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OBJECTIVE — To examine the mechanisms of action, therapeutic potential, and challenges
inherent in the use of incretin peptides and dipeptidyl peptidase-IV (DPP-IV) inhibitors for the
treatment of type 2 diabetes.

RESEARCH DESIGN AND METHODS — The scientific literature describing the bio-
logical importance of incretin peptides and DPP-IV inhibitors in the control of glucose homeosta-
sis has been reviewed, with an emphasis on mechanisms of action, experimental diabetes, human
physiological experiments, and short-term clinical studies in normal and diabetic human sub-
jects.

RESULTS — Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide
(GIP) exert important effects on �-cells to stimulate glucose-dependent insulin secretion. Both
peptides also regulate �-cell proliferation and cytoprotection. GLP-1, but not GIP, inhibits
gastric emptying, glucagon secretion, and food intake. The glucose-lowering actions of GLP-1,
but not GIP, are preserved in subjects with type 2 diabetes. However, native GLP-1 is rapidly
degraded by DPP-IV after parenteral administration; hence, degradation-resistant, long-acting
GLP-1 receptor (GLP-1R) agonists are preferable agents for the chronic treatment of human
diabetes. Alternatively, inhibition of DPP-IV–mediated incretin degradation represents a com-
plementary therapeutic approach, as orally available DPP-IV inhibitors have been shown to
lower glucose in experimental diabetic models and human subjects with type 2 diabetes.

CONCLUSIONS — GLP-1R agonists and DPP-IV inhibitors have shown promising results
in clinical trials for the treatment of type 2 diabetes. The need for daily injections of potentially
immunogenic GLP-1–derived peptides and the potential for unanticipated side effects with
chronic use of DPP-IV inhibitors will require ongoing scrutiny of the risk-benefit ratio for these
new therapies as they are evaluated in the clinic.
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A fter meal ingestion, nutrient entry
into the stomach and transit
through the proximal gastrointesti-

nal (GI) tract stimulates activation of neu-
ral and hormonal signals that control
gastric emptying and gut motility, nutri-
ent absorption, and hormonal regulation
of energy disposal and storage. The mu-

cosal epithelium of the GI tract is one of
the earliest integrators of information rel-
evant to digestion and assimilation of
nutrient loads. Highly specialized en-
teroendocrine cells dispersed along the
length of the GI tract play an important
role in controlling the rate of gastric emp-
tying and small bowel motility, pancreatic

enzyme secretion, and the growth and
differentiated absorptive function of the
small and large bowel epithelium. The
aim of this review is to examine our cur-
rent understanding of the physiological
actions of two gut hormones, glucagon-
like peptide (GLP)-1 and glucose-
dependent insulinotropic polypeptide
(GIP), with an emphasis on the biological
importance and pharmaceutical potential
of these peptides for the treatment of type
2 diabetes.

INTRODUCTION TO THE
INCRETIN CONCEPT — The devel-
opment and application of the insulin ra-
dioimmunoassay to clinical investigation
has permitted the assessment of �-cell se-
cretory function after meal ingestion in
normal and diabetic subjects. The obser-
vation that food ingestion or enteral glu-
cose administration provoked a greater
stimulation of insulin release compared
with similar amounts of energy (glucose)
infused intravenously (1,2) led to the de-
velopment of the incretin concept. Hence,
it was postulated that gut-derived signals
stimulated by oral nutrient ingestion rep-
resent potent insulin secretagogues re-
sponsible for the augmentation of insulin
release when energy is administered via
the gut versus the parenteral route (3).
Although several neurotransmitters and
gut hormones possess incretin-like activ-
ity, the considerable evidence from im-
munoneutralization, antagonist, and
knockout studies suggests that GIP and
GLP-1 represent the dominant peptides
responsible for the majority of nutrient-
stimulated insulin secretion. The observa-
tion that patients with type 2 diabetes
exhibit a significant reduction in the mag-
nitude of meal-stimulated insulin release
underlies the interest in determining
whether defective incretin release or resis-
tance to incretin action contributes to the
pathophysiology of �-cell dysfunction in
diabetic subjects.

INCRETIN SYNTHESIS,
SECRETION, AND
DEGRADATION — GIP and GLP-1
are members of the glucagon peptide su-
perfamily and share considerable amino
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acid identity. GIP is a single 42�amino
acid peptide encoded within a larger
153�amino acid precursor (Fig. 1) (4).
GIP-secreting enteroendocrine K-cells are
concentrated in the duodenum and prox-
imal jejunum; hence, these cells are ana-
tomically situated in an ideal location for
sensing and responding to nutrient inges-
tion. GLP-1 is derived from a larger pro-
glucagon precursor that encodes not only
GLP-1 but also the related proglucagon-
derived peptides glucagon, GLP-2, oxyn-
tomodulin, and glicentin (Fig. 1) (5). The
two forms of GLP-1 secreted after meal
ingestion, GLP-1(7-37) and GLP-1(7-
36)amide differ by a single amino acid.
Both peptides are equipotent and exhibit
identical plasma half-lives and biological
activities acting through the same recep-
tor (6,7); however, the majority (�80%)
of circulating active GLP-1 appears to be
GLP-1(7-36)amide (8). In contrast to the
more proximal location of GIP-producing
K-cells, the majority of GLP-1 is synthe-
sized within L-cells located predomi-
nantly in the ileum and colon, although
GLP-1–producing L-cells have also been
identified more proximally in the duode-
num and jejunum. Despite the more dis-
tal location of most L-cells, circulating
levels of GLP-1 also increase rapidly
within minutes of food ingestion. Hence,
GLP-1 secretion from the distal gut is con-
trolled by both neural and endocrine sig-
nals initiated by nutrient entry in the
proximal GI tract, as well as by subse-
quent direct contact of open-type L-cells
with digested nutrients. Ingestion of a
mixed meal or a meal enriched with spe-
cific fats and complex carbohydrates is

particularly effective in stimulating GIP
and GLP-1 release in human subjects
(9,10). Although the vagal nerve, via M1
muscarinic receptors, and several neu-
roendocrine peptides contribute to the
regulation of GLP-1 release in rodents
(11,12), the factors responsible for rapid
nutrient-stimulated GLP-1 release in hu-
man subjects are largely unknown.

The levels of total circulating GIP and
GLP-1 immunoreactivity reflect a combi-
nation of intact, full-length active and
NH2-terminally truncated inactive pep-
tides, with GIP(3-42) and GLP-1(9-
36)amide contributing to �50% of total
immunoreactive GIP and GLP-1 in both
the fasting and the postprandial states
(13,14). Plasma levels of both GIP and
GLP-1 immunoreactivity are low in the
fasting state and rise rapidly within min-
utes of food ingestion. Initial studies of
circulating levels of GIP and GLP-1 relied
principally on radioimmunoassays inca-
pable of distinguishing the biologically
active full-length peptides from inactive
COOH-terminal peptide fragments gen-
erated as a result of proteolytic cleavage.
Studies have demonstrated that both GIP
and GLP-1 were cleaved at the position 2
alanine by the widely expressed amino-
peptidase dipeptidyl peptidase IV (DPP-
IV) (15,16). These findings have
prompted a reanalysis of the circulating
molecular forms of GIP and GLP-1 using
newer radioimmunoassays more specific
for the full-length bioactive peptides in
normal and diabetic subjects.

The disappearance of exogenously
administered GIP and GLP-1 has been
studied in normal and diabetic human

subjects using antisera capable of discrim-
inating the full-length from the NH2-
terminally cleaved peptides. The t1/2 of
infused GIP is �7 and 5 min in normal
and diabetic human subjects, respectively
(14). In contrast, the t1/2 of exogenously
infused intact GLP-1 is considerably
shorter (13), with intravenously adminis-
tered GLP-1 eliminated with a half-life of
�2 min in both normal and obese dia-
betic human subjects (17). Although the
NH2-terminally truncated peptides
GIP(3-42) and GLP-1(9-36)amide func-
tion as weak antagonists of their respec-
tive receptors (18,19), there is little
evidence that these truncated peptides ex-
ert physiologically important actions in
human subjects in vivo. Despite observa-
tions that GLP-1(9-36)amide may func-
tion as an activator of insulin-independent
glucose clearance in pigs (20), this pep-
tide does not exert significant glucose-
lowering properties in human subjects
(21).

Circulating levels of GIP(1-42) are
normal or slightly increased in type 2 di-
abetic subjects in the basal or postpran-
dial states (22). In contrast, subjects with
diabetes or impaired glucose tolerance ex-
hibit modest but significant reductions in
levels of meal-stimulated circulating
GLP-1 (22,23). Furthermore, meal-
induced increases in GIP and GLP-1 se-
cretion are inversely correlated with the
extent of insulin resistance detected in
human subjects (24). The lower levels of
circulating GLP-1 detected in diabetic
subjects are not attributable to altered
GLP-1 clearance (17). Whether levels of
meal-stimulated GLP-1 may be restored
toward normal with improved control of
diabetes remains unknown.

GIP ACTION: INSIGHTS
FROM PRECLINICAL AND
HUMAN STUDIES — GIP was orig-
inally observed to inhibit gastric acid se-
cretion (gastric inhibitory polypeptide),
predominantly at supraphysiological dos-
ages. Subsequent studies have demon-
strated potent glucose-dependent insulin
stimulatory effects from GIP administra-
tion in dogs and rodents. GIP also regu-
lates fat metabolism in adipocytes,
including stimulation of lipoprotein
lipase activity, fatty acid incorporation,
and fatty acid synthesis (25). Unlike
GLP-1, GIP does not inhibit glucagon se-
cretion or gastric emptying. GIP does pro-
mote �-cell proliferation and cell survival

Figure 1—Structure of preproglucagon and preproGIP encoding GLP-1 and GIP, respectively, is
shown. The arrow designates the position of the DPP-IV–mediated cleavage after the position 2
alanine residue. GRPP, glicentin-related pancreatic peptide; IP, intervening peptide.
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in islet cell line studies (26,27); whether
GIP also induces �-cell growth or survival
in diabetic rodents remains unclear.

The physiological actions of GIP have
been deduced using GIP peptide antago-
nists, GIP receptor antisera, and GIP re-
ceptor knockout mice. NH2-terminally
truncated or modified GIP peptides such
as GIP(6-30)amide, GIP(7-30)amide, or
(Pro3)GIP block GIP binding to the GIP
receptor with varying effectiveness, and
attenuate the insulinotropic effects of ex-
ogenous GIP in vitro and endogenous GIP
in vivo (28–30). Similarly, immunopuri-
fied antisera against the extracellular do-
main of the GIP receptor block GIP
binding and attenuate glucose-dependent
insulin secretion after oral glucose load-
ing in rats and mice (31,32). Complemen-
tary evidence for the incretin-like actions
of GIP is derived from analysis of GIP
receptor�null mice, which exhibit mild
glucose intolerance after oral glucose
loading (33). Surprisingly, GIPR�/� mice
exhibit resistance to diet-induced obesity
after months of high-fat feeding. More-
over, the GIPR�/� genotype attenuates
obesity in the ob/ob mouse, possibly be-
cause of reduced fat storage and altered
lipid metabolism as a direct result of ab-
sent GIP receptor (GIPR) action in adipo-
cytes (34). Whether GIPR action
significantly modulates adipocyte biol-
ogy, lipoprotein synthesis, and weight ac-
cretion in humans is not known.

In contrast to the potent glucose-
lowering actions of GIP in normal ro-
dents, exogenous GIP administration is
comparatively less insulinotropic in obese
diabetic rodents. GIP levels are increased
in some models of experimental rodent
diabetes, and continuous GIP infusion for
4 h produces GIPR desensitization in nor-
mal rats (35). ZDF rats exhibit normal
levels of GIP, absent insulinotropic re-
sponses to exogenous GIP and reduced
expression of the GIPR in isolated islets
(36). Recent studies with more potent GIP
analogs engineered for resistance to
DPP-IV have demonstrated improved in-
sulinotropic and glucose-lowering prop-
erties after peptide administration to both
normal and diabetic rodents (37–39).

Infusion of porcine or human GIP
into patients with type 2 diabetes has pro-
duced variable insulinotropic responses,
ranging from preserved (40) to attenuated
or near absent insulin secretion (41–45).
The potential for �-cell GIP responsivity
to improve with treatment in type 2 dia-

betic subjects is intriguing, but has not
been extensively examined (46). The GIP
defect in insulin secretion seems most
pronounced in the late phase of insulin
secretion (47). Moreover, �50% of nor-
moglycemic first-degree relatives of type
2 diabetic subjects exhibit reduced insu-
lin secretion after exogenous GIP infusion
(48). Hence the reduced insulinotropic
action of GIP in diabetes likely reflects a
combination of genetic and acquired de-
fects. Whether the pancreatic effects of
GIP on �-cell proliferation and survival
are also diminished in experimental or
clinical diabetes is not known.

GLP-1 PRECLINICAL
STUDIES AND
PHYSIOLOGICAL ACTIONS —
Original observations elucidating a role
for GLP-1 in the potentiation of glucose-
dependent insulin secretion (49–51) and
insulin gene expression (52) were fol-
lowed by experiments demonstrating that
GLP-1 also inhibits glucagon secretion
(53,54) and gastric emptying (55) (Fig.
2). Acute intracerebroventricular (56) in-
jection of GLP-1 or GLP-1 receptor (GLP-
1R) agonists produces transient reduction
in food intake, whereas more prolonged
intracerebroventricular or peripheral
GLP-1R agonist administration is associ-
ated with weight loss in some (57–60),
but not all (61) studies. GLP-1 actions on
food intake appear related in part to over-
lapping actions on central nervous system
aversive signaling pathways, which re-
mains a topic of intense interest (62–66).
In contrast to GIP, the spectrum of actions

delineated for GLP-1 that promote glu-
cose lowering (regulation of insulin and
glucagon secretion, inhibition of gastric
emptying, and reduction of food intake)
appear comparable in diabetic versus
nondiabetic animals of various ages.

GLP-1 exerts actions on �-cells inde-
pendent of acute stimulation of insulin se-
cretion. Incubation of isolated rat islet
cells with GLP-1 recruited nonresponsive
glucose-resistant �-cells to a functional
state of glucose-responsive insulin secre-
tion, designated glucose competence
(67,68). GLP-1R agonists also promote
insulin biosynthesis, �-cell proliferation,
and survival (69–71), and stimulate dif-
ferentiation of exocrine cells or islet pre-
cursors toward a more differentiated
�-cell phenotype (72–74). The GLP-1R–
dependent augmentation of �-cell mass
has been demonstrated in diverse experi-
mental models, including neonatal rats
administered streptozotocin and ex-
endin-4 (75) and normal Wistar rats ages
6 and 22 months infused with native
GLP-1 for 5 days (76). Similarly, GLP-1R
agonists promote �-cell proliferation and
expansion of functional islet mass after
partial pancreatectomy in rats aged 4–5
weeks (69) or in neonatal rat pups sub-
jected to experimental intrauterine
growth retardation (77). The expansion
of �-cell mass after GLP-1R agonist ad-
ministration prevents or delays the occur-
rence of diabetes in db/db mice (78) and
GK diabetes-prone rats (79). Further-
more, the induction of islet proliferation
after GLP-1R activation has been seen
with a broad range of GLP-1R agonists,

Figure 2—The major biological actions of GLP-1.
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including native GLP-1 (76,79,80), ex-
endin-4, NN2211 (81), and CJC-1131
(82).

GLP-1R agonists also activate anti-
apoptotic pathways coupled to a reduc-
tion in �-cell death. db/db mice treated
with exendin-4 for 2 weeks exhibited de-
creased numbers of apoptotic �-cells, re-
duced pancreatic caspase-3 activation,
and increased Akt1 expression (78). Re-
duced islet apoptosis has been observed
in GLP-1–treated Zucker diabetic rats
(83) and in exendin-4–treated mice after
streptozotocin-induced �-cell injury
(70). The anti-apoptotic actions of
GLP-1R agonists are likely direct, as
GLP-1 reduced peroxide-induced apo-
ptosis in Min6 insulinoma cells (84) and
exendin-4 significantly attenuated cyto-
kine-induced apoptosis in cultures of pu-
rified rat �-cells (70). Hence, the GLP-
1R– dependent activation of both
proliferative and anti-apoptotic pathways
in the pancreas provides complementary
mechanisms for preserving and enhanc-
ing functional �-cell mass.

The physiological importance of
GLP-1 action has been studied using
GLP-1R antagonists. Infusion of the pep-
tide exendin(9-39) into rats, mice, ba-
boons, and humans produces an increase
in fasting glucose and glycemic excursion
after oral glucose loading in association
with reduced levels of circulating insulin
(32,85– 87). Exendin(9-39) also pro-
duces abnormal glycemic excursion after
nonenteral glucose loading in mice (32).
These findings illustrate that transient
disruption of GLP-1 action consistently
perturbs the incretin and nonincretin ac-
tions of GLP-1 on glucoregulation. Acute
intracerebroventricular injection of ex-
endin(9-39) increases food intake in sati-
ated rats (56), whereas repeated daily
intracerebroventricular administration of
exendin(9-39) increases food intake and
weight gain (57). Similarly, acute ex-
endin(9-39) administration increases gas-
tric emptying after glucose ingestion in
fistulized rats (88). Comparable studies
with exendin(9-39) in humans have dem-
onstrated the essential role of GLP-1 ac-
tion for glucose control via regulation of
glucagon and insulin secretion (89,90).
Hence, the majority of actions observed
after exogenous administration of GLP-
1R agonists are also physiologically essen-
tial, as revealed by acute interruption of
GLP-1 action.

Genetic disruption of GLP-1R expres-

sion in mice has produced comparable in-
sights into the physiological importance
of GLP-1 action. GLP-1R�/� mice exhibit
abnormal glucose tolerance after both
oral and intraperitoneal glucose challenge
in association with diminished glucose-
stimulated insulin secretion. In contrast,
insulin sensitivity and the glucagon re-
sponse to glucose loading or hypoglyce-
mia are normal in the absence of GLP-1R
signaling (91). Consistent with the car-
diovascular effects of GLP-1 in rodents,
GLP-1R�/� mice exhibit defective cardio-
vascular responses to stress (92). Despite
the potential importance of GLP-1R cir-
cuits for transducing the anorectic action
of leptin (93), GLP-1R�/� mice retain
normal to enhanced leptin sensitivity
(94,95). Similarly, food intake and body
weight are not significantly perturbed in
GLP-1R�/� mice in the CD1 genetic
background (96,97). In contrast, GLP-
1R�/� mice manifest subtle but detect-
able abnormalities in islet number and
size (98) and exhibit a defective �-cell re-
generative response to partial pancreatec-
tomy (99). Hence, GLP-1R actions are
physiologically important for the growth
and adaptive regeneration of murine
�-cells.

GLP-1R agonists and experimental
models of diabetes
The glucose-lowering action of GLP-1 de-
lineated in nondiabetic animals has been
demonstrated in multiple models of ex-
perimental diabetes. A 48-h infusion of
native GLP-1 lowered blood glucose in
association with increased levels of circu-
lating insulin, islet insulin content, and
insulin mRNA in Wistar rats aged 22
months (100), and perfused pancreas
studies have demonstrated GLP-1–
dependent augmentation of insulin secre-
tion in ZDF rats of diverse genetic
backgrounds (101–103). Similarly, ex-
endin-4 lowered glucose in db/db and
ob/ob mice, ZDF rats, and diabetic rhesus
monkeys in acute and chronic experi-
ments (78,104,105) and the GLP-1 ana-
log NN211 improved glycemic control in
pigs, rats, and mice (60,81,106). Remark-
ably, glucose tolerance remained signifi-
cantly improved in ZDF rats for weeks
after a 48-h infusion of native GLP-1
(107). This “memory effect” for sustained
improvement of glycemic control was
also observed in db/db mice after discon-
tinuation of therapy with CJC-1131, an
albumin-bound GLP-1R agonist (82).

GLP-1 action in human subjects
The majority of GLP-1 actions delineated
in preclinical experiments have also been
demonstrated in human studies. Infusion
of GLP-1(7-36)amide into normal human
subjects stimulated insulin secretion, re-
duced glucagon secretion, and signifi-
cantly reduced blood glucose in the
fasting state after glucose loading or meal
ingestion (6,50,108). In contrast to GIP,
the insulinotropic and glucose-lowering
actions of GLP-1 are preserved in human
subjects with type 2 diabetes (45,109) in
both the fasting and the postprandial
states (7). Similarly, GLP-1 inhibits gas-
tric acid secretion (110,111) and gastric
emptying in humans (55) and the GLP-1–
dependent attenuation of gastric empty-
ing contributes to decreased glycemic
excursion and, consequently, reduced
glucose-stimulated insulin secretion
(112,113). Consistent with the impor-
tance of gastric emptying and glucagon
secretion for glycemic control, GLP-1 also
lowers blood glucose in type 1 diabetic
subjects (114–116). Analogous to studies
demonstrating the induction of glucose
competence in rodent �-cells, GLP-1 in-
fusion enhances �-cell function and insu-
lin secretory dynamics in human subjects
with impaired glucose tolerance or type 2
diabetes (117–119). GLP-1 may also en-
hance glucose clearance in humans
(120,121); however, the majority of these
actions are likely mediated indirectly
through effects on insulin and glucagon
(122–124). Although several reports have
described the effects of GLP-1 on muscle,
liver, and fat cells, experimental evidence
demonstrating expression of the GLP-1
receptor in these tissues in vivo is lacking.
Hence, the indirect actions of GLP-1,
leading to improvement in glycemic con-
trol and reduction in free fatty acids, may
explain observations of improved insulin
sensitivity in GLP-1–treated diabetic sub-
jects (125).

The effect of GLP-1 in restoring glu-
cose competence in rodent islets has
prompted studies of GLP-1 action and
�-cell function in type 2 diabetic patients.
Insulin–treated diabetic subjects previ-
ously classified as “sulfonylurea non-
responders” exhibited �-cell GLP-1
responsivity, with lowering of fasting and
postprandial glucose in association with
enhanced insulin secretion (126). Pa-
tients treated with both GLP-1 and glib-
enclamide exhibited a greater degree of
glucose reduction compared with the ef-
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fect of either agent alone (127). Similarly,
the combination of GLP-1 and metformin
was shown in a 48-h crossover study to be
more effective for lowering blood glucose
than monotherapy with either agent alone
(128).

The GLP-1–dependent suppression
of glucagon secretion raises the possibility
that GLP-1 therapy will be associated with
an increased risk of hypoglycemia and po-
tentially defective counterregulation if
glucagon secretion remains suppressed in
the face of GLP-1–linked hypoglycemia.
Rapid gastric emptying may be associated
with enhanced GLP-1 release and an in-
creased risk of hypoglycemia in postgas-
trectomy patients (129). Similarly, acute
administration of GLP-1 (80 nmol) to
nondiabetic subjects in the fasted state
produced mild relative hypoglycemia in
some subjects (mean glucose �3.5
mmol/l) (130). Nevertheless, appropriate
glucagon responses to hypoglycemia do
not appear to be blunted in GLP-1–
treated subjects (130), and GLP-1 in-
fusion does not impair normal counter-
regulatory responses to hypoglycemia in
healthy human subjects (131). Hence, the
risk of hypoglycemia seems modest in
type 2 diabetic subjects treated with
GLP-1R agonists alone.

The demonstration that both intrace-
rebroventricular and peripheral adminis-
tration of GLP-1R agonists induces
weight loss in preclinical experiments has
fostered interest in the potential actions of
these agents to diminish appetite and re-
duce weight gain in overweight human
subjects. The majority of human studies
have examined appetite and food inges-
tion over short (24-h) time periods after
single-dose injection or continuous infu-
sion of GLP-1. Small but statistically sig-
nificant reductions in appetite and meal
ingestion have been recorded in studies of
normal, obese, and diabetic GLP-1–
treated subjects (132–136). A meta-
analysis of available data from 115
subjects demonstrated significant GLP-1–
dependent reductions in energy con-
sumption in lean and overweight subjects
(137). The acute reduction in food con-
sumption and inhibition of gastric emp-
tying has been detected even with
physiological increases in levels of circu-
lating GLP-1 (136). Administration of
GLP-1 via continuous subcutaneous infu-
sion for 6 weeks to obese diabetic subjects
was associated with reduced appetite and
a small but significant mean 1.9-kg

weight loss (125). Hence, GLP-1 therapy
in human subjects appears associated
with prevention of weight gain or modest
weight loss; however, long-term data are
not yet available.

Although single or repeated subcuta-
neous injections of native GLP-1 decrease
blood glucose in human subjects
(138,139), the glucose-lowering effects
are transient and no longer evident 1–2 h
after peptide injection (140,141). Fur-
thermore, continuous enhancement of
GLP-1 action for 24 h/day appears supe-
rior for glucose control compared with
peptide infusion for 16 h (142). Contin-
uous intravenous or subcutaneous infu-
sion of GLP-1 in short- and long-term
studies has been shown to be highly effec-
tive in lowering blood glucose in diabetic
subjects (125,143,144), but this intensive
and expensive approach has major limita-
tions for the treatment of large numbers of
diabetic patients. The rapid degradation
and clearance of native endogenous and
exogenously administered GLP-1 (145)
have spurred the clinical development of
degradation-resistant GLP-1 analogs with
longer durations of action in vivo.

Exendin-4 is a naturally occurring
39�amino acid GLP-1R agonist isolated
from the salivary gland venom of the liz-
ard Heloderma suspectum (146). Ex-
endin-4 exhibits 53% amino acid identity
to mammalian GLP-1 (146,147), yet
binds to and activates the GLP-1 receptor.
Furthermore, exendin-4 is highly resis-
tant to the proteolytic activity of DPP-IV
and exhibits a longer duration of action in
vivo. Intravenous infusion of exendin-4
lowered fasting and postprandial blood
glucose in normal healthy volunteers and
was associated with a 19% reduction in
calorie consumption assessed during a
single test meal (148). Exendin-4 exerted
similar effects on insulin secretion after
acute intravenous infusion in diabetic
subjects (149), and subcutaneous daily
administration of exendin-4 to subjects
with type 2 diabetes significantly reduced
blood glucose and HbA1c (a decline from
9.1 to 8.3%) over a 1-month treatment
period (150). Exendin-4 has been evalu-
ated in eight phase 2 trials in 323 individ-
uals with type 2 diabetes who received
dosages of 0.05–2.0 �g/kg subcutane-
ously. Nausea and vomiting were the
principal side effects observed (151). A
4-week treatment period produced a sig-
nificant reduction in HbA1c levels, with
sustained reduction in postprandial gly-

cemia maintained over the 28-day treat-
ment period.

Exendin-4 treatment (0.08 �g/kg
s.c., b.i.d. or t.i.d.) over 1 month was
evaluated in 109 patients treated with sul-
fonylureas or metformin, alone or in com-
bination. The treatment was generally
well tolerated, with three subjects with-
drawing in the first 12 days because of
nausea. At the end of the study period, a
significant reduction was observed in lev-
els of serum fructosamine, HbA1c, and
mean postprandial glucose, but no signif-
icant change was noted in body weight or
serum lipids (152). Antibodies against ex-
endin-4 were detected in 19% of treated
subjects; however, the antibodies did not
affect treatment responses. In all, 15% of
patients experienced hypoglycemia; all of
these subjects received sulfonylureas plus
exendin-4 (152). Exendin-4, recently re-
named exenatide, is currently being eval-
uated for the treatment of type 2 diabetes
in phase 3 trials in combination with met-
formin, sulfonylurea agents, or both.

NN2211 (liraglutide) is a fatty acid–
linked DPP-IV–resistant derivative of
GLP-1 designed for subcutaneous admin-
istration that exhibits a pharmacokinetic
profile compatible with once-daily injec-
tion (153). NN2211 reduced fasting and
postprandial glycemia in diabetic subjects
after a single 10 �g/kg subcutaneous in-
jection at 11:00 P.M., in association with
inhibition of gastric emptying and re-
duced levels of circulating glucagon (154).
NN2211 has been tested in phase 2 clin-
ical trials. Additional approaches for pro-
longing the duration of action of GLP-1
derivatives include the use of albumin-
bound GLP-1 molecules (82) and sus-
tained release exendin-4 preparations;
however, human data with these pharma-
ceutical approaches is currently limited.

Inhibition of DPP-IV for the
treatment of type 2 diabetes
The observation that GLP-1 and GIP are
rapidly cleaved at the position 2 alanine
leading to inactivation of their biological
activity (15,16) has fostered interest in the
development of inhibitors of DPP-IV, the
principal enzyme responsible for incretin
inactivation (155,156). DPP-IV is but one
member of a large family of related en-
zymes with overlapping enzyme specific-
ity; however, adenosine deaminase
affinity chromatography that specifically
binds DPP-IV removes 95% of DPP-IV–
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like activity from human sera, consistent
with the dominant role for DPP-IV as the
major circulating enzyme exhibiting DPP-
IV–like enzymatic activity in vivo (157).
Complementary evidence supporting the
importance of DPP-IV as a pharmaceuti-
cal target for lowering glucose levels is de-
rived from analysis of rodents with
inactivating DPP-IV mutations. DPP-IV
knockout mice and the Fischer DPP-IV
mutant rat exhibit reduced levels of gly-
cemic excursion after glucose loading in
association with increased levels of circu-
lating GLP-1 and insulin (158,159). Re-
markably, DPP-IV knockout mice exhibit
resistance to obesity and display im-
proved insulin sensitivity after high-fat
feeding (160). Hence, both pharmacolog-
ical and genetic attenuation of DPP-IV ac-
tivity is associated with enhanced incretin
action, increased insulin, and lower glu-
cose in vivo.

DPP-IV inhibitors lowered blood glu-
cose after acute and chronic administra-
tion in preclinical studies through
mechanisms predominantly dependent
on incretin action, leading to potentiation
of glucose-stimulated insulin secretion
(161–163). Treatment of ZDF rats for 3
months with the inhibitor P32/98 re-
sulted in progressive improvement in gly-
cemic control, enhanced insulin secretory
responses, increased insulin-stimulated
muscle glucose uptake, and improved he-
patic and peripheral insulin sensitivity
(164,165). In one intriguing result, daily
DPP-IV inhibitor therapy for 7 weeks in
Wistar rats with streptozotocin-induced
diabetes increased the numbers of is-
lets and �-cells (166), consistent with
the actions of GIP and GLP-1 in promot-
ing islet neogenesis and cytoprotection
(71).

Clinical experience with DPP-IV in-

hibitors in diabetic subjects is limited. A
single-dose escalation study of P32/98 in
healthy male volunteers demonstrated
improved oral glucose tolerance in asso-
ciation with enhanced circulating levels of
GLP-1 (167). A 4-week trial of NVP
DPP728 administered several times a day
to subjects with mild type 2 diabetes
(mean entry HbA1c of �7.6%) produced
significant glucose lowering in mean
HbA1c to 6.9% (168). A second-
generation DPP-IV inhibitor, LAF237, is
currently in phase 2 clinical trials and ad-
ditional DPP-IV inhibitors are in clinical
development. Although inhibition of
DPP-IV activity is a promising approach
for enhancing incretin action in diabetic
subjects, DPP-IV exhibits catalytic activ-
ity against a broad number of peptide
substrates (155,169). Furthermore, DPP-
IV, also known as the lymphocyte cell sur-
face transmembrane-signaling molecule
CD26, is activated by external stimuli and
modulates T-cell activation, producing
pleiotropic effects in experimental in-
flammatory and neoplastic disorders
(155,170). Global genetic inactivation of
CD26 in mice is associated with subtle

but detectable abnormalities in cytokine
and immunoglobulin secretion after mi-
togen stimulation (171). Whether highly
selective inhibition of the catalytic activity
of DPP-IV will adversely perturb im-
mune-related activity in human subjects
is unclear; hence, the long-term safety of
sustained DPP-IV/CD26 inhibition merits
careful scrutiny.

GLP-1R agonists and DPP-IV
inhibitors: unanswered questions
Although GIP and GLP-1 exhibit both
overlapping and unique mechanisms of
action, GLP-1 exhibits several distinct ad-
vantages desirable in a therapeutic agent
for treating type 2 diabetes (Table 1). Cur-
rently, there are few clinical data to sup-
port the development of injectable GIP
agonists to treat human subjects with type
2 diabetes. Chronic GLP-1R agonist ad-
ministration lowers blood glucose and
HbA1c in diabetic subjects and has not yet
been associated with receptor downregu-
lation or tachyphylaxis, but few clinical
reports are available that address this is-
sue. Because nausea limits the dosage of
GLP-1 administered in human studies,
the potential for long-term prevention of
weight gain or, ideally, induction of
weight loss versus lack of compliance
from unwanted gastrointestinal side ef-
fects will require scrutiny. Similarly,
whether subsets of patients with type 2
diabetes will exhibit preferential GLP-1
responsivity or, alternatively, relative re-
sistance to the glucose-lowering effects of
GLP-1 is not known. As is the case with
intensive insulin administration, the po-
tent glucose-lowering properties of
GLP-1R agonists may increase the likeli-
hood of treatment-associated hypoglyce-
mia in susceptible patients concomitantly
treated with insulin secretagogues such as

Table 1—Properties and biological actions of GIP and GLP-1

GIP GLP-1

42–Amino acid peptide 30/31–Amino acid peptide
Released from duodenum Released from distal small bowel and colon
NH2-terminal inactivation by DPP-IV NH2-terminal inactivation by DPP-IV
Stimulates insulin secretion Stimulates insulin secretion
Minimal effect on gastric emptying Inhibits gastric emptying
No effect on glucagon secretion Inhibits glucagon secretion
No regulation of satiety and body weight Inhibits food intake and weight gain
Promotes expansion of �-cell mass Promotes expansion of �-cell mass
Normal GIP secretion in diabetic subjects Reduced GLP-1 secretion in diabetic subjects
Defective GIP response in type 2 diabetes Preserved GLP-1 response in type 2 diabetes

Table 2—Characteristics of DPP-IV inhibitors and GLP-1R agonists

DPP-IV inhibitors GLP-1R agonists

Orally available Injectable
Multiple targets Single known GPCR target
GLP-1 PK favorable Higher levels of GLP-1 achievable, but narrow

PK profile
Short- versus long-acting Longer acting—days to weeks
Less potent agents More potent glucose lowering
Drug overdose nontoxic Drug overdose problematic
No central nervous system side effects Nausea and vomiting
Less defined side effect profile Well-described and tolerable side effect profile

GPCR, G protein–coupled receptor; PK, pharmacokinetic.
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sulfonylureas. Although GLP-1R agonists
produce remarkable effects on �-cell pro-
liferation and cytoprotection in rodent
studies, and human �-cells exhibit prolif-
erative and cytoprotective responses to
GLP-1 in vitro, the potential for GLP-1R
agonists to prevent progression to �-cell
failure in diabetic subjects is intriguing,
but largely undocumented. Moreover, the
current need for once or twice daily injec-
tions of GLP-1– based pharmaceutical
agents raises acceptance and compliance
issues for prolonged therapy with these
agents. Whether the newer generation of
long-acting GLP-1R agonists currently
designed for weekly administration will
be as potent as agents given once or twice
daily remains unknown. Furthermore,
GLP-1R agonists in the clinic exhibit
�100% amino acid identity with the na-
tive peptide. The known immunogenic
potential of even identical recombinant
human therapeutic proteins (172) raises
the specter of immunoneutralizing anti-
bodies in some patients, which may lead
to reduction in therapeutic efficacy or po-
tential exacerbation of diabetes if the an-
tibodies cross-react with endogenous
GLP-1.

DPP-IV inhibitors represent a com-
plementary approach for enhancing in-
cretin action through orally available
tablets. Whether these inhibitors should
ideally aim for 24 h/day inhibition of
DPP-IV activity is uncertain. Similarly,
the observations that subjects with type 2

diabetes exhibit reduced levels of meal-
stimulated circulating GLP-1 poses theo-
retical limitations for drugs acting in part
through GLP-1–dependent mechanisms.
DPP-IV inhibitors will be unable to
achieve the same pharmaceutical eleva-
tion in levels of circulating GLP-1 com-
pared with injectable GLP-1– based
drugs, and are likely to be less potent
compared with injectable GLP-1R ago-
nists. A comparison of the advantages and
disadvantages of DPP-IV inhibitors versus
GLP-1R agonists is shown in Table 2. The
broad spectrum of DPP-IV activity and
the large number of potential bioactive
peptide substrates pose important ques-
tions regarding unanticipated side effects
associated with the long-term use of
DPP-IV inhibitors. Taken together, the
urgent need for diabetes therapeutic
agents exhibiting new mechanisms of ac-
tion and the preliminary efficacy of
GLP-1R agonists and DPP-IV inhibitors in
ongoing clinical trials suggest that one or
both classes of agents may ultimately be
approved for the treatment of type 2 dia-
betes. Furthermore, there remains intense
interest in developing GLP-1 secreta-
gogues or GLP-1 receptor activators (Fig.
3); hence, strategies focused on enhanc-
ing incretin action are likely to receive in-
creasing attention if the first generation of
GLP-1R agonists and DPP-IV inhibitors
is approved for the treatment of type 2
diabetes.
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