
Diabetes and Advanced Glycoxidation
End Products
AMY G. HUEBSCHMANN, MD

1

JUDITH G. REGENSTEINER, PHD
1,2

HELEN VLASSARA, MD
3

JANE E.B. REUSCH, MD
4,5

The morbidity caused by diabetes has
traditionally been classified into
macro- and microvascular compli-

cations. Although macrovascular compli-
cations have received greater attention,
microvascular complications are unique
to diabetes, and hyperglycemia contrib-
utes to their development. Numerous hy-
perglycemia-related mechanisms are
hypothesized to mediate micro- and ma-
crovascular complications. These include
the aldose reductase–mediated polyol
pathway, the hexosamine pathway, pro-
tein kinase C activation, generation of re-
active oxidant stress, poly(ADP ribose)
polymerase (PARP) activation, and accu-
mulation of advanced glycoxidation (also
termed advanced glycation or glycosyla-
tion) end products (AGEs) (1,2). AGEs
are particularly important, as they form
intra- and extracellularly (3,4), are im-
ported from food (5–9) and tobacco
smoke (10), and can be deleterious, inde-
pendent of hyperglycemia (9,11–16).
They are implicated in the development
of macrovascular disease (13,14,17–20),
nephropathy (21–30), neuropathy
(31,32), and retinopathy (21,33–38). The
remediation of AGEs has also been shown
to improve diabetic micro- and macrovas-
cular disease (39–44). AGEs thus offer an
important target for prevention of dia-
betic morbidity. The focus of this review
will be on the origin of AGEs, their mech-
anism of injury, and therapeutic options
under development.

FORMATION OF AGEs — AGEs
are nonenzymatically formed by reducing
glucose, lipids, and/or certain amino ac-
ids on proteins, lipids, and nucleic acids
(Fig. 1A). For example, glucose and a free
amino group form reversible intermedi-
ates of a Schiff base and an Amadori prod-
uct (e.g., HbA1c) before a series of
reactions that irreversibly generate an
AGE (45,46). This process was first iden-
tified in 1912 and is known as the Mail-
lard or “browning” reaction due to the
associated yellow-brown color change
(45,47,48). When formed endogenously,
this reaction is driven forward by hyper-
glycemia (4,49).

Alternate mechanisms of AGE forma-
tion include the “carbonyl stress” path-
way, where oxidation of sugars and/or
lipids create dicarbonyl intermediate
compounds that use highly reactive car-
bonyl groups to bind amino acids and
form AGEs (50,51) (Fig. 1). Non–
glucose-dependent AGE pathways in-
volve neutrophils, monocytes, and
macrophages, which, upon inflammatory
stimulation, produce myeloperoxidase
and NADPH oxidase enzymes that induce
AGE formation by oxidizing amino acids
(52,53). Once bound by AGEs, receptors
for AGE (RAGE) associated with reactive
oxygen species (ROS) generation pro-
mote more AGEs via the NADPH oxidase
pathway (54,55). Monocytes, macro-
phages, and dendritic cells also secrete
the nuclear protein amphoterin (also

termed high-mobility group box 1
[HMGB1]) (56 –58), and HMGB1 can
bind and activate RAGE and thus induce
further inflammation (59–61). Another
mechanism of AGE formation is the al-
dose reductase–mediated polyol path-
way. Glucose entering the polyol pathway
may directly form AGEs via 3-deoxyglu-
cosone AGE intermediates, but this reac-
tion also causes depletion of NADPH and
glutathione, and the resultant oxidative
stress indirectly increases formation of
AGEs (62).

Given their varied mechanisms of for-
mation, it is not surprising that AGEs are
a heterogeneous group of compounds.
Many AGEs fluoresce under ultraviolet
light, and some are capable of intra- and
intermolecular cross-linking, but not all
share those properties (54,63). Once
formed, certain cross-linking AGEs form
stable cross-link structures with other
proteins in the body, including structural
proteins (e.g., collagen), intracellular pro-
teins, membrane phospholipids, DNA,
and lipoproteins (e.g., LDL cholesterol),
and also bind to AGE receptors (64–67).

ENDOGENOUS SOURCES
OF AGEs IN DIABETIC
SUBJECTS — People with diabetes
have higher levels of AGEs than nondia-
betic subjects because hyperglycemia and
oxidative stress both contribute to their
accumulation. Studies have shown 20–
30% higher AGE levels in people with un-
complicated diabetes (68,69) and 40 –
100% higher levels in subjects with type 2
diabetes complicated by coronary artery
disease or microalbuminuria (17,70).
Multivariate analyses in subjects with di-
abetes have identified renal function, age,
urinary albumin-to-creatinine ratio, sys-
tolic blood pressure, and anemia as inde-
pendent predictors of AGE levels (70,71).
Renal impairment decreases clearance of
AGEs in both diabetic and nondiabetic
populations (51). Subjects with end-stage
renal disease have shown significant ele-
vations in circulating AGEs compared
with healthy control subjects (by 5- to
100-fold) (46,72,73). Renal transplant
has been shown to normalize AGE levels
in subjects with end-stage renal disease
(n � 2) (73). These observations indicate
that AGE turnover is more dynamic than
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Figure 1—A: Mechanisms of AGE formation.
MP, myeloperoxidase. B: AGE therapeutic agents’
mechanisms of action. ACE-I, ACE inhibitor;
ALT-711, alagebrium chloride; diet, low-AGE diet;
EP, epalrestat; LR-90, 4-4�-(2 chlorophenylureido
phenoxyisobutyric acid); LZ, lysozyme; MF, met-
formin; OPB, OPB 9195; PYR, pyridoxamine;
sRAGE, soluble RAGE; SU, sulfonylurea; TZD,
thiazolidinedione.
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previously appreciated and that endoge-
nous AGEs are determined by AGE pro-
duction (endogenous glycemia and
oxidative stress) as well as renal AGE
excretion.

EXOGENOUS SOURCES OF
AGEs: DIETARY
GLYCOTOXINS — As ind i c a t ed
above, hyperglycemia, renal insuffi-
ciency, and aging are prooxidant states
that contribute to the endogenous levels
of AGEs. Importantly, diet is an underap-
preciated source of AGE toxicity (9). Di-
etary AGEs include reactive AGE
precursors (e.g., 1- or 3-deoxyglucosone,
methylglyoxal, and pentosidine) and
non–cross-linking AGEs, such as pyrra-
line, Nε�carboxymethyllysine (CML),
carboxyethyllysine, and their derivatives
(5,63,74 –76). Diet-derived AGEs are
similar to native AGEs with respect to
prooxidant and proinflammatory proper-
ties (9,11). Amino lipids from dietary fats
(e.g., 4-hydroxynonenal, CML, and their
analogs) are also major targets for lipid
peroxidation (77,78). Thus, ingested gly-
coxidation and lipoxidation products can
accelerate free radical generation and ox-
idative and carbonyl stress (79). Autoxi-
dation of glucose is also accompanied by
generation of ROS such as superoxide
radicals (80).

In human subjects with or without
diabetes, a single high-AGE meal leads to
significant elevations in serum AGEs
compared with a normal meal (6). An es-
timated 10% of AGEs ingested are ab-
sorbed into the body’s circulation, and
two-thirds of those absorbed are retained
(6). The intestinal epithelium absorbs
early derivatives (i.e., Amadori products)
as well as intermediate and late AGEs
(81). AGE-modified mono-, di-, or tri-
peptides can be readily transported across
the intestinal wall, carrying one or more
AGE. The nature of most AGE derivatives
involved in this traffic has not been deter-
mined, but a number of these have been
reported (5,81). The presence in most
foods of two well-characterized, structur-
ally distinct AGE derivatives (i.e., methyl-
glyoxal and CML) has enabled studies in
animals and humans that have confirmed
their substantial toxic role in multiple tar-
get systems (9,11–15,22,82–85).

AGE content in �250 human foods
has been quantified for comparative pur-
poses (5). High-temperature cooking
(e.g., broiling, grilling, frying, roasting)
significantly increases AGE levels (5),
while cooking foods under lower temper-

ature, for shorter times, and with higher
water content (e.g., boiling, steaming) al-
lows smaller AGE increases (5,8). Both
protein- and lipid-linked AGE levels are
highest in meat and animal food products
(based on estimates of CML by enzyme-
linked immunosorbent assay) (5). High
dietary AGE intake is associated with
atherosclerosis (13,14), nephropathy
(15,22), and impaired wound healing
(82) in diabetic animal models. For in-
stance, while diabetic animals fed stan-
dard diets developed expected vascular or
renal tissue injury, age-matched diabetic
cohorts fed a low-AGE diet remained
largely free of pathology despite untreated
chronic hyperglycemia (15). More inter-
estingly, reduced intake of dietary AGE is
shown to prevent type 1 and type 2 dia-
betes and insulin resistance in experimen-
tal settings (83,84). In diabetic individuals,
increased dietary AGE intake has also been
shown to be associated with high serum
AGE, increased inflammatory markers such
as C-reactive protein (74), and impaired en-
dothelial function (86). Thus, diet is a sig-
nificant source of AGEs that may contribute
to the inflammatory state of diabetes.

AGE receptors
It is important to understand the relation-
ship of AGEs to their receptors because as
a group, these receptors occupy both pos-
itive and negative roles in the actions and
fate of AGEs. In their positive role, some
receptors normally aid in clearing AGEs
from the circulation and may help to mit-
igate the prooxidant effects of AGEs. In
contrast, RAGE and other receptors ap-
pear to activate a stress response leading
to inflammation and cellular dysfunction.
The complexities of this system are still
not fully understood, but this review will
elaborate on what is currently known.

Beneficial AGE receptors that en-
hance clearance of AGEs include AGE-R1
and lysozyme (87–92). AGE-R1 is active
in AGE-specific ligand binding and deg-
radation (88). Low expression of AGE-R1
in the kidneys of nonobese diabetic mice
was associated with high tissue AGE lev-
els and with kidney disease. Also, human
circulating mononuclear cells from dia-
betic subjects with severe diabetes com-
plications showed low expression of
AGE-R1 and high serum AGE (90). These
studies suggested that this molecule may
be suppressed or saturated in the pres-
ence of high-AGE–induced oxidant
stress. Overexpression of AGE-R1 con-
firmed enhanced endocytosis and degra-
dation of AGE but also revealed an

inhibitory action on AGE- and RAGE-
induced mitogen-activated protein kinase
phosphorylation and nuclear factor-�B
(NF-�B) activity (87). This suggested that
AGE-R1 may mitigate AGE-induced oxi-
dative species and related cellular toxic-
ity. Subsequent studies confirmed that
AGE-R1 suppresses intracellular oxida-
tive species via the epidermal growth fac-
tor receptor and Shc/Grb2/Ras pathways
(93). This molecule, therefore, may exert
a protective function against AGE- and
RAGE-promoted cellular activation.
However, AGE-R1 may be suppressed or
downregulated in circumstances of sus-
tained AGE-induced oxidant stress when
RAGE is upregulated and AGE-R1–to–
RAGE ratio is negative (i.e., aging or se-
verely complicated diabetes). An inverse
AGE-R1–to–RAGE ratio may thus be con-
sistent with improved AGE and oxidative
species homeostasis.

A lesser-known soluble receptor im-
portant in the “detoxification” of AGE is
lysozyme (91). Lysozyme is a member of
the human immune defense system and
exhibits high AGE-binding affinity, rec-
ognizing at least two structurally distinct
AGEs, CML and methylglyoxal deriva-
tives. The lysozyme AGE-binding site
overlaps with the domain of the bacteri-
cidal activity of this family of proteins
(91). Lysozyme binding to AGE enhances
AGE removal and clearance, and early
studies showed that lysozyme could de-
plete diabetic or uremic sera of AGEs
(92). Additional studies in diabetic mice
demonstrated that lysozyme administra-
tion decreases circulating AGE levels and
enhances the renal excretion of AGEs
(94).

The roles of AGE-R2, AGE-R3, and
the scavenger receptors (class A, type II
[e.g., MSR-AII] and class B, type I [e.g.,
SR-B1, CD36]) are less well defined.
Studies using AGE-R3 knockout mice ex-
hibited accelerated AGE-induced glomer-
ular injury (95), while other mouse
studies indicate that scavenger receptors
may be involved in AGE degradation. Yet
some scavenger receptors may promote
proinflammatory effects via NF-�B up-
regulation (CD36) (96) and dyslipidemic
effects via impairment of reverse choles-
terol transport to the liver (SR-B1) (97).

The best-studied proinflammatory
AGE receptor thus far is RAGE, a member
of the immunoglobulin superfamily of
cell surface molecules (98,99). It binds
AGEs and also recognizes S100/
calgranulins (e.g., S100A12 , also termed
extracellular newly identified RAGE bind-
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ing protein, and S100B), HMGB1, and
amyloid-� peptide (59 – 61,100,101).
Once a ligand is recognized, RAGE pro-
motes multiple signaling pathways that
generate ROS. These pathways include
p21ras, extracellular signal–regulated ki-
nase-1 and -2, mitogen-activated protein
kinases, and cdc42/rac (102). Of note,
ROS generation is also enhanced by
AGEs, independent of RAGE, in part due
to antioxidant depletion (49,103,104).
ROS, via activation of the redox-sensitive
transcription factor NF-�B, upregulates
many inflammatory and “response-to-
injury” genes, including those governing
RAGE expression (100,102). These
events lead to endothelial dysfunction
due to increased vasoconstriction and in-
flammation and decreased vasodilation
(100,105,106). RAGE upregulation is
thought to contribute to a synergistic cy-
cle, first hypothesized by Basta et al.
(105), wherein S100/calgranulins and
HMGB1, together with ROS and inflam-
matory cytokines, further activate RAGE
and attract more activated macrophages.
This was hypothesized to help sustain the
AGE-induced inflammatory stress re-
sponse and may play a key role in the
pathogenesis of micro- and macrovascu-
lar disease, as discussed in the next two
sections.

ROLE OF AGEs IN
PROMOTING
MICROVASCULAR DISEASE —
Vascular dysfunction, including base-
ment membrane thickening, increased
vascular permeability and prothrombotic
state, and decreased blood flow, is a ubiq-
uitous trait of microvascular disease of the
retina, nephron, and peripheral nerve
(49,107). AGEs play a role in causing
these abnormalities and the attendant mi-
crovascular disease (21–30,33–38). CML
is a common AGE that has been localized
to retinal blood vessels of human type 2
diabetic subjects and found to correlate to
the degree of retinopathy present (33).
AGE accumulation (based on skin biopsy
measurements) correlates with the occur-
rence of retinopathy and microalbumin-
uria, independent of age or duration of
type 1 diabetes (21). In a murine model,
AGEs worsened diabetic neuropathy by
reducing sensory motor conduction ve-
locity and decreasing blood flow to pe-
ripheral nerves. These changes were
prevented by concomitant use of an ami-
noguanidine-antioxidant AGE-lowering
therapy (31). The serum AGE levels of
CML and fructosyllysine strongly corre-

lated with early nephropathy based on
microalbuminuria (21).

ROLE OF AGEs IN
PROMOTING
MACROVASCULAR DISEASE —
Elevated serum AGEs are associated with
increased coronary artery disease in type
2 diabetic subjects (17). AGEs may be as-
sociated with atherosclerosis in a number
of ways, including increased endothelial
dysfunction, elevated vascular LDL, in-
creased plaque destabilization, neointi-
mal proliferation (108), and inhibited
vascular repair after injury.

By generating oxidative stress, AGEs
promote vasoconstriction, inflammation,
and prothrombotic gene expression,
which result in endothelial dysfunction
(2). Activation of NF-�B and activator
protein-1 transcription factors by AGEs
leads to increased expression of endothe-
lin-1, adhesion molecules, inflammatory
cytokines, and plasmin activator inhibitor
1 (2,109–112). In conjunction with pro-
tein kinase C activation and oxidative
stress, AGEs decrease both prostacyclin
and nitric oxide (2,113–116), resulting in
vasoconstriction. AGEs’ induction of an-
giotensin II and endothelin further con-
tributes to vasoconstriction and leads to
proinflammatory and mitogenic effects
on vascular smooth muscle cel ls
(112,117–120).

Inflammation and endothelial dys-
function provide fertile ground for a step-
wise progression to atheroma in diabetic
subjects (18,19). AGE-mediated athero-
sclerotic mechanisms include quenching
nitric oxide (121), cross-linking collag-
en’s resistance to vascular remodeling
(122), and impairing LDL removal (both
by trapping LDL in the subendothelium
[123] and by decreasing LDL receptor
recognition of AGE-modified LDL
[124,125]). AGE binding to LDL apoli-
poprotein B impairs its hepatic receptor-
mediated uptake and removal (125).
Conversely, the glycated apolipoprotein B
induces increased retention of LDL in the
aortic wall and increased recognition by
macrophages (126,127). Accordingly,
there is increased localization of AGE-
LDL in vessels and increased production
of foam cells via macrophage recognition
and ingestion (126,127). In this way, gly-
cated LDL propagates atheroma forma-
tion more so than “naked” LDL (19).

Neointimal formation (vascular
smooth muscle cell proliferation) after
balloon injury is suppressed by AGE
blockade (108). Whether this is a direct

effect on vascular smooth muscle cells or a
result of inhibiting inflammation and en-
dothelial dysfunction is still an area of ac-
tive investigation (108,128).

AGEs AND ARTERIAL
STIFFNESS — Diabetic subjects (both
type 1 and type 2 diabetes) have increased
arterial stiffness, as measured by diastolic
dysfunction (129), increased pulse-wave
velocity, and decreased arterial compli-
ance (130–139). There is also a correla-
tion between increased arterial stiffness and
impaired glucose tolerance (133,139 –
141).

AGEs play a likely role in the altered
stiffness of the vessel wall as AGE cross-
linked vascular collagen and elastin im-
pair arterial elasticity. Arterial stiffness is
determined by both the material proper-
ties of the vessel wall (130,142) and the
vasoreactivity governed by endothelial
function (137,138,143,144). Certain
therapeutic agents have shown promise in
decreasing arterial stiffness (145,146).

THERAPEUTIC OPTIONS
AGAINST AGEs — AGEs clear ly
contribute to the progression of micro-
and macrovascular complications of dia-
betes and therefore present a promising
target for therapeutic interventions.
These therapies act through diverse path-
ways, including decreasing AGE absorp-
tion, inhibiting the production of
Amadori products, preventing Amadori
product progression to AGEs, decreasing
oxidative stress, binding and detoxifying
dicarbonyl intermediates, and interrupt-
ing biochemical pathways that impact on
AGE levels (Fig. 1B). These agents include
investigational medications, Food and
Drug Administration–approved medica-
tions with recognized benefits in diabetes
(e.g., ACE inhibitors, angiotensin-II re-
ceptor blockers [ARBs], metformin, pio-
glitazone), and dietary therapies (Table
1). There are no Food and Drug Admin-
istration–approved agents for the specific
indication of AGE modification to date,
though some such medications are in
clinical and preclinical testing.

AGENTS THAT PREVENT
AGE FORMATION — Aminogua-
nidine, which interferes with AGE pro-
duction, has been shown to improve
nephropathy (147,148), retinopathy
(149,150), and vessel elasticity (122)
when administered to diabetic rats. While
increased incidence of glomerulonephri-
tis has been seen with higher-dose amino-
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Table 1—Therapeutic agents targeting AGEs: human and animal data

Category of therapy: human
studies

Most advanced stage of
trials as relates to AGEs Trial results Safety concerns

Prevent AGE formation
Therapeutic entity

Aminoguanidine Human, phase III 2nephropathy,2retinopathy 1glomerulonephritis,2vitamin B6,
2iNOS

Benfotiamine Human, phase II 2neuropathy None reported
AR inhibitors (epalrestat,

zopolrestat)
Human, phase II 2AGE levels,2neuropathy,

1esophageal motility
None reported

AGE cross-link disrupter
Therapeutic entity

ALT-711 (alagebrium
chloride)

Human, phase III 2arterial stiffness,2pulse
pressure, breaks cross-links
formed by AGEs,1diastolic
heart function

None reported

Antihypertensive
Therapeutic entity

ARB Human, phase III 2macrophages in carotid artery
plaque

2GFR, rare angioedema

ACE inhibitor Human, phase II 2RAGE levels 2GFR, rare angioedema
Dietary factors

Therapeutic entity
Low-AGE diet Human data, stage N/A 2AGE levels,2C-reactive

protein
None reported

Prevent AGE formation
Therapeutic entity

ALT-946 Animal (diabetic rats) 2nephropathy better than
aminoguanidine

None reported

LR-90 Animal (diabetic rats) 2nephropathy,2oxidative stress 1weight gain
OPB 9195 Animal (diabetic rats) 2stenosis after vessel injury,

2nephropathy
2 vitamin B6

PARP inhibitors Animal (diabetic rats) 2endothelial dysfunction,
2diastolic dysfunction,
2neuropathy

None reported

Pyridoxamine Animal (diabetic rats) 2nephropathy,2cholesterol,
2weight

None reported

AGE cross-link disrupter
Therapeutic entity

PTB Animal (diabetic rats) 2AGEs None reported
AGE binder

Therapeutic entity
Soluble RAGE Animal (diabetic mice) 2stenosis after vessel injury,

2neuropathy
None reported

Lysozyme Animal (diabetic and
apolipoprotein E–null
mice)

2AGEs,2nephropathy,
2atherosclerosis

None reported

Antioxidants
Therapeutic entity

Green tea Animal (diabetic rats) 1AGEs,1AGE cross-links None reported
Vitamins E and C Animal (diabetic rats) 1AGEs,1AGE cross-links 1CV morbidity from vitamin E �400 IU

Oral hypoglycemic agents
Therapeutic entity

Metformin Animal (diabetic rats) 2AGEs,2AGE cross-links Lactic acidosis
Pioglitazone In vitro 2AGEs,2AGE cross-links 1hepatitis,1CHF if susceptible

AR, aldose reductase; CHF, congestive heart failure; CV, cardiovascular; GFR, glomerular filtration rate; iNOS, inducible nitric oxide synthase; PTB, N-phenacylthia-
zolium bromide; TZD, thiazolidinedione.
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guanidine in human phase III trials, the
lower dose was equally effective at ame-
liorating proteinuria (P � 0.001) and pre-
venting retinopathy progression (P �
0.03) and was free of serious side effects
(151). However, aminoguanidine’s bind-
ing of pyridoxal may lead to vitamin B6
deficiency and associated neurotoxicity
(152). Aminoguanidine’s toxicity has
halted further studies, but its positive im-
pact on proteinuria and vascular elasticity
provide proof of concept and have en-
couraged continued development of
other AGE-targeted therapies.

Pyridoxamine is one of three vitamin
B6 natural forms. It retarded AGE forma-
tion and inhibited diabetic nephropathy
equally to aminoguanidine and lowered
cholesterol levels more than aminoguani-
dine while inducing mild weight loss in
both nondiabetic and diabetic rats (153).
No human trials with pyridoxamine have
been published.

Other vitamin B6 analogs have shown
less promise. A pyridoxal-aminoguani-
dine adduct inhibited cataract formation
and diabetic neuropathy in a rat model
better than aminoguanidine alone (31).
However, a study on a combination of
pyridoxine (600 mg daily) and folic acid
(15 mg daily) administration to type 2 di-
abetic human subjects did not improve
preexisting markers of endothelial dys-
function (e.g., plasmin activator inhibitor
1 and fibrinogen) (154).

The peroxisome prol i ferator–
activated receptor agonist OPB 9195 has
inhibitory actions on glycoxidation and
lipoxidation reactions, thereby decreas-
ing formation of AGEs and dicarbonyl in-
termediates. This compound is also
hypothesized to scavenge dicarbonyl in-
termediates (155). In animal models,
OPB 9195 reduced progression of ne-
phropathy (49), lowered blood pressure
(156), reduced oxidative stress (156), and
impaired carotid artery intimal prolifera-
tion following balloon damage to the en-
dothelium (155). No human data with
this agent have been published, as it has
shown similar pyridoxal-trapping toxicity
to aminoguanidine (157).

ALT-946 therapy for 12 weeks has
been shown to reduce renal AGEs by
histologic analysis and to decrease albu-
minuria by 250% compared with ami-
noguanidine therapy in diabet ic
hypertensive rats (158). An additional
study showed that ALT-946 therapy in a
rat model reduced albuminuria both
when used at the onset of diabetes and
when initiated after 16 weeks of diabe-

tes (159). No human data with this
agent have been published.

AGENTS THAT DISRUPT
AGE CROSS-LINKS — A promis-
ing line of AGE therapy investigates
agents that disrupt the cross-links that
bind AGEs to human tissue. ALT-711 (al-
agebrium chloride) is capable of cleaving
AGE cross-links, thus allowing endoge-
nous AGE removal from vessel walls
(160). A randomized, placebo-controlled
trial in 93 hypertensive subjects age �50
years showed significant reduction in
pulse pressure and arterial stiffness in
ALT-711–treated subjects compared with
placebo (161). A 16-week open-label trial
of ALT-711 in 23 humans with systolic
hypertension and moderately severe dia-
stolic heart failure (22% with diabetes)
decreased left ventricular mass, improved
left ventricular filling, and improved pa-
tient ratings of quality of life (162). In di-
abetic rats, ALT-711 has been shown to
decrease levels of AGEs (163,164), RAGE
expression (163,164), diabetic nephrop-
athy (163), myocardial stiffness (164),
and has attenuated atherosclerosis and
decreased cholesterol and systolic blood
pressure in diabetic hyperlipidemic mice
(39).

Another AGE cross-link breaker is N-
phenacylthiazolium bromide. In diabetic
rat models, this agent has been shown to
decrease AGEs (165,166) but has not de-
creased nephropathy as measured by pro-
teinuria (166,167). No human studies
with this agent are available.

SOLUBLE AGE-BINDING
PEPTIDES — Solub le RAGE i s
thought to bind to RAGE ligands (e.g.,
AGEs, �-amyloid, S100/calgranulins,
HMGB1), thus preventing RAGE activation
and the attendant cellular dysfunction. Sol-
uble RAGE was able to significantly atten-
uate arterial restenosis in apolipoprotein
E–deficient mice after femoral artery inti-
mal injury (168). This agent also inhib-
ited atherosclerosis progression in
diabetic apolipoprotein E–deficient mice
independent of glucose and cholesterol
levels (40). Soluble RAGE therapy for 3
weeks also restored pain perception in
neuropathic diabetic mice to levels of
controls (P � 0.005) (41). Work in
humans with this agent has not been
published.

Once lysozyme was found to bind
and improve AGE removal (91), its poten-
tial therapeutic value was evident. It was
initially thought that lysozyme could be

developed as an AGE-binding matrix use-
ful in the depletion of AGE from diabetic
or uremic sera (92). Additional studies in
diabetic mice demonstrated that ly-
sozyme administration decreases circulat-
ing AGE levels and enhances renal AGE
excretion (94). These studies also showed
that lysozyme could suppress adverse
AGE-mediated cellular activation in vitro
and could prevent diabetic nephropathy
in vivo (94). Lysozyme appears to confer
resistance to AGE-induced oxidative spe-
cies, which thus allows lysozyme to block
cellular apoptosis in vitro, to reduce mor-
tality in vivo (169), and to reduce athero-
sclerosis in apolipoprotein E knockout
mice (170). Lysozyme could be devel-
oped into a therapeutic target for human
use, but no studies in humans have been
published to date.

OTHER AGENTS THAT
REMEDIATE AGEs — Benfotiamine
is a highly bioavailable thiamine prodrug
(171) currently available in the U.S. as a
dietary supplement. Benfotiamine
(42,43,172) and high-dose thiamine
(43,172,173) have both been shown to
reduce AGE formation. Both compounds
also decrease hexosamine levels, inhibit
protein kinase C activation, and decrease
oxidative stress, thus impacting four dif-
ferent mediators of diabetic vascular dis-
ease (42). Benfotiamine has improved
neuropathy in an open-label trial (174)
and in a 40-patient placebo-controlled
trial (175). In experimental animals, ben-
fotiamine improved nephropathy (172)
and retinopathy (42). In a rat model, ben-
fotiamine therapy improved neuropathy
(measured by nerve conduction velocity)
better than high-dose thiamine both at
onset and after 2 months of diabetes in-
duction (43).

PARP has been shown to inhibit glyc-
eraldehyde-3-phosphate dehydrogenase,
resulting in increased AGE formation
through the dicarbonyl intermediate
pathway (176). PARP inhibitors have im-
proved endothelial function (177,178),
diabetic neuropathy (44), and diastolic
function (177) compared with control di-
abetic rats. No human data with these
agents have been published.

Aldose reductase inhibitors have been
shown to decrease AGE formation (179–
181) by inhibiting the first and rate-
limiting step in the polyol pathway.
Epalrestat, an aldose reductase inhibitor,
also reduced production of the dicar-
bonyl intermediate 3-deoxyglucosone
(179). Aldose reductase inhibitors have
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been shown to improve nerve conduction
velocity (182) and to improve esophageal
motility (183,184) in people with dia-
betic neuropathy. In a murine model, the
aldose reductase inhibitor zopolrestat
suppressed AGE-induced increases in
vascular adhesion molecules and chemo-
tactic factors for monocytes (185).

LR-90 [4-4�-(2 chlorophenylureido
phenoxyisobutyric acid)] inhibits AGE
production by scavenging dicarbonyl in-
termediates and by chelating transition
metals that catalyze the production of
AGEs. In diabetic rat studies, it has been
shown to reduce AGE formation, ne-
phropathy, and oxidative stress (186). No
human data with this agent have been
published. Numerous compounds have
been found to have some AGE inhibitory
activity in vitro, including pentoxifylline,
D-penicillamine, desferoxamine, diclofe-
nac, and inositol (187).

CURRENTLY AVAILABLE
ANTI-AGE THERAPIES — B y
minimizing hyperglycemia, oral hypogly-
cemic agents decrease the formation of
AGEs, but some have other AGE-
preventive mechanisms as well. Namely,
metformin and pioglitazone have been
shown in vitro to prevent AGE formation
(188).

ACE inhibitors (temocaprilat) and
ARBs (olmesartan, candesartan, irbesar-
tan, losartan, telmisartan, and valsartan)
were effective in vitro at decreasing AGE
formation (157). Studies in humans have
shown decreased vascular inflammation
with irbesartan (189) and decreased
RAGE levels with perindopril (190). Per-
indopril has also inhibited atherosclerosis
in mice (191). However, after 12 weeks of
ramipril therapy in mice, there was no sig-
nificant impact on RAGE levels or expres-
sion of the proinflammatory transcription
factor, NF-�B (192). In humans, the exact
mechanism by which ACE inhibitors and
ARBs effect AGEs and their effect is un-
certain. Studies in humans with antioxi-
dants have shown mixed benefit (193–
196). These studies are summarized in
Table 1.

DIETARY AGE RESTRICTION —
Dietary AGE intake is a significant deter-
minant of circulating and tissue AGE lev-
els, as well as of diabetic injury (6,9,11–
15 ,22 ,82– 85) . A low-AGE die t
(approximately fivefold lower AGE versus
regular diet) in diabetic subjects for 6
weeks in a general clinical research center
setting decreased serum AGE levels and

inflammatory markers such as C-reactive
protein (CRP) (74). In a nondiabetic peri-
toneal dialysis population, similar reduc-
tions in AGEs and C-reactive protein were
associated with a low-AGE diet for 4
weeks (approximately threefold lower
AGE intake versus control was achieved
by instructing patients how to prepare
their meals without frying, roasting, or
broiling) (85). A low-AGE diet prevented
intimal proliferation after arterial balloon
injury in a nondiabetic, apolipoprotein E
knock-out, hyperlipidemic mouse model
(13) and inhibited aortic root atheroma
development by 50% within 2 months of
diabetes in the same mouse model (14).
These studies show that dietary restric-
tion of AGEs can significantly reduce vas-
cular inflammation and atherosclerosis.

CONCLUSIONS — AGEs are ubiqui-
tous substances, the formation of which is
accelerated in diabetic subjects and con-
tributes to tissue ROS and inflammation,
resulting in micro- and macrovascular
complications. Therapeutic options to re-
duce their morbidity would be tremen-
dously useful. Currently available agents
for treatment of diabetes and hyperten-
sion decrease AGEs and may in fact pro-
vide benefit through AGE reduction.
Decreasing the AGE content of the diet is
effective, feasible, and not discordant
with the current dietary recommenda-
tions of the American Diabetes Associa-
tion and American Heart Association.
Some potential therapies include ALT-
711, ALT-946, aldose reductase inhibi-
tors, lysozyme, LR-90, tr ientine,
pyridoxamine, PARP inhibitors, and sol-
uble RAGE. In human trials, aldose re-
ductase inhibitors have improved
neuropathy and esophageal motility and
ALT-711 has reduced arterial stiffness
and improved some measurements of di-
astolic heart failure. The other agents re-
main in earlier stages of research and
development. These therapies target
AGEs by differing methods, offering hope
that even if there is no magic bullet against
them there are at least several arrows in
our quiver.

NOTE ADDED IN PROOF — The
authors were recently made aware of ani-
mal studies showing remediation of AGEs
(197) and decreased diabetic neuropathy
(198) by the copper chelator trientine.
One human study (199) performed with
trientine reported improved left ventricu-
lar mass, but AGE levels were not mea-
sured in that study. Work from Price et al.

(200) showed that copper chelation may
be one of the significant mechanisms of
action of pyridoxamine and N-phe-
nycylthiazolium bromide.
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