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T he diabetic foot syndrome repre-
sents a major problem in the health
care of diabetic patients. Under-

standing the molecular basis of this dis-
ease is an important step toward a rational
treatment. Due to the systemic character
of diabetes, disturbances in several basic
cell functions appear to contribute to im-
paired wound healing. Many essential
processes of normal wound healing are
regulated in large part by growth factors
and proteases, and changes of their ex-
pression and activity are relevant for the
pathogenesis of the chronic wound. This
review summarizes the current status of
research on diabetic foot syndrome and
describes new implications for the treat-
ment of this syndrome.

The diabetic foot syndrome is clearly
one of the most important complications
of diabetes. It not only occurs as a typical
complication in the late stages of diabetes
but also in patients with newly diagnosed
diabetes (1). Despite the postulations of
the St. Vincent Declaration that within 5
years the amputation rate has to be re-
duced by 50%, there are �30,000 ampu-
tations reported each year in Germany
due to the diabetic foot syndrome (2–6).
Greater success in reducing the diabetic
foot syndrome can be achieved using
structured diagnosis, classification, and
therapy of diabetes (7–12). For example,
chronically elevated blood glucose levels

result in reduced leukocyte function and
cell malnutrition, which contribute to a
high rate of wound infection and associ-
ated healing problems (13,14). Due to the
systemic effects of diabetes, not only do
cellular abnormalities exist but interac-
tions of growth factors and other media-
tors of wound healing are also impaired
(15,16). Thus, understanding the cellular
and molecular abnormalities that contrib-
ute to the diabetic foot syndrome will en-
able the rational development of
treatments that will reduce the incidence
and severity of this major complication of
diabetes.

BIOLOGY OF NORMAL
WOUND HEALING — The physio-
logical cellular response to tissue injury in
the skin progresses through a sequence of
phases that is structured with regard to
both time and space and normally results
in a nearly complete recovery of the ana-
tomic and functional integrity of the in-
jured area (Fig. 1). The phases of wound
healing— hemostasis, inflammation
(acute phase), proliferation (granulation
and epithelization), and remodeling—
partly overlap and are coordinated in
large part by cytokines and growth factors
(17–20).

In practical terms, wounds can be de-
scribed as either acute or chronic with re-
spect to healing. In chronic wounds, the

duration of the wound healing processes
is either much slower or actually static,
which results in anatomic and functional
restrictions (21). In general, wound heal-
ing depends on several factors, including
the patient’s age and physical condition,
the location of the wound, the cause of the
injury, and accompanying diseases such
as diabetes or renal insufficiency, which
all have a negative effect on wound heal-
ing processes.

The complex and structured dynam-
ics of wound healing involve several pop-
ulations of cells (thrombocytes or
platelets, neutrophile granulocytes, mac-
rophages, fibroblasts, and keratinocytes),
soluble factors (cytokines and growth
factors), and proteases (e.g., matrix met-
alloproteinases [MMPs], plasmin, and
elastase). The initial phase of healing is
hemostasis, which is initiated by the acti-
vation of the clotting cascade. The result-
ing fibrin clot entraps erythrocytes and
platelets and blocks blood flow. The fi-
brin clot forms the provisional wound
matrix, and numerous growth factors that
are released from the platelets granules
chemotactically attract neutrophils, fibro-
blasts, endothelial cells, and keratino-
cytes into the wound. These growth
factors include platelet-derived growth
factor (PDGF), platelet-derived angio-
genic factor (PDAF), transforming growth
factor-� (TGF-�), and epidermal growth
factor (EGF). This initial release of growth
factors from platelets is very important in
initiating the following phases of wound
healing (Table 1) (22).

Within 6 h after tissue injury, the in-
flammation phase starts. Neutrophil
granulocytes are the first cells that appear
in wounds. They control the contamina-
tion with bacteria and cleanse the wound
from cell detritus. After �48 h, the con-
centration of neutrophil granulocytes
reaches its maximum. Monocytes begin
infiltrating the wound site �24 h after
injury, attracted by chemotactic factors
including complement factor 5�, degra-
dation products of fibrin, and TGF-�. In
response to cytokines in the wound,
monocytes differentiate into wound mac-
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rophages, which are necessary for wound
repair. Inflammation and proliferation
overlap in the process of wound healing.
The proliferation phase of healing is pri-
marily characterized by granulation tissue
(15). MMPs take part in the structured
development of granulation tissue by re-
moving damaged matrix proteins, help-
ing cells migrate into the wound, and
developing new blood vessels.

About 2 days after injury, macro-
phages that emerged from monocytes
start to express growth factors. These are
the dominant types of cells during the 3rd
and 4th day. Macrophages continue to re-
lease PDGF, macrophage angiogenesis
factor, and TGF-�. Together, PDGF, mac-
rophage angiogenesis factor, and angio-
tensin stimulate the formation of new
blood vessels, generating the characteris-
tic granulation tissue in the wound. EGF,
keratinocyte growth factor, and PDGF
stimulate epidermal cells to migrate, di-
vide, and differentiate (keratinize), cover-
ing the granulation tissue with a cellular
barrier to desiccation and infection
(15,18,23–25).

The remodelling phase begins about
the 7th day of wound healing and can
continue for 6 months to a year. Early in
the remodelling phase, the provisional
wound matrix, which consists predomi-

nately of fibrin and fibronectin, is re-
placed with proteoglycan molecules and
collagen molecules (type III, type I) that
become cross-linked by enzymatic action,
which greatly increases the tensile
strength of the scar matrix. In addition,
some fibroblasts are stimulated to trans-
form into myofibroblasts that contract the
wound matrix. In the final stages of re-
modelling, the high density of new blood
vessels and myofibroblasts in the scar de-
crease as vascular endothelial cells and fi-
broblasts undergo programmed cell death
(apoptosis), and the hypertrophic epider-
mal layer becomes thinner. These com-
plex processes are regulated by the
integrated actions of growth factors, cyto-
kines, proteases, and extracellular matrix
components. At the end of the wound
healing process, the wound is completely
closed. However, the repaired tissue does
not completely regenerate the original tis-
sue structure, and some level of function-
ality of the scar tissue is usually lost
(15,22).

PATHOGENESIS OF
WOUND HEALING IN
CHRONIC WOUNDS — Results of
many studies have identified defects of
wound healing in patients with diabetes
that can be explained in large part by dys-

functional wound cells and by imbalances
in key proteases, cytokines, and growth
factors. In contrast to normal wound heal-
ing, the inflammatory reaction in poorly
healing diabetic wounds appears pro-
longed, which generates a correspond-
ingly intensified protease response, in
particular MMPs and neutrophil elastase
(Fig. 2). These inflammatory reactions are
possibly the result of bacterial contamina-
tion and recurrent painless tissue trauma.
Bacterial endotoxins, fragments of extra-
cellular matrix, and cell detritus maintain
this inflammation, which is evidenced by
the large number of neutrophil granulo-
cytes in the wound. The granulocytes also
secrete proinflammatory cytokines, par-
ticularly tumor necrosis factor-� (TNF-�)
and interleukin (IL)-1�. Both of these cy-
tokines are capable of directly stimulating
the synthesis of MMPs. In addition,
TNF-� stimulates its own secretion and
that of IL-1�, which can contribute to a
persistent inflammatory status (15,18,
26). Thus, normal wound healing re-
quires a balanced interaction of growth
factors, cytokines, proteases, and extra-
cellular matrix. In chronic wounds, the
high level of proteases in the wound site
leads to a disrupted and uncoordinated
wound healing process by degrading ma-
trix proteins and growth factors that are

Figure 1—Phases of normal wound healing.
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Table 1—Major growth factor families

Growth factor family Cell source Actions

TGF-�: TGF-�1, TGF-�2, and TGF-�3 Platelets Fibroblast chemotaxis and activation
Fibroblasts ECM deposition
Macrophages Collagen synthesis

TIMP synthesis
MMP synthesis
Reduces scarring
Collagen
Fibronectin

PDGF: PDGF-AA, PDGF-BB, and VEGF Platelets Activation of immune cells and fibroblasts
Macrophages ECM deposition
Keratinocytes Collagen synthesis
Fibroblasts TIMP synthesis

MMP synthesis
Angiogenesis

FGF: acidic FGF, basic FGF, and KGF Macrophages Angiogenesis
Endothelial cells Endothelial cell activation
Fibroblasts Keratinocyte proliferation and migration

ECM deposition
IGF: IGF-I, IGF-II, and insulin Liver Keratinocyte proliferation

Skeletal muscle Fibroblast proliferation
Fibroblasts Endothelial cell activation
Macrophages Angiogenesis
Neutrophils Collagen synthesis

ECM deposition
Cell metabolism

EGF: EGF, HB-EGF, TGF-�, amphiregulin, and betacellulin Keratinocytes Keratinocyte proliferation and migration
Macrophages ECM deposition

CTGF Fibroblasts Mediates action of TGF-�s on collagen synthesis
Endothelial cells
Epithelial cells

Cytokines involved in wound healing Cell source Biological activity

Proinflammatory cytokines
TNF-� Macrophages PMN margination and cytotoxicity, � collagen synthesis,

and provides metabolic substrate
IL-1 Macrophages Fibroblast and keratinocyte chemotaxis and collagen

synthesis
Keratinocytes

IL-2 T-cells Increases fibroblast infiltration and metabolism
IL-6 Macrophages Fibroblast proliferation and hepatic acute-phase protein

synthesis
PMNs
Fibroblasts

IL-8 Macrophages Macrophage and PMN chemotaxis and keratinocyte
maturation

Fibroblasts
�-Interferon T-cells Macrophage and PMN activation, retards collagen syn-

thesis and cross-linking, and stimulates collagenase
activity

Macrophages
Anti-inflammatory cytokines

IL-4 T-cells Inhibition of TNF, IL-1, and IL-6 production; fibroblast
proliferation; and collagen synthesis

Basophils
Mast cells

IL-10 T-cells Inhibition of TNF, IL-1, and IL-6 production and
inhibits macrophage and PMN activation

Macrophages
Keratinocytes

CTGF, connective tissue growth factor; ECM, extracellular matrix; FGF, fibroblast growth factor; HB-EGF, heparin binding epidermal growth factor; KGF,
keratinocyte growth factor; PMN, polymorphonuclear leukocyte; VEGF, vascular endothelial growth factor.
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essential for healing (Fig. 3) (26,27). A re-
cent study by Piaggesi et al. (28) found that
pressure relief of neuropathic ulcers in 10
diabetic patients provided by total-contact
casts significantly reduced ulcer size after 20
days of casting compared with patients with
comparable lesions and glycemic control
but without casts. Furthermore, the his-
topathological features of the two groups
differed markedly. Patients without pres-
sure relief showed a predominance of in-
flammatory elements as well as matrix
alterations, vessel disruptions, inflamma-
tion, and debris. Ulcers in patients with to-
tal-contact casts showed a shift toward a
reparative pattern with prevalence of newly
formed capillaries and fibroblasts. These re-
sults indicate that pressure relief with a to-
tal-contact cast is associated with changes in
the histology of neuropathic foot ulcers, in-
dicating reduction of inflammatory and re-
active components and acceleration of
reparative processes. This supports the hy-
pothesis proposed initially by Mast and
Schultz (18) that repeated injury of tissue
leads to prolonged inflammation, which
causes elevated levels of proteases that de-
grade molecules that are essential to heal-
ing, eventually leading to a failure of the
wound to heal.

CYTOKINES AND GROWTH
FACTORS IN WOUND
HEALING — Cytokines and growth
factors are small polypeptides that are se-

creted by different cell types and act as
molecular signals that control cellular
proliferation, differentiation, migration,
and metabolism (Tables 1 and 2). They
modulate the composition and turnover
of various components of the extracellular
matrix. In the first phase of wound heal-
ing, TNF-�, TGF-�, and PDGF appear to
be particularly relevant (29,30). Multiple
animal studies have reported that addi-
tion of exogenous growth factors are able
to positively influence wound healing in
acute and impaired wounds (29,31–33).
Moreover, studies have found reduced
concentrations of growth factors (PDGF,
basic fibroblast growth factor, EGF, and
TGF-�) in chronic wounds compared
with acute wounds (34). In addition,
Falanga et al. (35) reported that fluids col-
lected from chronic venous ulcers inter-
fered with cell proliferation. Also, Schultz
et al. (36) found evidence that drainage
fluid after mastectomy stimulated mito-
sis but exudates from chronic wounds
inhibited cell proliferation. The results
of these studies suggest that the activi-
ties of cytokines and growth factors that
are essential for cell proliferation are ab-
sent or significantly reduced in chronic
wounds.

A number of cytokines, such as IL-1,
-2, -6, and -8, are upregulated during the
process of acute wound healing (18). IL-1
plays an important role in the early phase
of wound healing by recruiting leuko-

cytes into the wound area (37). In skin
wounds, IL-1 is predominantly produced
by epithelial cells, and exogenously added
IL-1 improved wound healing in several
animal studies (38–40). Similarly, treat-
ment of skin wounds in animals with IL-2
increased the number of lymphocytes in
the wounds and resulted in better colla-
gen production and mechanical consis-
tency of the wounds, which demonstrates
the positive influence of T-cells on wound
healing (41,42).

In vitro, TGF-� stimulates several im-
portant functions of fibroblasts, including
chemotactic migration, synthesis of extra-
cellular matrix components (fibronectin
and collagen), and contraction of matrix.
Local application of TGF-� enhances col-
lagen production and mechanical tensile
strength of wounds in normal rats (43). In
addition, injections of TGF-� (or basal fi-
broblast growth factor) into polyvinyl al-
cohol sponges implanted subcutaneously
in normal rats or streptzotocin-induced
diabetic rats significantly increased accu-
mulation of granulation tissue and colla-
gen (44).

PDGF is another key growth factor in
wound healing. PDGF is secreted by mac-
rophages, endothelial cells, fibroblasts,
and megakaryocytes. It stimulates che-
motactic migration of fibroblasts, smooth
muscle cells and inflammatory cells, stim-
ulates proliferation, and increases synthe-
sis of collagen by fibroblasts (45,46).

Figure 2—Imbalances in the molec-
ular environments of acute healing
wounds and chronic nonhealing
wounds.
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Local application of PDGF increases col-
lagen production and angiogenesis in
acute wounds of rats and normalizes heal-
ing processes in diabetic animals (47).

MMPS IN WOUND
HEALING — MMPs play essential
roles in initial wound debridement as well
as in the phases of angiogenesis, epitheli-
alization, and remodelling of scar (48–
53). The large family of MMPs contains
about 20 different enzymes that can be
grouped into several distinct subclasses
(collagenases, gelatinases, stromelysins,
and membrane-type MMPs [MT-MMPs])
based on the structure of the substrates
that are cleaved and the structures of the
MMPs (Table 3) (24,48,54). MMPs are
broadly expressed by inflammatory cells,
fibroblasts, endothelial cells, and keratin-

ocytes at different times during wound
healing. The control of expression into
the wound area and the timed release of
different MMPs is directly associated with
a successful and well-structured wound
healing (48,55). For example, the expres-
sion of MMP-1 is typically associated with
the migra t ion o f ke ra t inocy t e s
(24,56,57). MMP-3 is needed for recon-
struction of the new basement mem-
brane. MMP-2 and MMP-9 are needed to
remove denatured fibrillar collagen and
for the proper development of granula-
tion tissue (55,58,59).

Synthesis, activation, and inhibition
of MMPs
The activity of MMPs is controlled on
three levels. First, transcription is highly
regulated by several cytokines, especially

EGF, PDGF, IL-1, and TNF-� (60–65).
While these factors primarily stimulate
the production of MMPs, TGF-� is able to
reduce the production of MMPs through
inhibition of transcription (66–70). Sec-
ond, MMPs are synthesized as inactive
proenzymes that must be activated and
released by proteases, including kal-
likrein, plasmin, or elastase (71). Third,
MMP activities are regulated by inhibition
by tissue inhibitors of metalloproteases
(TIMPs) (48,72).

Different actions of MMPs
Collagenases. MMP-1, -3, -8, and -13
are the only subfamily of MMPs that are
capable of rapidly cutting the intact triple
helix of fibrillar collagens. Only after the
collagenases make a single initial cut of
fibrillar collagens can other MMPs, such

Figure 3—Model of the molec-
ular pathophysiology of chronic
wounds.
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as the gelatinases, further degrade the col-
lagen molecules. MMP-1 secretion by fi-
broblasts, migrating epidermal cells, and
vascular endothelial cells begins to in-
crease during the postacute phase of
wound healing since the gene must be
transcribed and the mRNA translated into
protein (73,74). In contrast, preformed
MMP-8 is released rapidly from storage
granules of activated neutrophil granulo-
cytes (57,75). MMP-1 and MMP-8 are ad-
ditionally able to degrade elastin and
types VII, VIII, and X collagen (53,74).
Gelatinases. MMP-2 (72-kDa gelatinase
A) and MMP-9 (92-kDa gelatinase B)
preferentially degest partially denatured
fibrillar collagens (types I, I, and III) after
collagenases make an initial cut that
opens their extended triple helix structure
(76). The gelatinase are also able to de-
grade nonfibrillar types of collagens, in-
cluding IV, V, VII, and X collagen (74).
MMP-2 is the most widespread of all
MMPs, being expressed in skin fibro-
blasts, keratinocytes, vascular endothelial
cells, and monocytes. MMP-2 is often made
constitutively, but it is usually not activat-
ed unless conditions surrounding the cells
change. In contrast, MMP-9 is not made
constitutively, but its synthesis is induced
in leukocytes, keratinocytes, monocytes,

and macrophages as well as by various
malignantly transformed cells (77).
Stromelysin. The Stromelysin subfamily
of MMPs contains several members
(MMP-3, -7, -10, -11, and -12). Due to
their broad substrate specificity, this class
of MMPs is especially connected with the
degradation of proteoglycans, nonfibrillar
collagens, and noncollagen components
of basement membranes (collagen type
IV, V, IX, and X, elastin, and fibronectin)
(78,79). MMP-3 levels generally increase
later in wound repair and may coincide
with the initiation of wound contraction
(73,80).
MT-MMPs. MT-MMPs are a unique
subgroup of MMPs because they are
bound to cell membranes by a hydro-
phobic segement. So far, four different
types of MT-MMPs (MT1–MT4) have
been found (24,81). Their functions in-
clude proteolytic activation of other
pro-MMPs, including pro–MMP-2 and
MMP-9 (82,83).
TIMPs. TIMP-1 and TIMP-2 bind non-
covalently to the active form of MMPs and
inhibit their activity. TIMP-1 can bind to
all active MMPs but preferentially inhibits
MMP-1. TIMP-2 is more effective in inhib-
iting MMP-2 than TIMP-1 (84,85–89).

ABNORMAL LEVELS OF
MMPS IN CHRONIC
WOUNDS — A balance between pro-
teases and their inhibitors is necessary for
a correct wound healing, and several
studies (90,91) have found elevated levels
of proteases and reduced levels of inhibi-
tors in chronic wounds (Fig. 2). Increased
levels of MMP-2 and MMP-9 could be
demonstrated in various chronic wound
liquids (89). Increased levels of MMP-1
and MMP-8 were found in decubital ul-
cers (26). Similar results were obtained
for MMP-13 in venous ulcer lesions (92).
At the same time, reduced levels of TIMPs
were found in chronic wound fluids
(90,93). Ladewig et al. (56) demonstrated
the ratio of MMP-9 to TIMP-1 as an im-
portant predictor for healing of chronic
wounds, demonstrating an inverse corre-
lation with the healing tendency of
chronic pressure ulcers. Similar processes
can be expected in nonhealing or badly
healing diabetic foot lesions; first hints
could be found in studies by Loots et al.
(94), Dahn et al. (95), and Mansbridge
et al. (96).

Our own data show higher concen-
trations of MMPs (MMP-2, -9, and -8) and
reduced concentrations of inhibitors of
MMPs (TIMP) in diabetic wounds com-
pared with trauma lesions of a control
group with normal glucose metabolism.
In contrast to normal wound healing, an
overexpression of these proteases seems
to support a delayed wound healing and
lead to a failure of wounds to heal. Addi-
tionally, there is evidence of an imbalance
between MMPs and TIMPs that signifi-
cantly contributes to the pathogenesis of
nonhealing chronic lesions (97). First
clinical studies (98–102) seem to confirm
this concept and the clinical efficacy.

CLINICAL STUDIES WITH
GROWTH FACTORS AND
PROTEASE INHIBITORS

Local therapy with growth factors
Based on results of studies discussed
above, which found low concentrations of
several key growth factors, reduced mito-
genic activity, and elevated levels of pro-
teases in fluids collected from chronic
wounds, it was reasonable to theorize that
topical treatment of chronic wounds with
exogenous growth factors would correct
the deficiency of growth factors and pro-
mote healing (47). Numerous animal
studies (29,31–33) supported the ability

Table 2—MMPs and TIMP

Protein Pseudonym Substrates

MMP-1 Interstitial collagenase Types I, II, III, VII, and X collagens
Fibroblast collagenase

MMP-2 72-kDa gelatinase Types IV, V, VII, and X collagens
Gelatinase A
Type IV collagenase

MMP-3 Stromelysin-1 Types III, IV, IX, and X collagens
Types I, III, IV, and V gelatins
Fibronectin, laminin and procollagenase

MMP-7 Matrilysin Types I, III, IV and V gelatins
Uterine metalloproteinase Casein, fibronectin and procollagenase

MMP-8 Neutrophil collagenase Types I, II, and III collagens
MMP-9 92-kDa gelatinase Types IV and V collagens

Gelatinase B Types I and V gelatins
Type IV collagenase

MMP-10 Stromelysin-2 Types III, IV, V, IX, and X collagens
Types I, III, and IV gelatins
Fibronectin, laminin, and procollagenase

MMP-11 Stromelysin-3 Not determined
MMP-12 Macrophage metalloelastase Soluble and insoluble elastin
MT-MMP-1 Membrane-type MMP-1 Pro-MMP-2
MT-MMP-2 Membrane-type MMP-2 Not determined
TIMP-1 Tissue inhibitor of metalloproteinases-1 Collagenases
TIMP-2 Tissue inhibitor of metalloproteinases-2 Collagenases
TIMP-3 Tissue inhibitor of metalloproteinases-3 Collagenases
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of local application of various growth fac-
tors (PDGF, basic fibroflast growth factor,
and TGF-�1) to promote healing of nor-
mal and impaired wound models. This
led to one of the first clinical studies
(103), performed almost 20 years ago,
that showed a positive effect of locally ap-
plied autologous platelet extract on heal-
ing of human chronic wounds.

The use of standardized growth factor
preparations produced by recombinant
DNA technology was an attractive alter-
native to production of autologous plate-
let extracts by wound care providers
because it bypassed the need for local
technology infrastructure necessary to
produce autologous platelet extract and
the variability of growth factor activity be-
tween preparations. There are now mul-
tiple clinical studies (104–111) on the
diabetic foot syndrome evaluating the use
of recombinant PDGF (Regranex) that
showed improvements in the probability
of healing and reduction of healing time.
Smiell et al. (112) reported that the per-
centage of patients with a fully healed
wound after application of rhPDGF was
much higher (39%) than of those treated
with a placebo (P � 0.007). A very impor-
tant clinical observation that came from
the development of Regranex was that the
wound bed needed to be properly de-
brided for the growth factor to have max-
imum benefit (113). This concept led to
the formalization of the concept of wound
bed preparation, which emphasizes the
removal of barriers to healing and the in-
tegration of advanced technologies in
wound care (114).

Local therapy with protease
inhibitors
The other common characteristic of
chronic wounds, besides reduced growth
factor activity, is elevated protease activi-
ties. Thus, it is reasonable to theorize that
local (or systemic) treatment of chronic
wounds with protease inhibitor(s) would
promote healing. This led to the simple
approach of treating chronic diabetic foot
ulcers with doxycycline, which is an anti-
biotic of the tetracycline family of mole-
cules that has the unusual property of also
being a competitive inhibitor of metallo-
proteases, including the MMPs and the
TNF-� converting enzyme. Doxycycline
can also reduce inflammation by reducing
synthesis of nitric oxide (NO) (101,102,
115). Evaluation of a chemically tetracy-
cline analogue in an animal study (116)

also showed that local therapy reduced
levels of MMP-8 and MMP-13 mRNA in
dermal wounds of rats. Supporting this
concept, an initial report (117) of a random-
ized controlled trial showed improved
healing of chronic diabetic foot ulcers
treated with a topical doxycycline gel.

Another approach to reducing pro-
tease activity in chronic wounds is to ap-
p ly dress ings tha t conta in h igh
concentrations of gelatin, which is a sub-
strate for MMPs (98–100,118). In a clin-
ical study, Cullen et al. (98) reported that
elastase and plasmin activities in wound
fluids were significantly reduced by a lo-
cal therapy with the protease inhibitor
dressing, Promogran. Further studies
(99,100) reported a trend to more fre-
quent and rapid healing of diabetic foot
ulcers and venous ulcers with these pro-
tease inhibitors. It is theorized that the
Promogran dressing improved healing by
reducing the activites of MMPs (and per-
haps serine proteases such as elastase) in
the molecular environment of the wound.
Further data will be needed to substanti-
ate this theory. Another new dressing
consisting of metal ions and citric acid
(Dermax) was reported (119) to reduce
reactive oxygen species and decrease
MMP-2 production in vitro.

SUMMARY — The long duration of
treatment as well as high costs to treat
Wagner stage 2–4 of diabetic foot ulcers
make it imperative to employ effective
programs that prevent wounds from de-
veloping and accelerate healing rates once
wounds occur (120). Most diabetic ulcer-
ations can be prevented by educating and
informing patients (120–127). Once a
wound develops, �70% of neuropathic
foot lesions in diabetic patients can
achieve healing by structured and stage-
related therapy (off loading) and remov-
ing the barriers to natural healing by
employing the concepts of wound bed
preparation (debridement, control of in-
fection/inflammation, proper moisture
balance, and care of the epidermal edge)
(128–131). When more advanced adju-
vant therapies are needed to promote
healing, the therapies employed should
be based on correcting the molecular de-
fects that have been identified in chronic
wounds, such as increasing the levels of
biologically active growth factors
(106,132–135) and reducing elevated
levels of proteases (22,95,98,101,120,
134,136–138). Advanced adjuvant ther-

apies employing autologous platelet
extracts, recombinant growth factors,
protease inhibitors, dressings that reduce
protease activities, and bioengineered
skin substitutes are currently available.
Future studies will need to evaluate if
combinations of advanced adjuvant ther-
apies are beneficial in especially hard to
heal diabetic wounds.
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