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V an den Berghe et al. (1) reported a
significant reduction in mortality
with normoglycemia (target value

80–110 mg/dl) in patients whose medical
intensive care unit (ICU) stay was �72 h
and reduced morbidity in all patients, re-
gardless of the duration of ICU stay. Al-
though severe hypoglycemia did not
occur in the Van den Berghe et al. study,
18.7% of patients in the intensive treat-
ment group compared with 3.1% of those
who received conventional therapy did
experience hypoglycemia (defined as glu-
cose �40 mg/dl), albeit with no adverse
consequences reported. However, altered
consciousness is common in the ICU, and
even severe hypoglycemia may be unrec-
ognized. Other studies (2,3) examining
intensive insulin protocols in various in-
patient settings have suggested benefits in
clinical outcomes associated with im-
proved glycemic control. In a mixed ICU
population, Van den Berghe et al. (2) pre-
viously demonstrated reduced morbidity
and mortality with three- to fourfold less
hypoglycemia than the medical ICU pop-
ulation (2). Thus, careful assessment of
glucose measurement and how it may im-
pact the targets selected in the hospital are
critical safety issues in intensive manage-
ment of hyperglycemia. As a result of in-
creasing evidence that tight glycemic
control is beneficial in the management of
inpatients with diabetes, the American
Diabetes Association (ADA) currently
recommends a glucose target “as close to
110 mg/dl as possible and generally

�180 mg/dl” for critically ill patients (4).
The American Association of Clinical
Endocrinologists recommends the “upper
limits for glycemic targets” of 110 mg/dl
in critically ill patients (5).

In practice, it may be difficult to ob-
tain the level of glycemic control (average
glucose 111 mg/dl in the intensively man-
aged group) achieved by Van den Berghe
et al. Though a wider range of glucose
values has been targeted, rarely have
mean glucose values between 80 and 110
mg/dl been achieved, particularly in those
studies involving patients with diabetes
(6). In many hospitals, samples for labo-
ratory glucose determination are obtained
from either venous or arterial sites to de-
termine serum or plasma glucose. These
laboratory values are generally obtained
less frequently than bedside capillary glu-
cose values using point-of-care (POC)
systems that report whole-blood glucose
or plasma glucose values. In the Van den
Berghe et al. study, a HemoCue B glucose
analyzer was used to report the values of
arterial whole-blood glucose.

Variability is introduced into the re-
porting of glucose values because of
patient variables and also because of dif-
ferences between assays (Table 1). Patient
variables may include issues of physiol-
ogy and interfering substances. These
variables may be of importance when
there are unexpected laboratory results.
Among institutional variables, there are
differences between assay characteristics,
performance of commercial products, the

source of the sample, and specimen ma-
trix (i.e., plasma versus whole blood).
This study will review assay principles,
patient variables, and systematic variables
and then encourage clinicians to carefully
consider how standard recommendations
regarding glycemic targets, particularly in
the ICU, should be implemented in their
individual health care facilities.

ASSAY PRINCIPLES — In this re-
view, we will signify reference laboratory
methods with the term “central laboratory
method.” “POC” refers to hand-held de-
vices or portable ward-based analyzers.
We recognize that some of these devices are
also used in the ambulatory setting. “Plasma
correlated” refers to glucose concentrations
measured in samples of whole blood but
are converted to values that would be ex-
pected of plasma measurements.
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Table 1—Confounding variables in glucose
measurement

Methodology
affected*

Variable GO GD

Whole blood 2 2
Arterial 1 1
Capillary 1 1
Postprandial state 1 1
Hematocrit

Anemia 1 1
Polycythemia 2 2

Oxygen concentration
Hypoxia 1 —
Oxygen therapy 2 —

pH (6.8–7.55) — —
Low pH �/2 —
High pH �/1 —

Hypothermia 1 2/1
Hypotension 1 1/2
Drugs

Ascorbic acid 2 1/�
Acetaminophen 2 1
Dopamine — 2
Icodextrin — 1
Mannitol 1 —

*Change relative to venous plasma measured at cen-
tral laboratory. GO, glucose oxidase.
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Enzymatic reaction
Glucose measurements are based on one
of three enzymes: glucose oxidase, glu-
cose-1-dehydrogenase (GD), or hexoki-
nase (7). For POC devices, glucose
oxidase is the classic methodology. Glu-
cose oxidase requires oxygen and water
and is therefore susceptible to extremes of
hydration or oxygenation. Glucose oxi-
dase– catalyzed reactions result in the
production of gluconic acid and hydro-
gen peroxide, the latter of which is de-
tected by various means. GD, like glucose
oxidase, is specific for �-D-glucose but
may have less interference than glucose
oxidase–based techniques. Hexokinase,
the basis for many central laboratory
methods, phosphorylates D-glucose to
form glucose-6-phosphate, which is then
oxidized with concurrent reduction of
NAD to NADH.

Detection method
The enzymatic reaction is either colori-
metrically or amperometrically detected.
Colorimetric detection is available for
techniques using glucose oxidase, in
which H2O2 reacts with various hydrogen
donors to produce a color change that is
proportional to the glucose concentra-
tion. Most POC colorimetric reactions are
measured using a reflectance photometer
that converts the reflected light to an elec-
tronic signal for digital display. Ampero-
metric detection is available for either
glucose oxidase– or GD-based POC de-
vices, in which the electrical current pro-
duced from the reaction is directly
mearsured. In the case of hexokinase,
NADH reacts with the dye to produce the
color change.

POC techniques
POC devices typically use test strips (bio-
sensors) with a porous layer that separates
blood cells from the enzyme-impregnated
reagent layer (7). In general, biosensor
technology is less precise and less accu-
rate than the wet chemistry methods used
in most central laboratory methods.
Blood gas analyzers are often used at the
bedside and generally use wet chemistry
techniques that more closely approximate
central laboratory methods (8).

A notable exception to this biosensor
technology is the HemoCue B analyzer
used in the Van den Berghe et al. studies,
a POC method that measures glucose via
GD using a disposable microcuvette in-
stead of a traditional biosensor (9). The
HemoCue B Glucose Analyzer (HemoCue
AB, Angelholm, Sweden) measures glu-

cose via absorbance of reaction products
at unique wavelengths. The method
allows colorimetric measurement from a
whole-blood sample.

Interstitial fluid glucose monitoring
Other investigators have focused on con-
tinuous interstitial fluid glucose measure-
ments in order to simplify the need for
frequent capillary sampling (10). How-
ever, the measurement of glucose in inter-
stitial fluid is complex and affected by
tissue perfusion, temperature, and local
humoral factors (11). A detailed discus-
sion of this technology is beyond the
scope of this review.

PATIENT VARIABLES
WITHIN A POPULATION

Patient factors
Hypotension. In the ICU, multiple vari-
ables that may affect bedside glucose mea-
surements may be present all at once. In
particular, hypotension may result in a re-
duction of perfusion and an increase in
glucose utilization, potentially obscuring
the true result for capillary whole-blood
samples. A GD-based POC device dem-
onstrated that in 31 hypotensive patients
(systolic blood pressure �90 mg/dl), cap-
illary whole-blood values differed from
the central laboratory venous plasma glu-
cose to a greater extent than those of nor-
mal control subjects (�61.7 � 12.4 vs.
�14.1 � 2.0 mg/dl, P � 0.001) (12). Six-
ty-four percent of values fell outside the
acceptable range of 20% compared with
10% of the control group. On the other
hand, venous samples measured with the
POC meter correlated well with the cen-
tral laboratory method. A glucose oxidase
methodology fared no better in 38 pa-
tients with shock (13). Capillary whole-
blood glucose was significantly higher
than the venous plasma glucose deter-
mined by the central laboratory method
(mean difference 77 mg/dl, P � 0.04), but
venous whole-blood glucose on the POC
device was no different (13). In addition,
31.6% of the capillary glucose measure-
ments were outside of the allowable 20%
variance. Other studies (8,14) that did not
show an effect were limited by sample
size. More recently, Kulkarni et al. (15)
reported that in cases of hypoperfusion,
the accuracy of agreement between an ar-
terial blood gas POC method and GD-
based POC capillary glucose readings
may still result in undetected hypoglyce-
mia when a lower limit of 80 mg/dl is
targeted. This occurs despite what would

otherwise be considered low bias (4.0 mg/
dl) and imprecision (16.2 mg/dl).
Hematocrit. In general, increases in he-
matocrit are known to decrease glucose
measurements and vice versa. Although
manufacturers set acceptable testing lim-
its for hematocrit, POC devices do not
exclude samples by hematocrit, and he-
matocrit is not always known at the time
of testing. Proposed mechanisms include
mechanical impedance of plasma diffu-
sion into the reagent layer of the strip at
higher hematocrit and increased relative
plasma volume at higher viscosity, result-
ing in slower diffusion of glucose (16).
The net result would potentially mask hy-
poglycemia in patients with anemia and
underestimate glucose in patients with
polycythemia. A POC glucose meter that
measures and automatically corrects for
hematocrit was recently described and
had less error than other devices (17).

An in vitro study examined the effects
of hematocrit on six different POC glu-
cose meters (18). At low hematocrit, most
POC systems yielded a higher glucose re-
sult (5–15%) relative to venous plasma,
and the opposite was true at higher he-
matocrit (�10 to 30%), with the excep-
tion of amperometric glucose oxidase
methods, which yielded lower values at
all three hematocrit levels.

Differences have been observed in
clinical studies as well (19). Surgical pa-
tients may be most at risk for errors in
glucose measurement as a result of fluc-
tuations in hematocrit (20–22).

The HemoCue system, which deter-
mines glucose concentration on lysed
whole blood instead of measurement
based on membrane separation of plasma
from red cells, does not show significant
hematocrit dependence (23). However,
this GD-based POC system has been
shown to falsely produce decreased glu-
cose values in patients with methemoglo-
bin values �10% (24).
Oxygenation. High oxygen tension, i.e.,
pO2 �100 mmHg, can falsely lower glu-
cose readings on some glucose oxidase–
based POC instruments, particularly in
patients on oxygen therapy. Oxygen lev-
els as high as 400 mmHg may be seen
with surgical patients, particularly those
undergoing cardiopulmonary bypass
(25). Conversely, higher altitudes overes-
timate glucose readings by 15% with glu-
cose oxidase methods (26). As might be
expected, the effect is largest in arterial
blood and smallest in venous blood, but
there is little data on the effect of pO2 on
capillary whole blood (27).
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Tang et al. (28) evaluated six POC
glucose meter systems with respect to ef-
fects of oxygenation using venous whole
blood and venous plasma. Measurements
at pO2 �100 mmHg were outside of error
tolerances (15 mg/dl for glucose �100
mg/dl or 15% for glucose �100 mg/dl)
14.3–31.6% of the time. Overall, lower
oxygen tension (40 mmHg) had a negligi-
ble effect. An older study reported errors
at lower pO2 (29).

Kurahashi et al. (30) found that arte-
rial whole blood from surgical patients
using an amperometric glucose oxidase–
based POC meter underestimated glucose
by 39 mg/dl. Similar results were reported
elsewhere with some glucose oxidase–
but not GD-based POC devices in mixed
hospital patients (19,31).
pH. As with any enzymatic reaction,
changes in pH may affect the performance
of the POC meter. This has not been
shown to be a major source of error at a
pH range of 6.97–7.84 (32) or at lower
pH (6.8–7.55) (31). However, Kilpatrick
et al. (29) found significant deviation in
glucose measurement at pH �6.95 and
�7.85, with �15% from the central lab-
oratory whole-blood method using an
older POC method. Nonetheless, this
may be cause for concern in cases of se-
vere acidosis (e.g., diabetic ketoacidosis),
or where other factors may contribute,
leading to clinically significant interpreta-
tion errors.
Temperature. Some data suggest that
cold temperatures may produce discrep-
ant results (26,33). Active warming may
improve measurements; conversely, the
effects of fever are unknown.

Interfering substances
The majority of substances that interfere
with glucose oxidase–based POC devices
do so at the peroxide reduction detection
step and not at the level of the enzyme
itself (which is very specific for �-D-
glucose). Table 1 lists some examples. In
the case of the photometric strips, reduc-
ing agents such as acetaminophen and
ascorbic acid may consume peroxide and
diminish its reaction with the dye, thus
resulting in lower readings (34). Newer
amperometric POC devices have at-
tempted to compensate for this by intro-
ducing a third electrode that reduces
background current (34). Devices that
use GD as the catalyst tend to have less
interference but may occasionally falsely
increase POC readings through direct ox-
idation at the electrode (34). Blood gas
analyzers may also give more accurate

POC results in patients with possible drug
interferences (35).
Drugs. Tang et al. (34) examined the ef-
fects of therapeutic and toxic concentra-
tions of 30 different drugs on glucose
readings from six different POC glucose
meters. In this study, a comparatively low
error threshold of �6 mg/dl was used.
Interferences were found for ascorbic
acid, acetaminophen, dopamine, and
mannitol. At high doses, ascorbic acid in-
creased GD-based POC readings but de-
creased those that used glucose oxidase
(34). False low glucose readings were re-
ported with other glucose oxidase–based
POC devices (36,37) but not with testing
based on hexokinase or other GD-based
methods (36).

Acetaminophen increased POC glu-
cose readings with GD meters but de-
creased readings with some, but not all,
glucose oxidase–based meters at thera-
peutic drug levels (34). This may be
particularly problematic in overdose pa-
tients, in whom hypoglycemia may de-
velop in the presence of hepatic failure.
Other reports (36,38) had similar find-
ings, and there may be a reduction in glu-
cose measurements in patients given only
1.5–2 g acetaminophen (39).

Dopamine increased glucose values
on GD-based POC systems, primarily at
high drug concentrations (34,40). Manni-
tol increased glucose oxidase–based POC
readings, possibly through detection by
the analyzer or by a nonspecific osmotic
effect (34,35). Finally, interferences with
salicylates (36) and nitroprusside (41)
have been described in past literature but
not more recently (34).
Other substances. Most GD-based POC
devices display large overestimations of
glucose in patients undergoing peritoneal
dialysis using icodextrin as an osmotic
agent (42–44). Icodextrin is metabolized
to maltose and is indistinguishable from
glucose on GD-based POC devices. A
similar mechanism of interference
prompted U.S. Food and Drug Adminis-
tration warnings for intravenous im-
munoglobulin solutions (45). Skin
preparations have been reported to inter-
fere (46). Other patient factors, such as
bilirubin (9,47), triglycerides (9,47), and
paraproteinemias (48 –51), may also
cause “pseudohypoglycemia.”

SOURCES OF SYSTEMATIC
DIFFERENCE BETWEEN
INSTITUTIONS — When the method
of measurement of circulating glucose dif-
fers between institutions, the absolute

values and variability of glucose measure-
ments will systematically differ. These
systematic differences have implications
for the appropriate glucose targets and al-
gorithms of care developed on the basis
of demonstrated risks and benefits of
interventions in published studies; ap-
propriate targets in one site with one
methodology may not be generalizeable.

Standards for comparison
Much of the difficulty with assessing the
performance of POC glucose measuring
devices lies in the lack of consensus
among professional and regulatory
groups regarding allowable error (52–
55). As a result, published studies are
often difficult to directly compare. Of
these, the ADA guidelines established in
1996 are the most stringent, calling for
total error (bias plus imprecision) of
�10% for current devices and �5% for
future devices (55). Error grids have been
used in an attempt to predict clinically
important errors; however, they are com-
paratively inaccurate (56).

Standards do not specify differences
for POC devices that are intended for hos-
pital use versus those meters intended for
home use. Despite a strong correlation be-
tween capillary whole-blood glucose and
central laboratory methods in an ICU
population as a whole, bedside POC de-
vices may be unreliable for use in the in-
dividual patient in the ICU (15). A
simulation modeling study showed that
for glucose meters that achieve both coef-
ficient of variation (CV) and bias �5–6%
(total �14%), major errors in insulin dos-
ing are rare, but up to 23% of measure-
ments would result in small errors (57).
Therefore, it would seem that the ADA
guidelines should serve as the minimum
proficiency standard in the hospital.

Performance of POC devices
Over the past decade, POC devices for
measuring glucose have become more
user friendly, resulting in greater accuracy
(58). In hospital patients, recent studies
report 91–100% accuracy of various POC
devices (30,31). Although the accuracy
may have significantly improved in pub-
lished studies under controlled condi-
tions, this may not be true in the typical
clinical setting, particularly among hospi-
talized patients. The latest College of
American Pathologists (CAP) proficiency
results demonstrate large CVs for mean
glucose values obtained from all POC in-
struments at all institutions combined
(59). At glucose levels of 120–170 mg/dl
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(mean 143.8 mg/dl), the overall inter-
laboratory CV is 15.1%; in the hypogly-
cemic range, the CV is 31.9% (26.3–66.6
mg/dl, mean 45.7 mg/dl). This variability
is at least in part due to differences be-
tween instruments because CVs for indi-
vidual instruments are lower, ranging
from 3.9 to 10.9% in the mid-100 range
and 6.2 to 13.3% in the hypoglycemic
range. Depending on the type of device
used, the mean glucose measurement for
a particular unknown test sample re-
ported by an institution varies by �30%
at glucose levels �150 mg/dl and by 60%
in the hypoglycemic range. In compari-
son, interlaboratory CVs for various cen-
tral laboratory methods are uniformly
�5%. The variability among POC devices
may be due to analytical differences in in-
struments or due to user interfaces that
are more susceptible to operator error.
For an institution to be considered profi-
cient, results should deviate by no more
than 12 mg/dl or 20% from the peer
group mean, but this may be inadequate
as institutions aim to establish tighter gly-
cemic control using recent standardized
guidelines of inpatient management.

Operator error
Unfortunately, operator error is incom-
pletely captured with CAP data, as well as
with studies that evaluate POC devices
based on aqueous controls, venous sam-
ples, or prepared blood samples (60,61).
However, the potential for operator error
still exists and remains the largest source
of error (up to 91–97%) overall (46,62–
64). Sources of error such as differences
between lots of test strips (up to 14.5 mg/
dl) in some (28,65) but not all (19,31)
studies may be unrecognized. It is advis-
able to regularly test split-sample controls
referenced to the central laboratory
method to detect both performer error
and instrument accuracy (62). Quality
control may be particularly challenging in
ICU and surgical patients (62,63). Pro-
grams that use training, quality control
procedures combined with national inter-
hospital proficiency surveys, and newer
technology have produced significant im-
provements in precision (62,66,67).

Source of sample
Differences in measurements among
blood sources (i.e., arterial, capillary, or
venous) may be attributable to variations
in glucose extraction by tissues, perfu-
sion, oxygenation, pH, feeding, and tem-
perature (see PATIENT FACTORS above), as
well as theoretically neurovascular func-

tion (68). It has been suggested that on
average, arterial glucose concentrations at
normal pO2 are 5 mg/dl higher than cap-
illary blood and �10 mg/dl greater than
venous concentrations (69). In recent
studies, assessments are limited due to a
lack of data comparing all sources of
blood, particularly arterial versus venous
blood.
Arterial samples compared with capil-
lary samples. Some ICU studies using
arterial samples measured with the POC
device show acceptable agreement with
capillary blood (70,71). A recent abstract
found that with newer POC devices in
ICU patients, arterial samples had greater
accuracy than capillary whole-blood
compared with the central whole-blood
method (72). However, an older GD-
based POC device reported no greater ac-
curacy with arterial whole blood than
with capillary whole blood in 50 post-
cardiothoracic surgery patients, resulting
in potential errors of insulin dosing in 31
of 50 patients (20). Using a plasma-
correlated glucose oxidase method in 30
critically ill patients, arterial measure-
ments were 8.8 � 17.8% higher, and cap-
illary measurements were 3.6 � 15%
higher on the POC meter than on the ar-
terial plasma central laboratory method
(14). On error grid analysis, only 88% of
arterial and 73% of capillary readings fell
within target range using the POC meter.
Arterial blood gas analysis performed bet-
ter than the POC device (14).
Venous samples compared with capil-
lary samples. A POC GD device in 31
patients with diabetes reported venous
whole-blood measurements exceeding
capillary whole blood by 9.6% (72). In
mixed hospital patients (31) and hypo-
tensive patients (12,13), venous whole
blood measured on POC devices was
found to be superior to capillary whole
blood on the same device, with the excep-
tion of one study (73). However, in a re-
cent study (74) using a POC GD-based
method, glucose measured from the same
site showed better agreement with the
central laboratory (POC venous whole
blood vs. central laboratory venous
plasma, R2 � 0.83) than glucose mea-
sured from different sites (POC capillary
whole blood vs. central laboratory venous
plasma, R2 � 0.55). The authors argue
that anatomical site is more important in
determining glucose values than speci-
men matrix.
Postprandial state. Differences between
sources of blood may be amplified in the
postprandial state (72,75–77). During

periods of fasting, capillary glucose may
be only slightly (2–5 mg/dl) higher than
venous plasma glucose. After a glucose
load, however, capillary glucose values
may be 20 –25% higher than venous
plasma values (75). Conversely, hyper-
glycemia may be misdiagnosed in blood
samples drawn from intravenous lines
carrying dextrose.

Differences between plasma and
whole blood (specimen matrix)
The difference between plasma and whole
blood is the most important variable that
clinicians must consider when setting tar-
gets for inpatient glucose measurement.
These differences are a consequence of
variables in specimen matrix, including
water content, lipid and protein concen-
trations, and cellular elements (see PATIENT

FACTORS). Although the glucose concentra-
tion in the water that makes up plasma is
equal to that of erythrocytes, plasma has
greater water content than erythrocytes
and therefore exhibits higher glucose lev-
els than whole blood (78). The World
Health Organization uses a conversion
factor of 1.12 that has been mathemati-
cally derived assuming a hematocrit of
45% and a red cell–to–plasma water ratio
of �0.80 (79). The conversion factor is
less appropriate in patients with severe
perturbations in hydration, osmolarity, or
hemoglobin. In general, manufacturer
specifications describe limitations in
methodologies under these conditions,
but the clinician must be aware that POC
devices are not capable of excluding such
samples. Furthermore, based on simple
regression analyses, the conversion be-
tween plasma and whole blood is depen-
dent on the glucose level itself and may
vary considerably at extremes of glucose
measurement (76,80). Whole blood may
be tested with the POC meter but con-
verted to equivalent plasma glucose val-
ues obtained from donor blood samples
supplemented with glucose; therefore,
measurements of plasma samples are in-
accurate on such devices (81). On the
other hand, meters may attempt to ap-
proximate plasma glucose directly via ul-
trafiltration of erythrocytes from samples
with the use of a specialized porous mem-
brane (74). Finally, some POC devices
have the capability of reporting values as
whole-blood or plasma equivalents, and
this is not always specified in studies (82).
Arterial whole blood compared with ar-
terial plasma. Limited data exists for
this important comparison. The conver-
sion of arterial whole-blood glucose to
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plasma-correlated results may not be
valid using POC measurements in cardio-
thoracic surgery patients (20). A glucose
oxidase–based device in 10 ICU patients
found only a small difference (0.76 mg/
dl) between POC arterial whole-blood
values compared with the arterial plasma
central laboratory method, but wide CIs
negate this finding (14).
Venous whole blood compared with ve-
nous plasma. Using four amperometric
and two colorimetric glucose oxidase–
based devices in 31 patients with diabe-
tes, Kuwa et al. (72) found that venous
whole blood measured with the central
laboratory method was 11.3% less than
venous plasma measured with the central
laboratory method. A 13% difference was
reported in 126 healthy volunteers (81).
Capillary whole blood compared with
venous plasma. In recent studies, vari-
able results from POC devices are in part
attributable to manufacturers’ efforts to
convert results of measurements made on
samples of whole blood to plasma-
correlated values (72). In the Kuwa et al.
(72) study, the mean capillary whole-
blood glucose measurements from several
POC devices combined was actually 3.2%
higher than venous plasma glucose deter-
mined by the central laboratory method
(contrary to the expected relationship
that would be created by the difference in
matrix but consistent with the difference
that would be created by site of sam-
pling). Other studies using plasma-
correlated POC devices in ICU (83) and
mixed hospital (80) patients also showed
similar results. Therefore, the site of sam-
pling may outweigh the importance of
matrix in determining systematic differ-
ences. Conversely, the HemoCue B glu-
cose meter (which reports whole-blood
glucose) produced results that were con-
trary to expectation based on site of sam-
p l ing but were cons i s t en t wi th
expectation based on the matrix (77).

Ramifications for the clinician
Unfortunately, studies that directly com-
pare plasma and whole-blood glucose
measurements from all sources (arterial,
capillary, and venous) are lacking. How-
ever, it should be assumed that under
physiologic conditions, glucose measure-
ment determined from arterial sites gen-
erally exceeds that of capillary sites,
which, in turn, is greater than venous
sites. Glucose from plasma generally ex-
ceeds that of whole blood. In 2001, the
International Federation of Clinical
Chemistry recommended that glucose

meters be calibrated to plasma glucose,
using a constant factor of 1.11 (78). In
fact, most, but not all, meters today are
calibrated to report plasma glucose val-
ues. A notable exception is the HemoCue
B glucose analyzer used in the Van den
Berghe et al. studies, which reports
whole-blood values. Based on CAP data,
most hospitals do use plasma-correlated
methods. Therefore, it is imperative that
hospitals using these devices set targets
that reflect plasma glucose rather than
whole-blood glucose. Failure to do so
may result in more significant hypoglyce-
mia than was reported in the Van den
Berghe et al. data.

CONCLUSIONS — Manufacturers
have improved the accuracy of glucose
measurement with many (84) but not all
(85) newer generation devices, mainly
through improvements in user interfaces
that reduce operator error. However, for
individuals in the hospital, variables that
are unique to the patient must be consid-
ered, particularly in situations where dis-
crepancies arise between the bedside
measurement and the clinical scenario.
Nowhere else is there greater potential for
multiple confounding factors to be
present at once than in the hospital set-
ting. Furthermore, the accuracy of POC
devices may not be sufficient to achieve
tight glycemic control in hospital pa-
tients, and studies are not standardized in
methods of glucose measurement, despite
well-characterized differences in speci-
men source and matrix. Unfortunately,
the unacceptable time delay imposed by
central reference laboratory measure-
ments mandates the use of POC in the
ICU. Accurate, well-validated blood sen-
sors, particularly those that provide con-
tinuous readings, are sorely needed. In
the meantime, providers should use cau-
tion when selecting patients for monitor-
ing glucose with the use of bedside
monitors. If the whole-blood glucose tar-
gets of the Van den Berghe et al. study
(80–110 mg/dl) are to be applied to ve-
nous plasma-correlated values used in
many hospitals, a more appropriate target
range might be 90–120 mg/dl. Targets
should be individualized in each institu-
tion and in each setting based on the
methodology of glucose testing and the
needs of a given patient population to re-
flect, at a minimum, the 1.11 whole
blood–to–plasma glucose conversion fac-
tor recommended by the International
Federation of Clinical Chemistry.
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