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OBJECTIVE — The goals of this study were to determine whether improvements in meta-
bolic control can ameliorate the cognitive dysfunction associated with type 2 diabetes and
evaluate the possibility that such improvements are mediated by changes in circulating insulin or
insulin resistance.

RESEARCHDESIGNANDMETHODS — This randomized double-blind trial enrolled
145 subjects at 18 centers in the U.S. Older adults with type 2 diabetes receiving metformin
monotherapy received add-on therapy with either rosiglitazone, a thiazolidinedione insulin
sensitizer, or glyburide. Cognitive function was assessed at baseline and week 24 using the Digit
Symbol Substitution Test, the Rey Auditory Verbal Learning Test, and the Cambridge Neuro-
psychological Test Automated Battery.

RESULTS — Pretreatment fasting plasma glucose (FPG) in both groups was similar, and after
24 weeks both treatment groups showed similar significant reductions in FPG (2.1–2.3 mmol/l).
Working memory improved with both rosiglitazone (P � 0.001) and glyburide (P � 0.017).
Improvement (25–31% reduction in errors) was most evident on the Paired Associates Learning
Test and was significantly correlated (r � 0.30) with improved glycemic control as measured by
FPG.

CONCLUSIONS — Similar and statistically significant cognitive improvement was observed
with both rosiglitazone and glyburide therapy, and the magnitude of this effect was correlated
with the degree to which FPG improved. These results suggest that a cognitive benefit is achiev-
able with pharmacological interventions targeting glycemic control.
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O lder adults with type 2 diabetes
have an increased risk of cognitive
dysfunction. Memory and mental

processing speed are the cognitive do-
mains most often compromised, whereas
other cognitive skills (e.g., attention,
problem-solving, and general intelli-
gence) tend to be unaffected (1–3).
Whether cognitive deterioration is a di-
rect consequence of chronically elevated
blood glucose levels or whether it reflects
diabetes-associated hyperinsulinemia has
not yet been determined, but increasing
evidence suggests that elevated insulin

levels may be associated with adverse ef-
fects on cognition (4–6) and an increased
risk of Alzheimer’s dementia (7).

If chronically elevated glucose and/or
insulin levels are linked to poorer cogni-
tive performance, one might predict that
efforts to improve glycemic control or re-
duce hyperinsulinemia would ameliorate
cognitive function or attenuate its decline.
Results from three small studies provide
only limited support for that possibility.
Gradman et al. (8) treated 23 diabetic
adults with glipizide for up to 7 months
and found both a reduction in fasting

plasma glucose (FPG) levels and marked
improvement on a verbal learning test;
other cognitive skills were unaffected. By
comparison, no changes in either FPG or
cognition were seen in an untreated group
of 13 nondiabetic control subjects. Cir-
cumscribed improvements in cognition
have also been reported in 16 diabetic
adults over a 7-month period (9) and in
two groups of 20 type 2 diabetes patients
receiving either intensified inpatient
treatment or “standard” treatment (10).
None of these studies measured insulin,
and so it is impossible to determine
whether cognitive changes were associ-
ated with treatment-induced changes in
insulin parameters.

Both the Diabetes Control and Com-
plications Trial (11) and the U.K. Prospec-
tive Diabetes Study (12) demonstrated
that improved metabolic control can pre-
vent or reduce the severity of vascular
complications. We initiated the following
clinical trial to determine whether im-
proving glycemic control would similarly
ameliorate cognitive complications. One
major goal was to evaluate the possibility
that improvements in cognition are medi-
ated by changes in circulating insulin or
in insulin resistance. To that end, we
compared the cognitive effects of treat-
ment with two different classes of antidia-
betes medications. Rosiglitazone is a
thiazolidinedione insulin sensitizer that
reduces glucose levels by increasing he-
patic and peripheral tissue sensitivity to
insulin (13), whereas, glyburide, a sulfo-
nylurea, reduces glucose levels by en-
hancing insulin secretion from pancreatic
�-cells (14). Little is known about the ef-
fects of glyburide on the brain, but recent
reports suggest that glitazones may affect
brain physiology (15,16). If improved
cognition is largely a consequence of
changes in insulin sensitivity or chronic
hyperinsulinemia, those treated with ros-
iglitazone might be expected to perform
significantly better than those treated
with glyburide, regardless of changes in
FPG.

RESEARCH DESIGN AND
METHODS — One hundred forty-five
adults with type 2 diabetes were recruited
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from 18 centers in the U.S. Adults were
eligible if they were receiving oral met-
formin combination therapy and had
HbA1c (A1C) �8%, BMI �27 kg/m2, no
evidence of dementia (score �27 on the
Mini Mental State Examination [17]), and
no evidence of current depression as de-
termined by the Mini International Neu-
ropsychiatric Interview (MINI) (18).
Individuals with a history of hyperlipid-
emia or hypertension were required to
have well-controlled diabetes after treat-
ment for at least 8 weeks before random-
ization. Renal disease, alcoholism, stroke,
unstable angina, a transient ischemic at-
tack, congestive heart failure or any New
York Heart Association class 3/4 coronary
insufficiency, hepatic disease, lactic aci-
dosis, a severe head injury, epilepsy, or
other neurological disorder was exclu-
sionary, as was treatment with psycho-
tropic medications. Because several
cognitive measures were available only in
English, all subjects were required to be
fluent in English.

Randomized controlled trial
During an 8-week screening period, pa-
tients received the same dose of met-
formin, but their second antidiabetes agent
was discontinued. If, after 6 weeks of
washout, FPG was �15 mmol/l, patients
were excluded from further participation.
After screening of 210 adults, eligible sub-
jects were randomly assigned to receive
24 weeks of blinded add-on therapy with
either rosiglitazone or glyburide. During
the first 8 weeks of treatment, study med-
ication was given as 4 mg rosiglitazone
once daily or 2.5 mg glyburide once daily,
with glyburide increased to 2.5 mg twice
daily after 4 weeks of treatment. To titrate
patients to equal glycemic control, FPG
was assessed at weeks 8 and 16, and the
dose was adjusted if FPG �7.8 mmol/l.
Rosiglitazone could be increased to 8 mg
once daily or 4 mg twice daily; glyburide
could be increased to 5 mg twice daily or
up to a maximal dose of 7.5 mg twice
daily. No changes were made to the back-
ground dose of metformin during blinded
treatment.

For random assignment to treatment,
we used a computer-generated allocation
sequence. Subjects were stratified to treat-
ment group by age (�60 or �60 years)
and by premorbid intelligence, as mea-
sured by the North American Adult Read-
ing Test, (i.e., score of �105 or �105)
(19). This study was conducted in accor-
dance with the Declaration of Helsinki

and guidelines on good clinical practice.
The institutional review board of each
participating center approved the study
protocol and the informed consent docu-
ment. Written informed consent was ob-
tained before the performance of any
study procedures.

Outcome measures
Cognitive tests. The primary outcome
was change in cognitive function after 24
weeks of treatment with rosiglitazone or
glyburide. Cognitive tests were adminis-
tered at week 0 and again at week 24 by
staff blinded to subjects’ treatment assign-
ment. Testing occurred in the afternoon
after lunch, provided that postprandial
glucose was �5.6 and �16.7 mmol/l.
Seven cognitive tests were performed: the
Digit Symbol Substitution Test (20), the
Rey Auditory Verbal Learning Test (21),
and five tests selected from the Cam-
bridge Neuropsychological Test Auto-
mated Battery (CANTAB) (22,23). Two
preassessment CANTAB tests were ad-
ministered during screening to familiarize
subjects with procedures. Those tests dif-
fered somewhat from the CANTAB tests
administered in this study and were not
scored. The CANTAB Paired Associates
Learning (PAL) Test evaluated how effi-
ciently subjects learned the locations of
various geometric patterns presented on a
computer screen. The difficulty level in-
creased over multiple series (from six lo-
cations with three patterns up to eight
locations with eight patterns). The
CANTAB Pattern Recognition Memory
measured subjects’ ability to retain geo-
metric designs by presenting 12 visual
patterns followed by a forced-choice rec-
ognition test. The CANTAB Spatial Work-
ing Memory Test assessed how well
subjects were able to keep track of the
location of a token that was “hidden” in
one of several boxes on the screen.
CANTAB Reaction Time assessed how
quickly subjects could respond when one
of five circles illuminated on the screen.
CANTAB Rapid Visual Information Pro-
cessing measured sustained attention,
freedom from distractibility, and psy-
chomotor speed. Subjects saw single-digit
numbers flash serially on the computer
screen; their task was to press a paddle
every time one of several specific se-
quences appeared. The Digit Symbol
Substitution Test (20) measured psy-
chomotor speed and required subjects to
substitute numbers for symbols accord-
ing to a preestablished code. The Rey Au-

ditory Verbal Learning Test (21) assessed
learning ability by presenting 15 words
to subjects and asking them to recall the
list; 5 such study-test trials were provided
and the total recalled comprised the Rey
Total Learning Score. The Rey Forgetting
Score was the difference between the
number recalled on trial 5 and the num-
ber recalled after a 20-min delay.

Parallel versions of all tests except the
Digit Symbol Substitution Test, the
CANTAB Spatial Working Memory Test,
and CANTAB Rapid Visual Information
Processing (which do not have parallel
versions) were given at week 24.

Measures of psychological distress
The Brief Symptom Inventory comprises
53 symptoms of somatic and psychologi-
cal distress that subjects rated on a
5-point scale (24); it yields nine symptom
scales and a Global Severity Index. The
Mini-International Neuropsychiatric In-
terview (18) is a short, structured psychi-
atric interview that screens for diagnosable
psychiatric disorders and classifies disor-
ders according to the DSM-IV and ICD-10
nosology. Both measures were adminis-
tered before randomization and repeated
at week 24.

Laboratory measures
Laboratory assessments were performed
by Quest Diagnostic Laboratories (Van
Nuys, CA) on blood samples collected in
the fasting state. FPG concentrations were
measured by an Olympus analyzer using
an enzymatic method based upon the cat-
alytic action of hexokinase on glucose and
ATP to yield glucose 6-phosphate (Olym-
pus Clinical Instruments Division, Lake
Success, NY), AIC levels were measured
by high-performance liquid chromatog-
raphy (Variant Method; Bio-Rad, Her-
cules, CA), and serum insulin was
measured by a double-antibody radioim-
munoassay (Linco Method; Linco, St.
Charles, MO). Safety monitoring in-
cluded physical examinations, assess-
ment of vital signs, weight, adverse
events, and laboratory tests. Severe hypo-
glycemia was defined as episodes requir-
ing third-party assistance to effect
recovery.

Statistical analysis
The intent-to-treat population consisted
of all randomized subjects with at least
one valid observation for an efficacy vari-
able while receiving treatment. All analy-
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ses used the last observation carried
forward for imputing on-therapy missing
values from other on-therapy values. Of
the 145 patients initially randomized,
three were withdrawn before the first on-
therapy visit and did not have a valid on-
therapy assessment and one withdrew
before taking blinded medication, yield-
ing an intent-to-treat population of 141.
All randomized subjects were studied for
assessment of safety and tolerability. A
significance level of 0.05 was used for all
between-group comparisons. No adjust-
ments were made for multiple compari-
sons because of the exploratory nature of
this study.

For continuous variables, ANCOVA
was used with a model that included ef-
fects for treatment, clinical center, base-
line measurement, estimated IQ strata,
and age strata. Treatment by covariate in-
teractions were also explored. Differences
between treatment groups with respect to
change between baseline and week 24
were estimated by the least-squares mean
difference from the ANCOVA model. Ho-
meostasis model assessment (HOMA) of
insulin sensitivity (%S) was based on FPG
and insulin values (25). The signed rank-
sum test and the Wilcoxon rank-sum test
were used to compare week 24 values to
baseline values within and between treat-
ment groups, respectively. Linear rela-
tionships between cognitive tests and
glycemic parameters were investigated
post hoc for each treatment group using
Pearson’s correlation coefficients.

Sequential factor analysis with vari-
max orthogonal rotation was used to cat-
egorize the eight cognitive test variables
into a more manageable number of cog-
nitive domains before unblinding. Only
subjects with cognitive test results for
both baseline and week 24 assessments
were included in subsequent analyses.
Summary scores for the resulting cogni-
tive domains were computed by summing
the z-scores for the tests that contributed
to that domain.

RESULTS — The sample was predom-
inantly Caucasian (79%), with a mean age
of 60 years (range 43–75), a diabetes du-
ration of 6.6 years (1–27), and an esti-
mated IQ in the average range (mean
106). Table 1 shows both treatment
groups at baseline to be matched on BMI,
AIC, FPG, hypertension, hyperlipidemia,
and prior severe hypoglycemia. The mean
final daily dose for subjects treated with

rosiglitazone was 6.1 mg; for those treated
with glyburide it was 8.1 mg.

Treatment-induced changes in
glycemic variables
After 24 weeks of treatment, both groups
showed similar, statistically significant
(P � 0.0001) reductions in FPG. For sub-
jects receiving metformin and rosiglita-
zone, FPG declined �21%, from 9.88 �
0.37 to 7.77 � 0.24 mmol/l ([95% CI
�2.73 to �1.52]; P � 0.0001); for those
receiving metformin and glyburide, FPG
declined �24%, from 9.66 � 0.31 to
7.33 � 0.21 ([�2.88 to �1.73]; P �
0.0001). The magnitude of decline was
comparable in the two treatment groups.
Similar proportions of subjects treated
with rosiglitazone (59%) and glyburide
(61%) achieved the glycemic titration tar-
get of FPG �7.77 mmol/l.

Consistent with its mechanism of ac-
tion as an insulin sensitizer, significant re-
ductions (P � 0.05) from baseline in both
fasting insulin (�17.81 � 8.1 pmol/l
[95% CI �34.11 to �1.52]) and C-
peptide (�0.12 � 0.05 nmol/l [�0.22 to
�0.02]) were seen only in participants
treated with rosiglitazone for 24 weeks.
Significant increases (P � 0.05) from
baseline were observed for both insulin
(22.87 � 9.9 pmol/l [3.11–42.63]) and
C-peptide (0.10 � 0.05 nmol/l [0.01–
0.20]) in those treated with glyburide.
HOMA %S improved (median change
8.6% [5.2–12.4]; P � 0.0001) for rosigli-
tazone, but not for glyburide (1.0% [�2.2
to 4.9]); between-group differences were
statistically significant (P � 0.01).

Treatment-induced changes within
cognitive domains
Sequential factor analysis generated three
factors. Factor 1 was designated “Work-
ing Memory” (27.5% of variance) and
comprised the CANTAB PAL Test,
CANTAB Rapid Visual Information Pro-
cessing, CANTAB Spatial Working Mem-
ory Test, and Digit Symbol Substitution
Test. Factor 2, “Learning Ability” (17.4%
of variance), included the Rey Total
Learning Score and CANTAB Pattern Rec-
ognition Memory. Factor 3, “Cognitive
Efficiency” (14.3% of variance), included
the Rey Forgetting Score and CANTAB
Reaction Time.

Significant improvement on Working
Memory measures was noted from base-
line to week 24 in both the rosiglitazone
(�0.7 � 1.6 [95% CI �1.0 to �0.1]; P �
0.001) and the glyburide treatment
groups (�0.6 � 1.9 [�1.0 to �0.1]; P �
0.02), as indexed by a reduction in errors,
but there was no difference between ros-
iglitazone and glyburide in terms of their
effects on Working Memory ([�0.4 to
0.4]; P � 0.40). No significant changes at
week 24 were noted either on measures of
Learning Ability (0.1 � 1.5 [�0.3 to 0.4];
0.1 � 1.7 [�0.2 to 0.6]) for groups
treated with rosiglitazone or glyburide,
respectively, or on measures of Cognitive
Efficiency (�0.1 � 1.7 [�0.5 to 0.3];
0.0 � 1.5 [�0.3 to 0.4]).

Treatment-induced effects on
individual cognitive and mood tasks
Within the Working Memory domain,
performance after treatment changed sig-
nificantly on only one of the four tests

Table 1—Patient demographics and baseline characteristics

Rosiglitazone Glyburide

n 69 72
Age (years) 60.7 � 1.0 59.6 � 0.8
Female sex (%) 43 36
Caucasian (%) 80 79
BMI (kg/m2) 33.8 � 0.7 32.5 � 0.06
FPG (mmol/l) 9.9 � 0.4 9.7 � 0.3
A1C (%) 7.6 � 0.1 7.6 � 0.1
Fasting insulin (pmol/l)* 142.6 � 8.4 134.8 � 9.5
C-peptide (nmol/l)* 1.14 � 0.06 1.02 � 0.06
Diabetes duration (years) 6.6 � 0.6 6.6 � 0.6
Hypertension (%) 62 69
Hyperlipidemia (%) 54 58
Severe hypoglycemia (%) 5 5
Estimated IQ 105.5 � 1.1 106.6 � 1.0

Data are means � SE unless otherwise noted. *Rosiglitazone (n � 58); glyburide (n � 64).
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comprising that domain. Subjects treated
with rosiglitazone improved their perfor-
mance on the CANTAB PAL Test by
�30%, making an average of 10.2 � 1.8
fewer errors (95% CI �13.7 to �6.6; P �
0.0001). Treatment with glyburide was
similarly associated with an improvement
of �25%, with subjects making an aver-
age of 7.1 � 1.8 fewer errors (�10.6 to
�3.6; P � 0.001). For rosiglitazone, the
effect size (d) (26) for change was
�0.69 � 0.02 (95% CI �1.04 to �0.34);
for glyburide, d � �0.48 � 0.02 (�0.81
to �0.14). The difference between the
two treatment groups was not statistically
significant (P � 0.30). As illustrated in
Table 2, no changes in performance over
time were evident on any other cognitive
test.

Treatment was not associated with

onset of current depressive disorders as
measured by the Mini International Neu-
ropsychiatric Interview at week 24 for
subjects treated with rosiglitazone (3%)
or glyburide (1.4%). Similarly, rates of
psychological distress, as measured by the
Global Severity Index from the Brief
Symptom Inventory, were comparable
between the two treatment groups (24.6
vs. 23.6%) and did not change over time.

Associations among glucose, insulin,
and working memory
Treatment-associated changes in FPG
were associated with improvements in
Working Memory performance regard-
less of drug used. There was a strong cor-
relation between decline in FPG and
reduction in PAL errors (r � 0.30; P �
0.02) for both rosiglitazone and gly-

buride. In contrast, there was no signifi-
cant correlation between PAL performance
and changes in circulating insulin. For
subjects treated with rosiglitazone, the
correlation between change in HOMA %S
and PAL errors was �0.15 (P � 0.40); for
glyburide treatment, the correlation coef-
ficient was 0.03 (P � 0.70).

CONCLUSIONS — Results from this
randomized trial demonstrate that treat-
ment-induced reductions in FPG levels
are accompanied by corresponding im-
provements in cognition, which occur
within 24 weeks of therapy initiation. The
effect sizes observed were moderate, and
further study will be required to deter-
mine their clinical relevance. As expected,
treatment with rosiglitazone but not gly-
buride was associated with significant im-

Table 2—Cognitive test scores: baseline and change from baseline

Cognitive test Rosiglitazone Glyburide
Treatment difference

(95% CI)*

n 66 70
PAL†

Baseline‡ 33.1 � 2.3 28.8 � 2.1
Change from baseline �10.2 � 1.8 �7.1 � 1.8 0.36 (�2.3 to 6.2)
P value �0.0001 �0.001

Pattern Recognition Memory: delayed§ 66 70
Baseline 9.7 � 0.2 9.8 � 0.2
Change from baseline �0.2 � 0.3 �0.0 � 0.3 0.20 (�0.4 to 0.8)
P value 0.548 �0.999

Spatial Working Memory§ 66 70
Baseline 37.2 � 2.0 32.9 � 2.3
Change from baseline 1.0 � 1.9 0.6 � 1.9 0.27 (�7.3 to 2.1)
P value 0.606 0.764

Rapid Visual Information Processing� 66 70
Baseline 524.7 � 14.8 503.2 � 11.7
Change from baseline �15.4 � 12.2 �3.7 � 11.6 0.85 (�28.9 to 24.1)
P value 0.211 0.750

Reaction Time� 66 70
Baseline 397.7 � 8.3 409.5 � 7.4
Change from baseline 13.0 � 8.7 3.7 � 6.1 0.95 (�20.1 to 18.7)
P value 0.138 0.540

Digit Symbol Substitution Test§ 67 70
Baseline 43.4 � 1.3 43.0 � 1.5
Change from baseline 0.3 � 0.9 1.7 � 0.9 0.13 (�0.5 to 3.9)
P value 0.768 0.078

Rey Auditory Verbal Learning Test: immediate§ 67 69
Baseline 47.7 � 1.0 49.6 � 1.0
Change from baseline 1.4 � 0.8 1.6 � 1.0 0.80 (�2.0 to 2.6)
P value 0.094 0.104

Rey Auditory Verbal Learning Test: delayed¶ 67 69
Baseline 1.9 � 0.3 2.0 � 0.3
Change from baseline 0.1 � 0.4 0.2 � 0.3 0.78 (�0.6 to 0.8)
P value 0.708 0.565

Data are n or means � SD. *Based on ANCOVA model: change � age strata � North American Adult Reading Test strata � baseline � treatment � center. †Number
of errors. ‡P value for treatment by baseline interaction � 0.6195. §Total correct. �Time (milliseconds). ¶Forgetting score (trial 5 � delayed recall).
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provements in circulating insulin and
insulin sensitivity. Contrary to our hy-
pothesis, however, changes in insulin pa-
rameters had no impact on cognitive
function, at least in this group of diabetic
adults with better-than-average metabolic
control.

Our study shows that working mem-
ory is uniquely sensitive to glycemic ma-
nipulations, with this effect being most
evident on a single cognitive test: the
CANTAB PAL Test. What is it about this
task that renders it so sensitive to changes
in FPG? Of all our tests, the CANTAB PAL
Test is the most cognitively demanding
insofar as it requires subjects to pay atten-
tion to (and discriminate among) differ-
ent patterns and different locations as well
as to use strategies to form associations
between a specific pattern and a specific
location and to hold as many as eight of
these pattern/location associations in
memory during a study-test trial. Optimal
performance on this task relies on the in-
tegrity of a wide range of interconnected
brain areas, including the prefrontal cor-
tex, mesial temporal cortex (with hip-
pocampus), parietal cortex, posterior
cortical visual areas, and basal ganglia
(27,28), whereas other CANTAB tests ac-
tivate fewer brain areas (28).

Working memory tests are known to
activate structures in the parietal and tem-
poral lobes and in the prefrontal cortex of
humans (29) and to increase cerebral glu-
cose utilization in multiple brain regions.
For example, primates performing spatial
working memory tasks manifest a large
(33–43%) increase in local cerebral glu-
cose utilization in the caudate nucleus
(30)—a brain region that receives a rich
network of efferents from the dorsolateral
prefrontal cortex as well as from the pari-
etal and temporal cortical regions. In-
creased cerebral glucose utilization has
also been reported in the prefrontal (19%)
and inferior parietal cortex (11–20%)
(31), as well as in the hippocampus (18–
24% increase) (32). Similar increases in
hippocampal glucose utilization have also
been inferred from studies measuring ex-
tracellular glucose levels in rats perform-
ing a cognitively demanding spatial maze
(33). If a task such as the CANTAB PAL
Test is dependent on multiple cortical
structures that, when activated, require
high levels of glucose for optimum perfor-
mance, we would expect that any condi-
tion that affects brain glucose could have a
measurable effect on test performance.

Variations in peripheral glucose levels
are now thought to induce changes in the

availability and metabolism of glucose in
the brain, although there is not complete
agreement over the details of these pro-
cesses. Cerebral blood flow may decrease
during chronic hyperglycemia in humans
with type 2 diabetes (34), brain glucose
metabolism may be reduced after chronic
hyperglycemia (35), and the density of
glucose transporters at the blood-brain
barrier may be down- or upregulated in
response to increases or decreases in pe-
ripheral glucose levels (36,37). If diabetic
patients ordinarily experience chronically
elevated blood glucose levels, and if this
adversely affects the availability and/or
utilization of glucose within the brain,
then individuals with poorer metabolic
control might have more difficulty per-
forming cognitively demanding tasks,
particularly those, like working memory
tasks, which engage multiple cortical re-
gions. It is plausible that improvements
(i.e., reductions) in peripheral blood glu-
cose levels may lead to a corresponding
increase in brain glucose availability as
well as relative improvements in perfor-
mance on certain cognitive tasks (38).
This possibility is congruent with recent
animal research demonstrating that low-
ering blood glucose levels (i.e., inducing
hypoglycemia) can subsequently facilitate
performance during euglycemia on hip-
pocampal-mediated spatial memory tasks
(39). It is also consistent with our finding
of a robust correlation between the mag-
nitude of a treatment-induced change in
plasma glucose and a reduction in num-
ber of errors on the CANTAB PAL Test.

According to our interpretation, im-
proved performance should not occur on
all cognitive measures but should be lim-
ited only to those that engage cortical sys-
tems that have particularly high glucose
metabolism requirements (e.g., the hip-
pocampus, basal ganglia, and prefrontal
cortex). Our findings support that view,
as do results from Gradman et al. (8) who
found only the cognitively demanding se-
lective reminding test to be affected by
improvements in FPG. The learning skills
of older adults with poorer glucoregula-
tion (40) or with type 2 diabetes (3) may
be particularly influenced by these glyce-
mic variations (41) because of the known
changes in the integrity of hippocampal
and prefrontal brain regions associated
with both normal aging (42,43) and with
diabetes (44).

Insulin affects the central nervous
system (45) and could potentially modu-
late a range of cognitive functions. Insulin
receptors are widely distributed within

the brain (46), particularly in the hip-
pocampus, and insulin crosses the blood-
brain barrier via a receptor-mediated
active transport process (47). Animal
studies have demonstrated that central in-
sulin administration leads to improve-
ments on spatial memory tasks (48) and
can ameliorate the memory deficits asso-
ciated with streptozotocin-induced dia-
betes (49). Research with nondiabetic
humans has demonstrated that intrana-
sally administered insulin may improve
performance on measures of verbal mem-
ory (50). Nevertheless, despite increasing
evidence of possible linkages between
insulin and cognition (51), we found no
evidence that treatment-induced differ-
ences in circulating insulin or insulin
sensitivity were associated with a corre-
sponding improvement in cognition.

Our study has a number of limita-
tions. Because diabetic subjects were not
compared with nondiabetic adults, we
cannot determine the extent of cognitive
impairment in our diabetic sample. Our
finding of moderate improvements may
be a consequence of having evaluated in-
dividuals with modest cognitive deficits
who had few comorbid conditions and
were in relatively good metabolic control
at study entry. More substantial improve-
ments in cognitive function might have
been observed had we studied subjects
with greater cognitive impairment. The
absence of nondiabetic control subjects
also precludes a determination of “prac-
tice effects” that could occur after re-
peated testing. Our use of alternate test
forms for the memory tests (in which
practice effects are most likely to occur) as
well as our 24-week test/retest interval is
liable to have reduced the likelihood that
familiarity with the testing materials con-
tributed to our pattern of results. The fact
that only a subset of tests showed any im-
provement and the magnitude of that im-
provement was correlated with the
treatment-associated reduction in FPG
leads us to conclude that our results are
not an artifact of repeated testing.

In summary, we found that treat-
ment-induced improvements in FPG are
associated with a corresponding improve-
ment on a cognitively demanding test of
working memory after only 24 weeks of
therapy. The underlying mechanisms re-
main poorly understood, and further
study is required to determine not only
whether these benefits are maintained
over an extended period of time but also
whether adults with more severe cogni-
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tive impairment would show greater im-
provement in performance with treatment.
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