
from two models, one consisting of only
the composite and the other consisting of
a regression model that included both
components. The regression model is a
linear combination of the two compo-
nents in which the weights are chosen to
obtain an optimal fit; thus, the regression
model itself is a composite, though one in
which the fit to the data should be better
than A1 months (which is exactly what
they found).

Since comparing two composites was
not the goal of our study (2), we ap-
proached the analyses differently. We de-
veloped one regression model including
all variables that were significant in the
multivariate modeling, including the
composite as well as individual compo-
nents, as candidates for the model. Each
partial R2 measures the explanatory value
of the corresponding variable beyond the
prediction already available from all the
other variables in the model. Except for
severity of retinopathy at baseline, we
found that the composite was consistently
the best predictor and that the individual
components added little, if anything.

We agree that age at onset and dura-
tion added together equal the age of the
patient at the time of study, although the
appropriate weights for these two time
periods in predicting the outcome may
differ, and determining whether the
weights significantly differ would be of
interest. However, this was not a focus of
our study.

We also agree that the patient popu-
lation under study and the choice of out-
comes to be analyzed can influence the
results and that a continuous neuropathy
measure is desirable. Although use of a
common outcome measure would assist
in comparing our results with those of Or-
chard et al. (3), such a comparison was
not the focus of our study (2). Finally,
determining the threshold of chronic gly-
cemia, which induces complications, is a
worthy goal, but before we do this we
want to include studies of normal subjects
and glucose-impaired individuals cur-
rently being studied.
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A Critical Appraisal
of the Continuous
Glucose–Error Grid
Analysis

Response to Wentholt et al.

In a recent publication, Wentholt et al.
(1) stated that their aim was to critically
explore the continuous glucose–error

grid analysis (CG-EGA) (2) and to com-
pare it with traditional techniques using
data previously reported from two sen-
sors. As developers of the CG-EGA, we
hoped that our method might stimulate a
discussion on the important problem of
the accuracy of continuous monitoring
sensors (CGS); therefore, we read this cri-
tique with interest.

The methods used by Wentholt et al.
(1) unfortunately failed to take into ac-
count the basic structure of CGS data,
which represent time series (i.e., sequen-
tial readings that are ordered in time) (3).
This structure leads to two fundamental
requirements in their analysis. First, con-
secutive sensor readings taken from the
same subject within a relatively short time
are highly interdependent. Therefore,
standard statistical analyses such as t tests,
while appropriate for independent data
points, will produce inaccurate results if
applied to CGS data. Second, the order of
the CGS data points is essential for clinical
decision making. For example, the se-
quences 903 823 72 mg/dl and 723
823 90 mg/dl are clinically very differ-
ent. Standard accuracy measures, such as
the mean absolute deviation (MAD) used
by Wentholt et al. (1), do not account for
the data’s temporal order; if reference-
sensor data pairs are reshuffled, the MAD
remains the same.

As a result, the primary statistical
analysis used by Wentholt et al. is flawed,
both to demonstrate significant differ-
ences between the sensors and to imply
that CG-EGA is insensitive. The CGS data
from 13 subjects were pooled to compare
2 MADs (15.0 � 12.2 vs. 13.6 � 10.2%).
The result was reported as significant
(P � 0.013), but for these highly overlap-
ping MADs to differ statistically required
a large number (�1,000) of degrees of
freedom, which was calculated by pool-
ing the total number of CGS data points
(735 and 1,156) across all subjects. Such
an approach led to inaccurate conclusions
because there were only 13 independent
subjects, and the data points within each
subject were highly dependent. If the cor-
rect number of degrees of freedom is
used, the MADs of the two sensors are not
different (P � 0.5), which confirms the
CG-EGA results showing no differences.

Other conclusions by Wentholt et al.
also deserve comment. First, they stated
that CG-EGA is time consuming. Indeed,
analyses of temporal data are intrinsically
more sophisticated than standard time-
independent statistics, but such analyses
are essential for this type of data. CG-EGA
software is available. Second, Wentholt et
al. stated that “poor accuracy rate is barely
noticeable in the final CG-EGA outcome,”
implying that this result of the CG-EGA is
incorrect. However, this result is not in-
correct because better combined (rate and
point) accuracy during hypoglycemia is
observed with the sensor, showing poorer
rate accuracy in this critical region. It is
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clinically apparent that when blood glu-
cose is �3.9 mmol/l point accuracy
should be given more emphasis than rate
accuracy. A strength of CG-EGA is its
ability to vary the input of either rate or
point accuracy to overall clinical accuracy
depending on blood glucose range. Third,
the results of CG-EGA vary with time in-
tervals. This is also an intuitive strength of
CG-EGA, which is designed to account
for increased noise associated with fre-
quent sampling. We advocated (2) adopt-
ing a uniform sampling protocol with
reference and/or sensor pairs taken every
10–15 min to standardize comparisons of
rate accuracy, which is a sampling scheme
based on physiological considerations of
possible glucose change rates. Fourth,
Wentholt et al. (1) questioned the appro-
priateness of the formulae to shift point
EGA based on interstitial time lag. How-
ever, the authors reported an average time
lag of �7 min in one of their sensors,
which is identical to that assumed for
CG-EGA, thus confirming that �7 min
is a reasonable average for blood-to-
interstitial diffusion delays. CG-EGA soft-
ware allows setting this parameter to any
value �7 min.

We are pleased that both the discus-
sion regarding CG-EGA and the analysis
of time series data have begun, and we
look forward to continuing this important
dialogue. However, we also recommend
careful consideration of basic statistical
assumptions when analyzing sensor-
generated glucose data; their inherent
temporal structure should be taken into
account.
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A Critical Appraisal
of the Continuous
Glucose–Error Grid
Analysis

Response to Clarke et al.

W e thank Clarke et al. (1) for their
thought-provoking response to
our article (2). With their com-

ments (1), they not only took on the im-
portant issue of how to optimally assess
the accuracy of continuous glucose mon-
itors (CGMs); they moved the discussion
one step further.

In our study (2), we did indeed take
the statistical liberty of deriving degrees of
freedom from all pooled data points—in
contrast to the proposal by Clarke et al.
(1) who compared the accuracy of two
sensors using one average mean absolute
deviation (MAD) value per patient. The
latter approach may be too rigid because
not all readings are interdependent. For
example, postprandial glucose sensor
readings at lunch and at night depend lit-
tle on each other, if at all. It is common
practice to derive degrees of freedom from
pooled data in the sensor field. In a pre-
vious study, Clarke et al. (3) compared
the accuracy of two CGMs in 16 type 1
diabetic patients by using the continuous
glucose– error grid analysis (CG-EGA).
The difference in pooled readings in the
hypoglycemic area that ended up in zones
A and B was reported to be highly signif-
icant between both sensors (88 vs. 62.8%,
respectively) (P � 0.0005). This level of
significance implies that degrees of free-
dom were derived from all data pairs in
the hypoglycemic range (250 mg/dl)
rather than from the actual amount of par-
ticipants (n � 16). Even with a strict sta-
tistical policy, the better MAD for the
microdialysis sensor in the hypoglycemic
area in our study (2) (12.0% for the 7-min
corrected microdialysis sensor vs. 25.2%
for the needle-type sensor, calculated per
patient [df � 12], P � 0.036 by Wilcox-

on’s signed-rank test) and the larger sen-
sitivity for hypoglycemia associated with
this sensor (75.0 [75 data pairs] vs. 55.9%
[56 data pairs], P � 0.018 by Pearson’s
�2, with 16 of 16 and 12 of 15 hypogly-
cemic episodes detected by the micro-
dia lys is and needle- type sensor ,
respectively, P � 0.06 by Pearson’s �2)
contrasted with the CG-EGA that noted
no difference (51.5 vs. 60.0% accurate
readings and benign errors in the hypo-
glycemic range [df � 42], P � 0.841 by
Pearson’s �2 for the microdialysis and the
needle-type sensor, respectively). There-
fore, even with a mild statistical approach
(i.e., deriving degrees of freedom from 43
data pairs rather than 13), CG-EGA could
not confirm the different accuracy of the
sensors in the hypoglycemic range.

As to the order of CGS data points, the
sensor’s ability to follow the rate and di-
rection of glucose changes is nicely re-
flected by the MAD: A sequence of
glucose values that has been incorrectly
reported by a given sensor (e.g., 903 82
3 72 mg/dl instead of 72 3 82 3 90
mg/dl) will result in a worsened MAD.

In reaction to the comment by Clark
et al. (1) in regards to time consumption,
we were happy to learn that the software
for CG-EGA has become available. Nev-
ertheless, the laborious collection of fre-
quent blood samples on fixed intervals (in
addition to the construction of a rate, a
point accuracy plot, and, finally, a com-
bining matrix) will remain inevitable
drawbacks of CG-EGA.

With the attempt to standardize the
length of the time intervals, Clark et al.
clearly tried to improve the CG-EGA
methodology. Nevertheless, a time inter-
val that can vary by 5 min (10–15 min)
still leaves the door open for interobserver
variability.

As to our finding in a previous study
(4) of a 7-min delay that was inherent to
the microdialysis instrument itself and
not seen in the needle-type sensor, Clarke
et al. (1) alluded to a (much-disputed)
constant 7-min physiological delay re-
sulting from the relationship between in-
terstitial and blood glucose. This
physiological delay has been reported to
be anywhere between 0 and 30 min, so
the 7-min assumption made for the CG-
EGA is questionable. Fortunately, Clarke
et al. have now implemented into the soft-
ware the possibility of setting the delay
�7 min.

Currently, the optimal way to assess a
CGM seems to be the combination of
MAD calculated per glucose range, com-
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