
Why Might Thiazolidinediones Increase
Exercise Capacity in Patients With Type 2
Diabetes?

Individuals with type 2 diabetes are in-
sulin resistant and as a group have a
lower exercise capacity (VO2max) than

age- and weight-matched people without
diabetes (1,2). In this issue, Regensteiner
et al. (3) report that rosiglitazone (RSG), a
thiazolidinedione (TZD) commonly used
to treat insulin resistance, also improves
exercise capacity in patients with type 2
diabetes. Following 4 months of treat-
ment with 4 mg/day RSG, the authors ob-
served expected improvements in insulin
sensitivity as determined by homeostasis
model assessment and a hyperinsuline-
mic-euglycemic clamp in 10 middle-aged
men and women with type 2 diabetes. A
novel finding was that RSG caused a mod-
est but significant increase in VO2max (1.4
ml � kg�1 � min�1 or �7.1%). These ob-
servations raise three fundamental ques-
tions: 1) Why is type 2 diabetes associated
with a decrease in exercise capacity? 2)
How might TZDs, such as RSG, counter-
act this? and 3) Is the effect of RSG on
exercise capacity likely to be clinically
relevant?

Recent studies suggest several expla-
nations for the decrease in VO2max in pa-
tients with type 2 diabetes. One of these is
the presence of mitochondrial dysfunc-
tion. As reported by Kelley et al. and Ritov
et al., (4–6) skeletal muscle of sedentary
middle-aged individuals with established
type 2 diabetes (HbA1c 8.0 � 0.2%) ex-
hibits reduced mitochondrial oxidative
enzyme (succinate dehydrogenase) activ-
ity and electron transport chain capacity
(rotenone-sensitive NADH:O2 oxido-
reductase activity) (�26 and 59%, re-
spectively), smaller mitochondria, and
higher intramyocellular triglyceride con-
tent than muscle of normal control sub-
jects. Their data also suggested that
subsarcolemmal mitochondria were espe-
cially affected. In addition to these find-
ings, Mootha et al. (7), using a strategy
referred to as Gene Set Enrichment Anal-
ysis, profiled �22,000 genes in a muscle
biopsy and identified a subset of �100
coregulated oxidative phosphorylation
genes in which expression was signifi-
cantly reduced (�20%) in men (65.5 �

1.8 years) with type 2 diabetes. They
noted that the expression of the vast ma-
jority of these genes is under the control
of peroxisome proliferator–activated re-
ceptor � (PPAR�) coactivator 1� (PGC-
1�), a transcriptional regulator of
mitochondrial biogenesis whose abun-
dance is also reduced (�20%) in type 2
diabetes. In addition, they observed a
close relationship between the expression
of this subset of mitochondrial genes and
VO2max. Similar alterations in PGC-1�
and PGC-1�–responsive genes were re-
ported in younger (�45 years) men and
women with type 2 diabetes by Patti et al.
(8). Whether alterations in mitochondrial
genes are a primary event (hereditary) in
these patients or are secondary to genetic
or acquired abnormalities in cellular fuel
metabolism due to nutrient excess or in-
activity remains to be determined.

A second factor that could lead to a
decrease in VO2max in patients with type 2
diabetes is impaired muscle blood flow.
Endothelial dysfunction, as manifest by
impaired flow-mediated vasodilation (in-
crease in brachial artery diameter follow-
ing postocclusion-induced hyperemia),
diminished acetylcholine-induced vaso-
dilation (9), or an impaired ability of in-
sulin to increase muscle blood flow (10),
has been described in patients with type 2
diabetes. The increase in O2 use by mus-
cle during incremental exercise is in part
mediated by its ability to extract oxygen
from the blood, an adaptation that ap-
pears to involve vasodilation of terminal
arterioles and a resultant increase in cap-
illary surface area in the working muscles.
Clark et al. (11) have noted that it is by
such a mechanism that exercise and insu-
lin stimulate a shift from nonnutritive to
nutritive blood flow in skeletal muscle
and that this effect is enhanced by exer-
cise training and impaired by insulin re-
sistance and factors that cause it (e.g.,
inflammatory cytokines). The relative
physiologic importance of this distur-
bance in blood flow versus mitochondrial
abnormalities and other factors (e.g.,
myocardial dysfunction, genetic differ-
ences in muscle fiber type) to the de-

creased VO2max in patients with type 2
diabetes remains to be determined. As
will be discussed later, a closely related
abnormality that could play a role in di-
minishing VO2max is dysregulation of the
fuel-sensing enzyme AMP-activated pro-
tein kinase (AMPK).

TZDs, such as RSG, could improve
VO2max by multiple mechanisms. First, by
binding to the PPAR� in adipose tissue,
presumably the major target of TZD ac-
tion (12), they enhance the transcription
of genes that stimulate preadipocyte dif-
ferentiation and increase fatty acid trans-
port, synthesis, and storage in adipose
tissue. These actions in turn lead to de-
creased levels of plasma free fatty acids
and intramyocellular and intrahepatic
triglycerides, events widely believed to
contribute to the ability of TZDs to dimin-
ish cellular lipotoxicity and secondarily
attenuate insulin resistance and mito-
chondrial and endothelial cell dyfunction
(13).

TZDs could also enhance VO2max by
modifying the synthesis and release of a
number of adipocyte-derived signaling
molecules (adipokines) that affect both
insulin sensitivity and vascular function
(e.g., brachial artery diameter). One of
these molecules is adiponectin, a robust
insulin sensitizer whose concentration is
decreased in people with obesity, type 2
diabetes, and coronary heart disease as
well as in individuals at increased risk for
these disorders (14,15). Treatment with
TZDs causes an approximately twofold
increase in plasma adiponectin in patients
with type 2 diabetes (16). Adiponectin,
like insulin, has been reported to stimu-
late the production of nitric oxide in vas-
cular endothelial cells (17) and to
diminish endothelial dysfunction caused
by tumor necrosis factor � and other fac-
tors in cultured cells (18). In addition, it
has been demonstrated to diminish ec-
topic lipid deposition, a close correlate of
insulin resistance and cellular dysfunc-
tion, in muscle and liver (19,20).

Intriguingly, adiponectin links RSG
and other TZDs to AMPK (21,22). Thus,
adiponectin has been shown to increase
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AMPK activity in rodent tissues in vivo
and in vitro (22,23), and the ability of
chronic TZD therapy to activate AMPK is
diminished in adiponectin knockout
mice (A. Nawrocki, E. Tomas, N.B.R., P.
Scherer, unpublished data). On the other
hand, acute (within 30 min) effects of
TZDs on AMPK activity have been ob-
served in rodent tissues in vivo (N.K.L.,
M. Kelley, E. Tomas, N.B.R., unpublished
data) and in cultured cells (24), suggest-
ing that TZDs may also activate AMPK by
other mechanisms. Exercise and another
insulin-sensitizing drug, metformin, have
also been shown to activate AMPK in var-
ious rodent tissues; however, the mecha-
nism by which they do so is incompletely
understood. Interestingly, activation of
AMPK in muscle and other tissues leads to
increases in fat oxidation, induction of
PGC-1� and genes governing mitochon-
drial biogenesis and enzymes of oxidative
phosphorylation, and protection against
the lipotoxic effects of excess fatty acids
and cytokines (e.g., in liver, muscle, en-
dothelium, and pancreatic �-cells) (rev.
in 15). Conversely, decreases in its activ-
ity have been observed in a number of
rodents with insulin resistance, as well as
in the interleukin-6 knockout mouse in
which it is associated with a decreased
capacity for exercise (25). In addition,
TZDs and the AMPK activator, AICAR,
have also been shown to prevent the de-
velopment of diabetes in the Zucker dia-
betic fatty rat, a rodent with a defective
leptin receptor and diminished AMPK ac-
tivity that typically becomes obese and se-
verely hyperglycemic as it ages (26).
Whether they prevent mitochondrial and
endothelial cell dysfunction in these ani-
mals is unknown.

In summary, the study by Regen-
steiner et al. suggests that in addition to
improving insulin sensitivity, TZDs may
increase exercise capacity in patients with
established type 2 diabetes. Its effects on
VO2max in the present study were modest,
suggesting that their efficacy for this pur-
pose in people with established type 2 di-
abetes may be limited or that a period of
treatment in excess of 4 months is needed.
Such findings also raise the question of
whether treatment with TZDs or possibly
other AMPK activators would be more ef-
fective if started earlier. In this regard, ev-
idence of mitochondrial dysfunction,
insulin resistance, and decreased VO2max
has been observed both in people with
impaired glucose tolerance (7) and in eu-
glycemic offspring of patients with type 2
diabetes (8). To what extent these indi-

viduals would benefit clinically from
treatment with TZDs, diet and exercise, or
metformin remains to be determined.
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