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OBJECTIVE — The objective of this study was to introduce continuous glucose– error grid
analysis (CG-EGA) as a method of evaluating the accuracy of continuous glucose-monitoring
sensors in terms of both accurate blood glucose (BG) values and accurate direction and rate of BG
fluctuations and to illustrate the application of CG-EGA with data from the TheraSense Freestyle
Navigator.

RESEARCH DESIGN AND METHODS — We approach the design of CG-EGA from
the understanding that continuous glucose sensors (CGSs) allow the observation of BG fluctu-
ations as a process in time. We account for specifics of process characterization (location, speed,
and direction) and for biological limitations of the observed processes (time lags associated with
interstitial sensors). CG-EGA includes two interacting components: 1) point– error grid analysis
(P-EGA) evaluates the sensor’s accuracy in terms of correct presentation of BG values and 2) rate–
error grid analysis (R-EGA) assesses the sensor’s ability to capture the direction and rate of BG
fluctuations.

RESULTS — CG-EGA revealed that the accuracy of the Navigator, measured as a percentage
of accurate readings plus benign errors, was significantly different at hypoglycemia (73.5%),
euglycemia (99%), and hyperglycemia (95.4%). Failure to detect hypoglycemia was the most
common error. The point accuracy of the Navigator was relatively stable over a wide range of BG
rates of change, and its rate accuracy decreased significantly at high BG levels.

CONCLUSIONS — Traditional self-monitoring of BG device evaluation methods fail to
capture the important temporal characteristics of the continuous glucose-monitoring process.
CG-EGA addresses this problem, thus providing a comprehensive assessment of sensor accuracy
that appears to be a useful adjunct to other CGS performance measures.
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T he premise behind increasing re-
search and industrial efforts on the
development of continuous glucose

sensors (CGSs) is that the accurate assess-

ment of blood glucose (BG) dynamics is a
valuable tool for both everyday mainte-
nance of diabetes and long-term effective-
ness of glycemic control (1,2). Compared

with a few self-monitoring of BG (SMBG)
readings per day, CGSs yield a detailed
time series of BG samples (e.g., every 5
min). Thus, CGS technology has the po-
tential to revolutionize diabetes manage-
ment by providing patients with ongoing
online feedback about current BG levels
and rate/direction of change, as well as
signaling to alert for possible dangerous
trends such as rapid BG descents that may
lead to hypoglycemia.

Evaluating the accuracy of CGSs,
however, is not straightforward, espe-
cially if taken in the context of established
accuracy measures such as correlation or
regression, consensus error grid analysis
(EGA) (3), or the clinically based EGA in-
troduced by our group 18 years ago (4,5).
The problem is that these measures judge
the quality of the approximation of refer-
ence BG (RBG) from readings taken at iso-
lated static points in time, regardless of
the temporal structure of the data. In
other words, a random reshuffling of data
in time will not change the accuracy esti-
mates. As such, these measures work well
for the evaluation of SMBG devices by
providing relatively distant readings in
time. However, applying these measures
to evaluate the continuous process ap-
proximation offered by CGSs is question-
able because the time sequence of the data
in such a process is of great importance.
An analogy of CGSs versus SMBG with
camcorders versus still cameras is inevita-
ble and might be helpful; still cameras
produce highly accurate snapshots at ran-
dom sparse points in time, and camcord-
ers generally offer lower resolution of
each separate image but capture the dy-
namics of the action. Thus, it would be
inappropriate to gauge the accuracy of
still cameras and camcorders using the
same static measure of the number of pix-
els in a single image. Similarly, it is inap-
propriate to gauge the precision of CGS
and SMBG devices using the same mea-
sures and to ignore the temporal charac-
teristics of the observed process.
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This study introduces the new con-
tinuous glucose–error grid analysis (CG-
EGA), which was specifically designed to
evaluate the clinical accuracy of CGSs in
terms of both precision of BG readings
and precision of BG rate of change. Unlike
the original EGA, the CG-EGA examines
temporal characteristics of the CGS data,
analyzing pairs of reference and sensor
readings as a process in time represented
by a bidimensional time series and taking
into account inherent physiological time
lags. The estimates of point and rate pre-
cision are then combined in a single accu-
racy assessment presented for each one of
three preset BG ranges: hypoglycemia
(RBG �70 mg/dl), euglycemia (70–180
mg/dl), and hyperglycemia (�180 mg/
dl). Like the original EGA (5,6), CG-EGA
focuses on the clinical implications of
measurement errors by addressing the
question of what type of clinical outcome
might occur if the patient took action
based on CGS feedback about BG levels
and rate of change. Thus, CG-EGA evalu-
ates the accuracy of CGSs to prompt ap-
propriate clinical action by the patient or
by a future automated insulin-delivering
device coupled with CGSs. CG-EGA is

not intended to study the accuracy of
long-term trends depicted by CGSs. In
our conclusions, we discuss this point
further, together with ideas for studying
long-term trend accuracy using contem-
porary time series analysis methods.
Thus, CG-EGA is only the first step in a
series of methods for evaluating the rather
complex problem of estimating time se-
ries approximation accuracy.

While development of the CG-EGA is
based on accepted clinical assumptions
and is data independent, we illustrated
the application of the CG-EGA by using
data from a clinical trial to analyze the
accuracy of one new CGS device, the
TheraSense Freestyle Navigator (Thera-
Sense, Alameda, CA).

RESEARCH DESIGN AND
METHODS

Mathematical model
BG fluctuations are a continuous process
in time [BG(t)]. Each point of that process
is characterized by its location, speed, and
direction of change. Thus, at any point in
time BG(t) is a vector with a specific bear-
ing. CGSs allow the monitoring of this

process in short (e.g., 5- to 10-min) incre-
ments, producing a parallel discrete time
series that approximates BG(t). CG-EGA
has to judge the precision of this process of
approximation in terms of both accuracy of
BG readings and accuracy of evaluation of
BG change. Thus, we introduced a new
concept of rate– error grid analysis (R-EGA)
as well as modified the traditional EGA into
a new point–error grid analysis (P-EGA)
that reflects the temporal characteristics of
BG(t).

CGS testing protocol
To capture the accuracy of a CGS
throughout dynamic BG fluctuation, a de-
vice testing procedure would need to
record frequent pairs of RBG and sensor
BG (SBG) readings. Regardless of the sen-
sor frequency of measurement, the pace
of data acquisition for CG-EGA is con-
trolled by the pace of acquisition of refer-
ence data points. Since obtaining frequent
RBG data is a laborious process, we sug-
gest reference readings taken in 10- to 15-
min increments, a sampling frequency
that is sufficient enough to capture a rep-
resentative picture of BG fluctuation, and
in several �4-h blocks that are represen-
tative of the life of the sensor and for the
testing conditions (e.g., insulin, carbohy-
drate, exercise challenges, etc.). While the
precise frequency of reference readings
and testing protocol duration would be
established by a future consensus, to con-
struct R-EGA and P-EGA we assume that
paired RBG-SBG readings are available
through a sufficiently frequent sampling.

R-EGA
For each pair of RBG readings [RBG(t1),
RBG(t2)] taken at times t1 and t2, the RBG
rate is computed as �BG divided by the
elapsed time. RBG rate of change (mg �
dl�1 � min�1) � [RBG(t2) � RBG(t1)]/(t2
� t1). Similarly, for each SBG-reported
pair [SBG(t1), SBG(t2)], SBG rate is com-
puted as SBG rate of change (mg � dl�1 �
min�1) � [SBG(t2) � SBG(t1)]/(t2 � t1).

SBG rate is then plotted against the
RBG rate (Fig. 1). The boundaries of this
particular scatterplot are set to �4 to 4 mg
� dl�1 � min�1, which would depict
�99% of the observed rates of change.
However, the R-EGA is not limited by
these boundaries (any rate of change
could be evaluated), as the R-EGA zones
theoretically extend to infinity.

The R-EGA scatterplot is divided into
zones A through E, which have a clinical

Figure 1—R-EGA divided into AR, BR, CR, DR, and ER for SBG versus RBG. l, lower; R, rate; u,
upper.
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meaning similar to the original EGA (5,6).
Accurate AR zone is the main diagonal in
Fig. 1 and signifies a perfect fit. An SBG
rate within 1 mg � dl�1 � min�1 from the
diagonal is considered accurate. The ac-
curacy boundaries are expanded to �2
mg � dl�1 � min�1 at extreme BG rates of
�4 mg � dl�1 � min�1. Because such rapid
rates are rare and cannot be sustained for
prolonged periods, a correct recognition
of their direction is sufficient for an accu-
rate clinical decision. In the CR zone
(over-correction), the reference rate is �1
to 1 mg � dl�1 � min�,1 showing no signif-
icant BG fluctuation. However, the sensor
displays a significant BG fluctuation,
which could lead to overtreatment. The
CR zone is divided into overestimation
(upper CR) and underestimation (lower
CR) of the reference rate of change. In the
DR zone (failure to detect), RBG shows
significant change, while SBG fails to de-
tect that change, showing readings within
�1 to 1 mg � dl�1 � min�1. Upper DR and
lower DR zones signify the failure to detect
rapid BG fall or rise. In the ER zone (erro-
neous reading), the sensor display read-
ings are opposite the reference rate of
change. Upper ER, which is an actual BG

decline, is estimated as BG rise, whereas
lower ER, which is an actual BG rise, is
interpreted as BG fall. The BR zone (be-
nign errors) shows sensor errors that do
not cause inaccurate clinical interpreta-
tion, or if they do, treatment action is un-
likely to occur or to result in a negative
outcome.

P-EGA
This analysis follows the clinical logic of
our traditional EGA (5,6). As presented in
Fig. 2, P-EGA plots SBG versus RBG di-
vided into AP, BP, CP, DP, and EP zones.

To account for the specifics of BG
fluctuations interpreted as a process in
time, these P-EGA zones are defined de-
pending on the reference rate of BG
change as follows. 1) If the RBG rate is
within �1 to 1 mg � dl�1 � min�1 (e.g., no
significant change), P-EGA zones are
identical to the zones of the traditional
EGA (Fig. 2, solid lines). 2) If the RBG
is falling at a rate of �2 to �1 mg � dl�1 �
min�1, the upper limits of upper AP, BP,
and DP zones are expanded by 10 mg/dl.
Similarly, if the RBG is falling faster than
�2 mg � dl�1 � min�1, the upper limits of
upper AP, BP, and DP zones are expanded

by 20 mg/dl (Fig. 2, dotted lines in uAP,
uBP, and uDP). 3) If the RBG is rising at a
rate of 1–2 mg � dl�1 � min�1, the lower
limits of lower AP, BP, and DP zones are
expanded by 10 mg/dl. If the RBG is rising
faster than 2 mg � dl�1 � min�1, the lower
limits of lower AP, BP, and DP zones are
expanded by 20 mg/dl (Fig. 2, dotted
lines in lAP, lBP, and lDP).

These adjustments are made dynam-
ically for each upcoming data pair. Thus,
appropriate software is needed to com-
pute P-EGA. In addition, these adjust-
ments equate, to a certain extent and in
terms of clinical accuracy, the process ob-
servation by CGS to the point observation
by SMBG. If BG is rapidly falling and the
sensor accurately depicts this descent,
then a sensor reading right above the AP
zone will be clinically interpreted as a
SMBG reading within the AP zone. For
example, if RBG is 68 mg/dl and the sen-
sor reads 75 mg/dl and is falling at 2 mg �
dl�1 � min�1, the sensor reading will
cause a treatment reaction similar to the
reference reading. In that sense, the sen-
sor display is clinically accurate, while in
the traditional EGA this would be an up-
per D zone error. Similarly, when BG is
rapidly rising, the lower limits of the
lower zones are expanded to accommo-
date the clinical interpretation of the dis-
play. The zone-expansion constants 10
and 20 mg/dl correspond to rates of
change 1–2 mg � dl�1 � min�1 and faster
than 2 mg � dl�1 � min�1. This means that,
on average, the sensor reading will reach
the corresponding traditional EGA zone
within 7 min (1.5 mg � dl�1 � 7 min�1 or
3 mg � dl�1 � 7 min�1). The constant 7
min was selected on the basis of reported
average delays between blood and inter-
stitial glucose (7). In that sense, the zone
expansion accounts for time lags inherent
to interstitial sensor.

Combining R-EGA and P-EGA
CG-EGA recognizes that the clinical
meaning of CGS rate accuracy depends
greatly on the location of absolute BG,
with different BG levels requiring differ-
ent interpretations of the combination R-
EGA � P-EGA. For this reason, CG-EGA
computes combined R-EGA � P-EGA ac-
curacy in three clinically relevant regions:
hypoglycemia defined as BG ��70
mg/dl (3.9 mmol/l) and euglycemia and
hyperglycemia both defined as BG �180
mg/dl (10 mmol/l). Thus, a CGS gets
three estimates of its performance com-

Figure 2—P-EGA divided into AP, BP, CP, DP, and EP for SBG versus RBG. l, lower; P, point;
u, upper.
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puted according to the error grid matrix
presented in Fig. 3. The premise behind
the definition of the error grid matrix is
similar to the clinical idea of our original
EGA. We sought to determine the extent
at which the sensor reading would result
in accurate treatment or benign or signif-
icant error. In the next section, we discuss
this combined error grid matrix in detail,
together with data from TheraSense Nav-
igator sensors.

Clinical trial procedure
The application of CG-EGA is illustrated
by data from a 3-day inpatient protocol
used to test a total of 48 Navigator sensors
on 30 subjects (8 women and 22 men,
aged 20–85 years) with type 1 diabetes.
The previous publication on this clinical
trial provides a detailed description of the
study population, the sensor insertion
and calibration, and the RBG measure-
ment (2). The study included two hypo-
glycemic and two hyperglycemic
challenges and recorded RBG-SBG pairs
every 15 min.

RESULTS

P-EGA
Overall, 75% of the Navigator point esti-
mates fell into the AP zone, 23.7% fell into
the BP zones, 0.1% fell into the CP zones,
and 1.2% fell into the DP zones. There
were no EP zone errors. Compared with
the traditional EGA (without dynamic
zone adjustment), this A zone accuracy
was higher and the percentage of benign
errors was lower. The traditional EGA re-
sulted in 70.7% A zones and an additional
27.6% benign errors. Stratified by BG
range, the AP zone accuracy of the sensor
was 74.1% in the hypoglycemic range,
68.3% at euglycemia, and 84.2% at hy-
perglycemia (P � 0.01 using Kruskal-
Wallis). Additional 25.9, 31.5, and
15.5% benign errors were observed in
these BG ranges. The performance of the
sensor did not decrease significantly with
higher BG rates of change. The percentage
of readings in the traditional EGA A � B
zones (which are not dynamically
adjusted and therefore useful for across-
rate comparisons) was 98.7% when BG

fluctuations were slow (within �1
mg � dl�1 � min�1), 98.6% when BG
fluctuations were moderate (absolute BG
change between 1 and 2 mg � dl�1 �
min�1), and 96.3% when BG fluctuations
were rapid (absolute BG change �2
mg � dl�1 � min�1).

R-EGA
While it is inappropriate to consider R-
EGA separately from absolute BG values
and P-EGA, information about rate accu-
racy might be useful for evaluating a sen-
sor’s dynamic characteristics. Overall,
72.1% of the Navigator rate of change es-
timates fell into the AR zone, 20.1% fell
into the BR zones, 2.5% fell into the CR

zones, 4% fell into the DR zones, and
1.3% fell into the ER zones. Stratified by
BG range, the AR zone accuracy of the sen-
sor was approximately the same in the hy-
poglycemic (76.3%) and the euglycemic
ranges (76.7%) and was significantly lower
in the hyperglycemic range (65.4%) (P �
0.01).

Figure 3—Error matrix combining R-
EGA and P-EGA zones.
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Combined CG-EGA results
As presented in Fig. 3, a more complex
pattern in accuracy emerges when both
rate and point are considered concur-
rently. CGS estimates can be clinically ac-
curate in terms of BG location but
inaccurate in terms of rate of change and
vice versa. In Fig. 3, estimates are consid-
ered to be clinically accurate when they
fall into the A or B zones of both the P-
EGA and the R-EGA. Clinically benign er-
rors are those with acceptable point
accuracy (A or B P-EGA zones) and signif-
icant errors in rate accuracy (C, D, or E
R-EGA zones), which would unlikely lead
to clinical action or negative clinical con-
sequences. Clinically significant errors
are those that could lead to negative clin-
ical action and outcome.

As Fig. 3 illustrates, the zones consid-
ered clinically benign depend on absolute
BG level and therefore differ across the
three BG ranges. For example, when CGS
feedback accurately indicates that hypo-
glycemia is occurring, treatment to raise
BG is likely to be needed regardless of rate
information. For this reason, most rate er-
rors (upper and lower CR, lower DR, and
lower ER zones) in this case are likely be-
nign. However, even if hypoglycemia is
accurately detected, failure to detect that
BG is continuing to fall rapidly (upper DR
zone) or showing that BG is increasing
rapidly when it is actually continuing to
fall (lower ER zone) is a clinically signifi-
cant error. When CGS accurately indi-
cates euglycemia, treatment is typically
not needed and is unlikely to occur re-
gardless of feedback about BG change, so
tolerance for rate errors is greater. Only
those estimates that indicate a rapid
change in the wrong direction are consid-
ered to be clinically significant (upper and
lower ER zones), whereas the other rate
error zones (upper and lower CR and DR
zones) are considered benign. In contrast,
with hyperglycemia, failure to detect a
rapid increase in BG (lower DR zone)
could lead to negative clinical conse-
quences and is considered a clinically sig-
nificant error along with upper and lower
ER zone estimates.

According to Fig. 3, the percentage of
Navigator readings that were clinically ac-
curate or resulted in benign errors was
73.5% at hypoglycemia (70.9% accurate
� 2.6% benign), 99% at euglycemia
(93.9% accurate � 5.1% benign), and
95.4% at hyperglycemia (89.1% accurate
� 6.3% benign). Clinically significant er-

rors occurred for 26.5% of hypoglycemic,
1.0% of euglycemic, and 4.6% of hyper-
glycemic reference values, indicating that
the device is extremely accurate when BG
is near normal but less accurate at BG ex-
tremes. Accuracy was poorest during hy-
poglycemia due to a high rate of upper DP
zone errors, indicating that the device
failed to detect 25.9% of the hypoglyce-
mic readings even after the P-EGA was
dynamically adjusted to account for inter-
stitial time lag of the data.

Sensor placement and reliability
over time
CG-EGA showed no statistically signifi-
cant difference in the accuracy of the Nav-
igator when used for arm versus
abdominal testing. There were also no sig-
nificant performance differences during
test days 1, 2, and 3 of the study.

CONCLUSIONS — While the first
Minimed continuous glucose-monitoring
system was approved only for evaluation
of BG trends (and does not display mo-
mentary data), new generations of CGSs
aim at replacing SMBG in terms of
prompting immediate treatment, signal-
ing events such as upcoming hypoglyce-
mia and, most importantly, automating
glycemic control by closed-loop insulin
infusion algorithms. To achieve such
goals, CGS would need to pass the test of
momentary accuracy at any point in time
and in terms of both BG value and direc-
tion of change. This study introduces a
new approach to analyzing such a perfor-
mance. We would like to emphasize,
however, that the purpose of this report is
not to set a method in stone but to take a
fresh look at and initiate a debate on a
problem that is current and important.

CG-EGA has three advantages over
other CGS evaluation procedures. 1) CG-
EGA considers the sensor information as a
process in time, as opposed to correlation,
regression, consensus error grid (3), or
the traditional EGA (5), all of which ig-
nore the temporal structure of the BG
fluctuations. 2) CG-EGA judges CGS per-
formance separately at hypoglycemia, eu-
glycemia, and hyperglycemia, “utilizing
stratified data according to the magnitude
of glycemia,” as advocated by Klonoff (8).
3) CG-EGA preserves the clinical assump-
tions of the established EGA, thus facili-
tating the transition from SMBG to CGS
accuracy estimation.

Since CG-EGA is built on clinically

accepted assumptions and thresholds, no
data were involved in its design. To vali-
date and illustrate the analytical options
provided by CG-EGA, we present data
from a clinical trial of the TheraSense
Navigator. This first test of the CG-EGA
demonstrates that this analysis provides
more comprehensive and detailed infor-
mation regarding the clinical accuracy of
CGS compared with other procedures of-
ten used in similar studies. For example,
we find that the combined accuracy of the
Navigator is greatest during euglycemia
and poorest during hypoglycemia, its
point accuracy is relatively stable over a
wide range of BG rates of change, and its
rate accuracy decreases significantly at
high BG levels. To facilitate the summary
presentation of such information, we pro-
pose a convenient standardized presenta-
tion of CGS evaluation results (see online
appendix [available at http://care.diabetes
journals.org]).

The CG-EGA has two interacting
parts, P-EGA and R-EGA, which are com-
bined into a single error matrix represent-
ing CGS performance across three BG
ranges. Although P-EGA and R-EGA may
provide separate information about sen-
sor performance, we suggest that their re-
sults be considered only in combination.
The reason for this is the inherent inter-
action between point and rate analyses.
The zones of P-EGA are dynamically ad-
justed (for each data pair) according to
the RBG rate of change at that point. Con-
versely, the interpretation of errors in rate
is heavily dependent on RBG. For exam-
ple, an upper DR zone error would likely
have minimal impact on self-treatment
when absolute BG is 150 mg/dl. If BG is
85 mg/dl and rapidly falling, this error
could result in a failure to take action and
prevent hypoglycemia. This said, we
would like to outline several points that
would benefit from further discussion be-
fore reaching a consensus finalizing the
parameters of the CG-EGA.

Formalizing the procedure
BG fluctuations are a continuous process
in time where BG(t) is observed at discrete
time points less frequently and, in gen-
eral, irregularly by SMBG or more fre-
quently and regularly by CGSs. CGSs,
despite their name and regardless of their
testing frequency, produce discrete time
series readings that reflect the underlying
BG(t). To test CGS performance, a clinical
trial needs to record a time series of CGS

Continuous glucose–error grid analysis
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readings and a parallel time series of RBG
values. The latter is almost always the lim-
iting factor setting the temporal resolu-
tion of the (reference and sensor) BG
pairs. Thus, a CGS evaluation procedure
is based on two parallel time series, one of
which (reference) is believed to more ac-
curately reflect the underlying continu-
ous process. Consequently, evaluating
CGS performance is equivalent to evalu-
ating the proximity between these time
series. The resolution of the time series
(e.g., the elapsed time between two se-
quential data pairs) is critical for the eval-
uation of CGS accuracy. Therefore, a
standard protocol needs to be established
that would allow future devices to be
tested under comparable conditions. We
recommend obtaining pairs of reference
sensor readings at 15-min intervals as a
balance between capturing sufficiently
detailed pictures of BG fluctuations and
burden on study subjects. In addition, the
testing protocol should ensure a realistic
coverage of low and high BG range through
insulin and glucose challenges and a suffi-
cient cover of the life of the sensor.

Alternative CGS performance
analyses
There are two general approaches to mea-
suring proximity between time series
(e.g., precision of CGS). The first is purely
mathematical and relies on “distances”
between the true BG values and their es-
timates (for example, regressions utilize
Euclidean distance). The second ap-
proach is clinical. The device is judged by
the clinical accuracy of the message it
sends. EGA, the consensus error grid (3),
and now CG-EGA use a clinical approach.
Each of these approaches has its advan-
tages and limitations. A clinical approach
would inevitably involve the use of (more
or fewer) clinical thresholds that intro-
duce “rough edges” in the analysis. For
example, the traditional EGA is designed
around preset thresholds of 70 mg/dl for
hypoglycemia and 180 mg/dl for hyper-
glycemia. The consensus error grid has
multiple thresholds determined by expert
opinion. More thresholds would gener-
ally result in a smoother view of the anal-
ysis, yet introduction of more or different
error zones does not resolve the problem
of discontinuity.

The ultimate way to completely elim-
inate rough edges is through the use of
mathematical reference-to-estimate dis-
tances. However, as pointed out in a re-

cent review of the state of the art,“The
notion of proximity of complex objects,
such as time series, is not trivial and is
specific to the application domain and
also to the nature of the tasks” (10). Sev-
eral types of mathematical distances can
be used. For example, Euclidean distance
(10), wavelet transformation (11), or
Kullback-Leibler information distance
(12) have been used to assess the proxim-
ity between time series. The problem with
such approaches is that their outcome is
not directly clinically interpretable. Al-
though we considered using a mathemat-
ical definition of distance between
reference and sensor time series as a base
for CG-EGA, we opted for a clinical ap-
proach that is “specific to the application
domain and also to the nature of the
tasks” (10). In general, we believe that a
comprehensive evaluation of a device
should include both clearly clinical (such as
EGA or CG-EGA) and clearly mathematical
(correlation, regression, and information)
approaches.

Parameters of the CG-EGA
As with any analysis, CG-EGA uses basic
assumptions and preset parameters such
as boundaries of hypoglycemia and time
lags. Since CG-EGA is intended for soft-
ware application, most of these parame-
ters could be user selectable. For example,
the time lag between blood and interstitial
glucose has a default value of 7 min, based
on literature data (7). If a device has a
longer technical lag (or no inherent lag at
all, as with implantable sensors), then the
software would allow the time lag used by
the P-EGA to be changed. The same is
true for setting one or more of the thresh-
olds for hypoglycemia. The concept of
CG-EGA is even flexible enough to ac-
commodate other approaches to point ac-
curacy. For example, the P-EGA has
alternatives, such as the consensus error
grid (3) or point accuracy, which could be
assessed using International Organization
for Standardization standards (13). The
latter is particularly useful in the hypogly-
cemic range, where it is more restrictive
than EGA. Even though it is entirely
possible to substitute P-EGA with an-
other analysis in the construct of the
overall CG-EGA, at this time we would
argue against such a substitution be-
cause it would introduce a discord be-
tween the currently coherent zone
definitions of P-EGA and R-EGA. The
downside is that such flexibility could

have unwanted consequences, such as
artificially improved (or decreased) ac-
curacy. In addition, no two devices
would be comparable if different pa-
rameters are chosen for testing each de-
vice. This latter point emphasizes the
need for a standardized testing proto-
col. Such a protocol would result from a
consensus that would set, in particular,
the parameters of the CG-EGA.
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