insulin therapy in decompen-
sated diabetes increased CD34�CD133�

progenitor cell count, depending on
SDF-1 genotype. Given the positive mod-
ulation of EPCs achieved by blood glu-
cose lowering, it is tempting to speculate
that favorable clinical outcomes associ-
ated with glycemic control during acute
ischemic syndromes (23) may be partly
dependent on stimulation of EPC-
mediated neovascularization in the isch-
emic myocardium, thus reducing residual
ischemia.

We have also shown that diabetic
bone marrow is less responsive to exoge-
nous EPC-mobilizing agents. Although
molecular mechanisms that regulate EPC
release in peripheral blood are complex
and not fully understood, a role for the
phosphatidylinositol (PI) 3-kinase/
protein kinase-B and endothelial nitric
oxide (NO) synthase pathways has been
shown (24,25). As diabetes is character-
ized by altered activation of PI 3-kinase/
Akt pathways and by reduced NO
bioavailability (26), dysfunction of these
subcellular pathways may be involved in
the defective mobilization of EPCs from
bone marrow.

Hyperglycemia may be the common
feature that affects survival and function
of EPCs because similar alterations have
been demonstrated in both type 1 and
type 2 diabetes. In vivo, hyperglycemia
induces oxidative stress by increasing the
production of ROS and alters leukocyte
and endothelial function (3). We have
previously reported that hyperglycemia
activates mitogen-activated protein ki-
nases and protein kinase-C in human cir-
culating peripheral blood mononuclear
cells (PBMCs) in vivo (27,28). Recently,
Krankel et al. (29) have convincingly dem-
onstrated that high glucose impairs prolif-
eration, survival, and function of cultured
EPCs, with concomitant-decreased NO
production and matrix metalloproteinase-9
activity. Furthermore, activation of mito-
gen-activated protein kinases has been re-
vealed as a potential mechanism of EPC
dysfunction induced by high glucose

(30). A definite demonstration is that cor-
rection of hyperglycemia by insulin ther-
apy (19,22) can indeed restore the normal
EPC pool.

Another possible link between diabe-
tes and EPC alterations is the binomial
insulin resistance/hyperinsulinemia. In
one study, insulin supplementation re-
duced long-term generation of endothe-
lial cells from CD34� cells in culture (31).
Moreover, we have shown that patients
with the metabolic syndrome have de-
creased levels of CD34�KDR� EPCs
compared with patients without the syn-
drome (12). Circulating CD34� cells are
synergically decreased by clustering com-
ponents of the metabolic syndrome, and
their levels negatively correlate with the
homeostasis model assessment value, a
measure of insulin resistance (32). In fact,
insulin resistance, the typical hallmark of
metabolic syndrome, is characterized by a
defective activation of the PI 3-kinase/Akt
pathway and decreased endothelial NO
synthase activity, which are considered
essential for EPC mobilization and function.

Oxidative stress plays a crucial role in
the pathogenesis of diabetes complica-
tions (3), as well as in the entire athero-
genic process. Therefore, stress-induced
apoptosis may be one mechanism of EPC
reduction in diabetes. The literature pro-
vides ample evidence that EPCs might de-
crease because of increased apoptosis and
that EPCs are stress sensitive (33). For ex-
ample, estrogens, statins, and physical
exercise increase cultured EPCs by inhib-
iting apoptosis, while C-reactive protein
and systemic hypoxia downregulate EPCs
by enhancing apoptosis (34–37). Some
other works have demonstrated that EPCs
display a gene expression profile that con-
fers resistance to oxidative stress (38) and
may be related to their ability to survive in
hypoxic environments such as ischemic
tissues. However, vascular wall cells are
directly exposed to systemic oxidative
stress, and long-lasting hyperglycemia
may downregulate scavenging mecha-
nisms and promote EPC apoptosis, as
demonstrated in vitro (29). Moreover, in
vivo prooxidant conditions may affect
other cells involved in the complex cellu-
lar network of the bloodstream and in the
vessel wall, which interact with EPCs to
determine their function and fate. For in-
stance, in endothelium exposed to vascu-
lature-damaging agents, several enzymes
that can produce ROS are upregulated.
We have shown that gene expression of
NAD(P)H oxidase, a major vascular
source of ROS, is increased in circulating

PBMCs from type 2 diabetic patients, de-
pending on glycemic control (39). Re-
membering that EPCs are a subset of and
partly derive from PBMCs, it is easy to
imagine how the hostile vascular environ-
ment of diabetic patients may negatively
influence EPC proliferation, differentia-
tion, and function.

In summary, reduction in circulating
EPCs in diabetic patients may recognize
at least three pathophysiological ex-
planations: impaired bone marrow
mobilization, defective proliferation, and
enhanced apoptosis. Remarkably, in ac-
cordance with Brownlee’s unifying hy-
pothesis (3), oxidative stress appears as a
major determinant of all of these mecha-
nisms. Interestingly, two very recent stud-
ies have demonstrated that the natural
transketolase activator, benfotiamine,
which is theoretically able to prevent the
subcellular damage pathways triggered by
oxidative stress, restored EPC-mediated
healing of ischemic diabetic limbs in mice
(40) and prevented hyperglycemia-
mediated EPC dysfunction via modula-
tion of the Akt pathway (41).

EPCs and diabetic vasculopathy
Accelerated atherosclerosis is probably
the most devastating among diabetes
complications. The atherogenetic process
in diabetic subjects is similar to that ob-
served in their nondiabetic counterparts.
However, diabetic vasculopathy is char-
acterized by high prevalence, early devel-
opment, bilaterality, rapid progression, and
typical involvement of multiple distal
sites. The severity of macrovascular com-
plications in diabetes has been attributed
to a profoundly impaired collateralization
of vascular ischemic beds (42), which is
insufficient to overcome the loss of blood
flow, and leads to critical limb ischemia that
often requires amputation. The mecha-
nisms that hinder ischemia-induced neo-
vascularization in diabetes had remained
elusive until the discovery of EPCs. In an-
imal models of diabetic vasculopathy, de-
fective collateralization was counteracted
by administration of EPCs from control
animals. Conversely, diabetic EPCs were
not able to stimulate vascularization, even
becoming antiangiogenic (31,43). Addi-
tionally, EPCs appeared important for
vascularization and healing of diabetic
wounds (44). Replacement of the diabetic
EPCs with a healthy cell pool was an ideal
experiment to define their role in the
pathogenesis of diabetic vasculopathy,
which represented the basis for an in-
depth evaluation in humans.
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To translate experimental animal data
into the clinical setting, we first evaluated
the levels of circulating EPCs in patients
with and without diabetes and peripheral
arterial disease (PAD). In compliance with
the observations that diabetes is a cardio-
vascular disease equivalent, we showed
that patients with PAD alone and patients
with uncomplicated diabetes had similar
EPC reduction versus control subjects.
Patients with diabetes and PAD had a fur-
ther significant decrease in circulating
EPC levels, especially in the presence of
ischemic foot lesions. Remarkably, EPC
levels strongly correlated with the ankle-
brachial index, the most objective diag-
nostic and prognostic test for lower
extremity arterial disease (12). Subse-
quently, we have demonstrated that the
EPC decrease in diabetes is closely corre-
lated with the severity of both carotid and
lower-limb atherosclerosis: higher de-
grees of carotid stenosis, as well as worse
stages of leg claudication and ischemic le-
sions, were associated with lower levels of
EPCs, suggesting that EPC count may be
considered a valuable marker of athero-
sclerotic involvement. Indeed, cytometric
techniques, which allow EPC count, are
widely used for routine laboratory testing,
and the determination of EPCs is suffi-
ciently reproducible to be used in the
clinical practice (9,10,32). Moreover, we
have estimated the cost for a single EPC
count to be relatively low (�30€ or $40
[U.S.]) in the case that EPCs are defined as
CD34�KDR� cells. The clinical useful-
ness would stand in that EPCs not only
mirror vascular function and atheroscle-
rotic burden but also reflect the endoge-
nous vasculoregenerative potential.
Importantly, there are data suggesting
that measuring EPCs would provide ad-
ditional information over the classical risk
factor analysis; in one study (9),
CD34�KDR� EPC count predicted car-
diovascular events independently of risk
factors and hard indexes, such as left ven-
tricular ejection fraction.

Moreover, EPCs isolated from dia-
betic patients with PAD exhibited im-
paired proliferation and adhesion to
mature endothelium (45). We suggest
that impaired collateralization leading to
the clinical manifestations and complica-
tions of atherosclerosis in diabetes may be
attributable to decreased and dysfunc-
tional EPCs. Concurrently, increased ca-
rotid plaque formation may be related to
the depleted reservoir of EPCs, which fails
to successfully replace the damaged endo-
thelium. In this light, ways to increase the

number and improve the function of
EPCs should be actively pursued. A prac-
tical consequence of this has been shown:
Huang et al. (46) have transplanted bone
marrow–mobilized cells, as an EPC-
enriched fraction, into critically ischemic
limbs of diabetic patients. Compared with
standard therapy, cell therapy improved
angiographic scores and ankle-brachial
index values and reduced relevant end
points, such as ulcer size and need for
limb amputation. The aggressiveness and
distribution of atherosclerosis in diabetic
patients often discourages surgical and
endovascular revascularization, thus leav-
ing a myriad of no-option patients for
whom standard therapies are insufficient.
Even if many aspects of cellular revascu-
larization remain to be defined, in the fu-
ture this novel therapeutic approach may
offer a chance for those patients.

EPCs and diabetic cardiomyopathy
Diabetes predisposes to heart failure, and
one of its major complications is the de-
velopment of cardiomyopathy. Contrac-
tile depression begins quite early after
induction of diabetes in animals, and ex-
ercise-induced left ventricular dysfunc-
tion is often the first manifestation of
cardiac involvement in diabetic patients.
Analysis of the left ventricular afterload-
pump function relationship reveals that
defective contractile recruitment is the
main cause of this anomaly (47), which is
probably related to an insufficient in-
crease in myocardial perfusion (48). Mi-
crovascular abnormalities in the diabetic
myocardium include arteriolar patholo-
gies, microaneurysms, and interstitial fi-
brosis, while the classical underlying
metabolic mechanisms include dimin-
ished glucose and lactate oxidation paral-
leled by increased use of fatty acids (49).
Recently, Yoon et al. (50) have demon-
strated that diabetic cardiomyopathy in
rats is characterized by an early and pro-
gressive decline in myocardial VEGF ex-
pression, which reduces capillary density,
increases fibrosis, and impairs contractil-
ity. Interestingly, rats with diabetic car-
diomyopathy had reduced EPC levels,
while restoration of myocardial VEGF ex-
pression replenished the circulating EPC
pool, which contributed significantly to
reconstitute myocardial microvascula-
ture. Taken together, these data suggest
that diabetic cardiomyopathy is a com-
plex microvascular complication in
which EPC deficiency may be one leading
cause of the microcirculatory rarefaction
that critically reduces myocardial perfu-

sion. In addition to dysfunction of EPCs,
oxidative stress-induced senescence of
cardiomyocyte progenitors has been rec-
ognized as another potential underlying
mechanism in diabetic cardiomyopathy
(51). Interestingly, cardiac stem cell aging
and heart failure associated with diabetes
can be prevented by deletion of the stress-
related gene p66Shc, which we have
shown to be potently upregulated in type
2 diabetic subjects (52). Prevention and
treatment of diabetic cardiomyopathy is a
challenge for diabetologists, and the dis-
covery that alterations of circulating
and/or local progenitor cells may mediate
this complication could identify novel
therapeutic strategies.

EPCs and diabetic nephropathy
Diabetes is one leading cause of chronic
kidney disease (CKD) in Western coun-
tries, and, in turn, CKD is associated with
an increased prevalence of cardiovascular
risk factors. Therefore, it is not surprising
that CKD patients have qualitative and
quantitative EPC alterations (53). Mecha-
nisms are largely unknown, but uremic
toxins may be involved, as both hemody-
alisis and kidney transplantation can re-
store the endogenous EPC pool (54,55).
To date, no study has specifically ad-
dressed the question of whether nephrop-
athy per se is associated with further EPC
reduction and/or impairment in diabetes,
but �50% of CKD patients enrolled in
EPC studies had diabetes.

Endothelial damage and microcircu-
latory impairment is an early pathoge-
netic event in diabetic nephropathy (56)
and may partly depend on EPC defects.
Moreover, some authors have suggested
that EPCs are pluripotent and retain the
ability to transdifferentiate into disparate
phenotypes. Bone marrow–derived cells
sharing key markers in common with
EPCs have been shown to take part in kid-
ney ontogenesis and regeneration (57),
whereas we have shown that the kidney
may harbor EPCs under specific condi-
tions (58). Taken together, these data sug-
gest that EPC decline may be one
mechanism of defective glomerular repair
and renal disease progression in diabetes.
In parallel to decrease in endothelial pre-
cursors, diabetes causes increase in myo-
fibroblast progenitor cells, which, due to
secretion of extracellular matrix compo-
nents, may contribute to the progressive
glomerular obliteration and fibrosis (59).

The relationships between renal func-
tion and EPCs are more complex because
the kidney-derived hormone erythropoi-

Endothelial progenitor cells and diabetes
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etin has emerged as a predominant
regulator of EPC mobilization and differ-
entiation (60). It has been pointed out
that the oxygen-erythropoietin feedback,
which depends on the hypoxia-sensing
system HIF-1�, is dysregulated in diabe-
tes; microangiopathy and progressive tu-
bulointerstitial fibrosis increase the
latency of the erythropoietin system,
while production of ROS and hyperglyce-
mia itself stabilize HIF-1�, blunting
erythropoietin response (61). Addition-
ally, we have recently demonstrated that
EPC mobilization in diabetes is defective
because of HIF-1� downregulation (19).
Another link between nephropathy and
altered EPCs is represented by the endog-
enous NO inhibitor asymmetric dimethy-
larginine (ADMA), which accumulates in
patients with CKD (62) and is elevated in
the presence of diabetes and its complica-
tions (63). According to the major role
played by NO in EPC function (25),
ADMA has been recognized as a potent
inhibitor of EPC mobilization and func-
tion (64). This model depicts a vicious
circle in which the EPC alterations asso-
ciated with diabetes impair renal micro-
vasculature, and, in turn, CKD hampers
EPC mobilization, differentiation, and
homing through a disrupted erythropoie-
tin system and an excess of ADMA. For
these reasons, diabetic nephropathy may
be associated with a more profound EPC
impairment than CKD in general, which
would represent an incremental risk of
cardiovascular disease and death.

EPCs and diabetic retinopathy
High blood glucose is an extremely detri-
mental factor for the retinal microvascu-
lature. Hyperglycemic damage results in
increased permeability, blood and serum
leakage to the extravascular space, and
progressive decline in retinal blood flow.
Retinal ischemia and release of angiogenic
factors stimulate the proliferation of mi-
crovessels, leading to proliferative reti-
nopathy. Recently, intriguing novelties
have been added to this pathogenetic
model. In animals, bone marrow–derived
cells are mobilized and recruited at sites of
retinal neovascularization in response to
VEGF and SDF-1 (65,66). Therefore, not
only local endothelial cells, but also EPCs
may be involved in the development of
proliferative retinopathy. This seems
counterintuitive, as diabetes complica-
tions that may affect the same patient,
such as diabetic retinopathy and PAD, can
have opposing EPC alterations, the one
being associated with increased and the

other with decreased EPC levels. Paral-
lely, a single diabetic patient can present
at the same time with complications of
excessive angiogenesis (proliferative dia-
betic retinopathy) and of poor angiogen-
esis (symptomatic PAD). To explore this
so-called “diabetic angiogenic paradox,”
we have studied in vivo the levels of
CD34� and CD34�K diabetic retinopa-
thy� EPCs and in vitro differentiation of
EPCs from type 2 diabetic patients with
various combinations of PAD and diabetic
retinopathy (67). While CD34�KDR�

cells and endothelial differentiation of
cultured progenitors were selectively re-
duced in PAD patients, generic CD34�

progenitors were reduced in diabetic ret-
inopathy patients, which showed instead
higher clonogenic potential and en-
hanced endothelial differentiation in cul-
ture. Almost simultaneously, Asnaghi et
al. (68) demonstrated that EPCs cultured
from peripheral blood of patients with
type 1 diabetes and proliferative diabetic
retinopathy displayed increased clono-
genic potential. Taken together, these
data strengthen the hypothesis that there
is a role for EPCs in the development of
human proliferative diabetic retinopathy,
shifting the pathogenic paradigm from a
local environment (retinal) to a systemic
one (peripheral blood). Interestingly,
pericyte loss is an early and selective event
leading to endothelial activation and pro-
liferation in the retina (69), and CD34�

progenitors of perivascular cells have
been demonstrated in peripheral blood
(70). Thus, according to these notions,
depletion of generic CD34� progenitor
cells may cause pericyte loss, whereas in-
creased endothelial differentiation may
lead to abnormal retinal angiogenesis.
Conversely, depletion of EPCs and re-
duced endothelial differentiation may
hamper collateralization in PAD patients.
Therefore, the differential regulation of
circulating progenitors, possibly in asso-
ciation with different oxygen gradients
and local accumulation of growth factors,
may explain why peripheral ischemia
cannot stimulate angiogenesis as retinal
ischemia does. Going deeper into the sys-
temic events accompanying retinal vascu-
lar proliferation may provide novel
therapeutic targets against peripheral
ischemic complications. The notion that
EPCs may be involved in retinal vascular
proliferation should induce caution when
trying to expand the EPC pool to amelio-
rate the cardiovascular profile. For in-
stance, erythropoietin itself is an

angiogenic factor that may worsen prolif-
erative diabetic retinopathy (71).

EPCs and diabetic neuropathy
Diabetic neuropathy is caused by both
imbalances in neuron metabolism and
impaired nerve blood flow. Decrease in
vasa nervorum is a prominent character-
istic of peripheral nerves in experimental
diabetic neuropathy, and decreased
blood supply to peripheral nerves can
simulate diabetic neuropathy (72). There-
fore, maintenance of an adequate network
of vasa nervorum is essential to prevent
the development of this complication.
With this background, EPCs could be im-
portant in the homeostasis of the nutritive
microvasculture, and their exhaustion or
dysfunction may accelerate the course of
diabetic neuropathy. Moreover, as pro-
genitor cells derived from the adult blood
can be differentiated also toward the neu-
ral phenotype (73), it is possible that a
broader derangement of immature circu-
lating cells in diabetes predisposes to this
chronic complication, dowregulating
both endothelial and neuronal progeni-
tors. Unfortunately, no study to date has
directly explored these hypotheses. Nev-
ertheless, Naruse et al. (74) have shown
that intramuscular administration of
EPCs is able to reverse the impairment of
sciatic nerve conduction velocity and
nerve blood flow in diabetic rats. Once
more, the altered EPC regulation in dia-
betic neuropathy may be attributed to a
defective HIF-1� activation (75). Despite
the facts that the actual contribution of
EPCs to vasa nervorum and nerve func-
tion remains to be elucidated and that fu-
ture studies in humans are needed, it is
conceivable that EPC alterations may also
be involved in the pathogenesis of dia-
betic neuropathy. However, it is intrigu-
ing that some EPC-modulating agents,
such as erythropoietin and statins, have
been shown to delay diabetic neuropathy
(76).

Therapeutic implications
Given the comprehensive role of EPC al-
terations in diabetes complications, mod-
ulation of the levels and/or function of
EPCs may be considered a potential ther-
apeutic strategy. Many drugs provided
with beneficial cardiovascular effects,
such as statins, ACE inhibitors, and glita-
zones, have been shown to stimulate
EPCs (77,78). However, one may wonder
whether diabetic patients, who display a
profound impairment in the endogenous
EPC pool, are still responsive to those
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agents. In other terms, what is the best
therapeutic intervention in diabetic pa-
tients with EPC depression: replacement
with administration of ex vivo expanded/
enriched EPCs or pharmacological stim-
ulation of endogenous cells? The present
experience indicates that EPC administra-
tion is a complex multistep procedure
available exclusively at specialized centers
during experimental trials. On the other
hand, drugs that modulate EPCs in addi-
tion to their classic mechanism of action
are already widely used to reduce cardio-
metabolic risk in the general practice so
that pharmacological intervention ap-
pears safe, easy, widely accessible, and
probably effective in diabetic patients as
well (79,80). Finally, lifestyle modifica-
tions constitute another cornerstone of
EPC stimulation because physical exer-

cise has been extensively shown to ame-
liorate EPC number and function (81,82).

Even if the actual contribution of EPC
modulation to the global effect of pleio-
tropic cardiovascular medications and
lifestyle interventions remains unknown,
these notions further underline the im-
portance of a multifactorial approach to
prevent diabetes complications.

Concluding remarks
According to the novel paradigms of re-
generative medicine, bone marrow is a
reservoir of immature cells that, once in
the bloodstream, participate in regenera-
tion and repair of many tissues thanks to
their extreme plasticity. We have dis-
cussed the available data demonstrating
that decrease or dysfunction of EPCs may

have a prominent role in the pathogenesis
of all diabetes complications (Table 1 and
Fig. 3). Aware that this picture is not com-
plete, we would provokingly suggest that
EPCs may represent the fulcrum of a
novel unifying theory, which confers a
revolutionary centrality to bone marrow,
and may also involve adipocyte, fibrocyte,
cardiomyocyte, neuronal, and epithelial
progenitors acting in concert: it is all in
the blood.
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