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OBJECTIVE— To determine the rheological properties of polymorphonuclear leu-
kocytes (PMN) from non-insulin-dependent diabetes mellitus (NIDDM) patients.

RESEARCH DESIGN AND METHODS— The deformability of PMN from 33
NIDDM subjects, 13 with impaired glucose tolerance (IGT), and 22 with normal
glucose tolerance (NGT) was studied. A Cell Transit Analyzer that measures the
transit time of PMN through 8-(xm pores was used. Studies were performed under
three different conditions: J) basal state; 2) after incubation with cytochalasin B (20
|xM) to dissociate f-actin from the cytoskeleton; and 3) following activation with
N-formyl-methionyl-leucyl-phenylalanine (fMLP, 1 nM).

RESULTS— PMN from diabetic patients were more rigid (i.e., had longer transit
time) than those from subjects with NGT or IGT under basal conditions and after
cytochalasin B, but not after stimulation with fMLP. The deformability of PMN from
subjects with IGT was similar to those of the NGT group. In the pooled data, basal
transit time correlated with age; systolic and diastolic blood pressure; HbAlc; and
serum creatinine, cholesterol, and triglyceride concentrations (r = 0.29, 0.34, 0.37,
0.48, 0.25, 0.36, 0.29, respectively, P < 0.05 for each). Hypertensive diabetic pa-
tients had less deformable PMN than normotensive ones. No relation was found
between PMN deformability and the duration of diabetes, type of treatment, or the
presence of retinopathy.

CONCLUSIONS — These data indicate increased rigidity of PMN in NIDDM that
may contribute to development of microcirculatory disturbances and microangiop-
athy.
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T he microcirculatory disturbances
seen in diabetes mellitus have
prompted numerous studies of

blood rheology; salient findings are dis-
cussed in recent reviews (1-3). In-
creased whole blood and plasma viscos-
ity (4-7) and enhanced erythrocyte
aggregation (7,8) have been well docu-
mented, whereas alterations of erythro-
cyte mechanical properties remain some-
what controversial (8-12). Much less is
known, however, about the rheological
behavior of leukocytes in diabetes. Leu-
kocytes are larger and much more rigid
than erythrocytes (13) and have been
shown to strongly influence microvascu-
lar blood flow (14). Moreover, polymor-
phonuclear leukocytes (PMN), which
comprise the largest fraction of leuko-
cytes, are capable of causing direct mi-
crovascular damage by the release of
proteases and toxic oxygen radicals (15).
Ernst and Matrai (16) and Vermes et al.
(17) have reported abnormal leukocyte
rheology in diabetes, yet interpretation of
their data is hampered by the use of
either erythrocyte/leukocyte mixtures
(16) or unfractionated leukocyte suspen-
sions (17). We have, therefore, studied
the rheological properties of PMN from
patients with non-insulin-dependent di-
abetes mellitus (NIDDM) using pure
PMN suspensions and a newly developed
micropore filtration method.

RESEARCH DESIGN AND
METHODS— This study included 68
Mexican-American subjects (23 men and
45 women) who were 19-66 years of
age (mean 44.3 years). Twenty-seven
NIDDM subjects were recruited from
those attending the Diabetes Outpatient
Clinic. Diabetes was diagnosed on the
basis of a fasting plasma glucose (FPG)
>7.8 mM or a random plasma glucose
> 11.1 mM on at least two previous clin-
ical visits. The remaining 41 subjects
were recruited from family members and
friends accompanying the patients to the
clinic or from hospital employees. The
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latter 41 subjects underwent an oral glu-
cose tolerance test with a 75-g glucose-
equivalent carbohydrate load.

According to the World Health
Organization criteria (18), 22 of the 41
subjects had normal glucose tolerance
(NGT) (FPG and 2-h postload plasma
glucose concentration <7.8 mM), and
13 subjects had impaired glucose toler-
ance (IGT) (FPG <7.8 mM and 2-h
postload plasma glucose concentration
£7.8 and < 11.1 mM). Of the 41 sub-
jects, 6 were found to have diabetes (FPG
>7.8 mM or 2-h postload glucose con-
centration > 11.1 mM) and were placed
in the diabetic group that therefore in-
cluded 33 subjects. The duration of the
disease in the 27 subjects with previously
known diabetes ranged from 3 months to
28 years (median 8 years). Of these sub-
jects, 13 were receiving oral hypoglyce-
mic drugs and 14 were taking insulin. Of
the diabetic patients, 11 had hyperten-
sion that was clinically diagnosed previ-
ously (blood pressure [BP] > 140/90
mmHg) and were receiving enalapril (9
patients), captopril (1 patient), or nife-
dipine (1 patient).

A medical history was obtained
and a physical examination was per-
formed on all subjects. Blood samples
were collected after a 12-h fast for deter-
mination of concentrations of FPG,
HbAlc, blood urea nitrogen, and serum
creatinine, cholesterol, and triglyceride
(TG) concentrations. A random urine
sample was collected to determine the
albumin/creatinine ratio in milligrams of
albumin per gram of creatinine (19).
Subjects with insulin-dependent diabe-
tes mellitus (IDDM), cardiac or hepatic
disease, acute or chronic inflammatory
conditions, infections, or renal impair-
ment (serum creatinine > 180 |iM) and
those receiving medications other than
antidiabetic or antihypertensive drugs
and smokers were excluded. The study
was approved by the Los Angeles Coun-
ty-University of Southern California
Medical Center Institutional Review
Board, and all subjects gave informed
consent.

PMN preparation
Whole blood was drawn into a syringe
containing sodium heparin (10 U/ml
blood) using a 19 gauge needle. The
tourniquet was removed immediately af-
ter insertion of the needle. Pure PMN
suspensions were prepared by the
method of Boyum (20). In brief, 10 ml of
whole blood was mixed with 5 ml of 6%
dextran 70 (Macrodex 70, 6% wt/vol in
normal saline, Pharmacia, Piscataway,
NJ) and allowed to stand for 90 min at
room temperature. The leukocyte-rich
plasma was layered onto 4 ml of Histo-
paque 1.077 medium (Sigma, St. Louis,
MO) and centrifuged at 400 g for 30 min.
The PMN-rich pellet was resuspended,
and the residual erythrocytes were re-
moved by hypotonic lysis with distilled
water for 30 s. Tonicity was restored
with an equal vol of 1.8% wt/vol saline.
The PMN were washed and maintained
at room temperature in calcium and
magnesium-free phosphate-buffered sa-
line (PBS) (PBS, pH 7.4, 285 mOsm/kg).
Purity was assessed by optical micros-
copy (>95% PMN), whereas viability
was confirmed either visually by trypan
blue or with propidum bromide using a
flow cytometer (>98%). Mean PMN vol-
ume was determined with a 76-(xm aper-
ture impedance counter and a multichan-
nel analyzer (Particle Data, Elmhurst, IL).
A shape factor of 1.50, equivalent to that
for a rigid sphere, was assumed for all
PMN volume measurements. Leukocyte
count was determined with an automated
hematology analyzer (Roche Diagnostic
Systems, Branchburg, NJ). To minimize ar-
tifacts caused by sample handling and pro-
cessing, sterile tissue-culture-grade endo-
toxin-tested media and sterile disposable
plasticware were used for all procedures.

PMN deformability measurement
PMN deformability was assessed using
the Cell Transit Analyzer (CTA) (ABX,
Montpellier, France) (21-23). The CTA
measures the time taken for individual
cells in a dilute suspension to deform
and pass through 1 of 30 identical pores
in a polycarbonate micropore filter,

which represents a simple, yet geometri-
cally stable, in vitro model of a capillary
bed. The use of the CTA for assessing
PMN deformability has been described
previously in detail (13,21). Briefly, a
dilute suspension of PMN in PBS (105

cells/ml) is placed into reservoir A (Fig.
1) on one side of the membrane, while
PBS alone is placed in reservoir B on the
other side. The cell suspension is forced
through the pores by the pressure differ-
ence applied across the membrane. The
transit time (TT) for each complete cell
passage is obtained by monitoring the
transient change in electrical resistance
as each cell passes through a pore; an
increased TT indicates decreased PMN
deformability (13,21). The basic static
mode of the CTA gives the mean and
median TT from > 1,000 cell passages
averaged over an ~5-min period. We
have recently extended the basic capabil-
ities of the CTA by adding a new kinetic
operating mode, in which PMN deform-
ability can be monitored during each of 6
consecutive 20-s intervals (21). The pur-
pose of this modification is to follow the
time course of rapid changes in TT after
PMN are exposed to a stimulus (typically
a chemotactic agent).

For each subject, PMN deform-
ability was assessed as follows: To exam-
ine the cells in their basal state, an ali-
quot of the PMN suspension was diluted
in sterile PBS to a final concentration of
105 cells/ml, and static mode CTA anal-
ysis was performed in triplicate. The me-
dian TT of a minimum of 1,000 cell
passages was recorded each time, and the
mean of the three median values was
taken as the final result. A similar aliquot
of the PMN suspension was incubated
with 20 \xM cytochalasin B (Sigma) for 5
min, and the median TT was subse-
quently measured. Cytochalasin B aborts
and rapidly reverses increases in PMN
content of f-actin resulting from expo-
sure to chemotactic agents (24). Because
f-actin is the primary determinant of
PMN rigidity (21,24), treatment with cy-
tochalasin B should thus eliminate any
differences in PMN deformability caused
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Figure 1—Schematic representation of CTA. A dilute suspension of PMN in PBS buffer is placed

in reservoir A, with PBS alone in reservoir B; the pressure gradient (8 cm H2O) resulting from the

difference in height between the twojluid columns forces the suspension through the 8-[im pores of

the filter. The two needle electrodes are connected to an AC conductimeter that measures the

resistance of the filter, digitizes this signal, and outputs the digital information to a computer for

computation of PMN pore transit time.

by acute activation. Finally, the response
of the cells to a chemotactic stimulus was
measured using the kinetic mode of the
CTA. The chemotactic tripeptide
N-formyl-methionyl-leucyl-phenylala-
nine (fMLP, 1 nM, Sigma) was added to
an aliquot of the diluted cell suspension,
and TT measurements were made imme-
diately for six consecutive 20-s intervals.

Because PMN rigidity rapidly in-
creases, peaks at —60 s, and then de-
creases following fMLP stimulation, the
integrated value of TT over the first 60 s
was used to quantitate the response to
fMLP (21). All CTA experiments, for all
subjects, were conducted at 25°C using
the same polycarbonate filter (8-fxm di-
ameter by 21-|xm-long pores) and at a
driving pressure of 8 cm H2O within 4 h
of venipuncture and 2 h of separation of
PMN. Unstimulated PMN showed no
change in basal TT for up to 2 h follow-
ing isolation from blood or during the
120-s period of the kinetic mode analy-

sis. Both cytochalasin B and fMLP were
initially dissolved in dimethyl sulfoxide
(DMSO) then later diluted with PBS to
give <0.1% final concentration at the
given cytochalasin B and fMLP concen-
trations. This concentration of DMSO
has no effect on PMN deformability (21).

Biochemical analysis
Plasma glucose concentration was mea-
sured by the glucose oxidase method
with a Beckman glucose analyzer (Beck-
man Instruments, Fullerton, CA). HbAlc

was determined by high-performance
liquid chromatography (25). Serum cho-
lesterol (26) and TGs (27) were mea-
sured by enzymatic methods. Urinary
creatinine was determined by a modifi-
cation of the kinetic Jaffe reaction (28)
and urinary albumin by a double anti-
body radioimmunoassay (PJA) (Diagnos-
tic Products, Los Angeles, CA).

Statistical analysis
All data are presented as means ± SK.
Comparisons among the three groups
were performed by the x2 method or
analysis of variance (ANOVA). The
Tukey test was used for intergroup com-
parisons. The relations between variables
were analyzed by Pearson simple corre-
lation.

RESULTS— Table 1 shows the charac-
teristics of the subjects. NIDDM subjects
were on average slightly older than those
with NGT or IGT. In addition, they had
higher BP and serum TG concentrations.
Of the diabetic patients, 11 had hyper-
tension whereas all members of the other
two groups were normotensive. Seven
diabetic subjects had microalbuminuria
(albumin/creatinine ratio >30 mg/g),
but none had clinical renal disease. Back-
ground or proliferative retinopathy was
found in 14 patients (7 each).

No difference was observed
among the three groups in the total leu-
kocyte or PMN counts or PMN volume.
The basal TT of PMN from diabetic pa-
tients was significantly longer (i.e., PMN
were less deformable) than in the other
two groups (Table 2). The difference still
persisted after incubating PMN with cy-
tochalasin B. No difference was found in
the TT among the three groups up to 60
s after stimulation with fMLP. However,
the rate of recovery of deformability of
diabetic PMN was significantly slower
during the subsequent 60 s (Fig. 2).
Basal and post-cytochalasin B TT were
slightly longer for PMN from subjects
with IGT than NGT, but the differences
were not statistically significant. In the
pooled data from all subjects, basal TT
correlated significantly with age, systolic
and diastolic blood pressure (sBP, dBP),
HbAlc, and serum creatinine, choles-
terol, and TG concentrations (r = 0.29,
0.34, 0.37, 0.48, 0.25, 0.36, 0.29, re-
spectively, P < 0.05 for each).

Among diabetic patients, PMN
from hypertensive subjects had a longer
basal TT than normotensive ones (11.5 ±
0.9 vs. 9.6 ± 0.5 ms, P < 0.05) (Fig. 3).
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Table I—Clinical characteristics of subjects

n
Age (years)
Sex (M/F)
Body mass index (kg/m2)
sBP (mmHg)
dBP (mmHg)
FPG (mM)
HbAlc (%)
Serum creatinine (|xM)
Serum cholesterol (mM)
Serum TG (mM)
Urinary albumin/creatinine ratio (mg/g)

NGT

22
39.8 ± 2.2

9/13
29.4 ± 1.4
117 ± 3
67 ± 2

5.2 ±0.1
5.2 ± 0.2
97 ± 9

4.99 ± 0.21
1.46 ± 0.22
4.6 ± 1.1

Subject groups

1GT

13
43.7 ± 2.8

3/10
29.6 ± 1.4
124 ± 4
69 ± 3
5.3 ± 0.2
5.2 ±0.1
88 ± 8

5.28 ± 0.23
1.69 ± 0.25
5.1 ± 1.1

NIDDM

33
47.6 ± 2.0t

11/22
31.9 ± 1.3
131 ±2*
81 ±2§

11.2 ±0.8§
8.7 ± 0.4§
97 ± 9

5.74 ± 0.23
2.37 ± 0.231=
25.5 ± 6.3f

P*

<0.05
NS
NS

<0.01
<0.001
<0.001
<0.001

NS
NS

<0.01
<0.01

Data are means ± SE.
*P values are for comparison among the three groups by ANOVA.
tP < 0.05 between NIDDM and NGT using the Tukey procedure.
W < 0.01 between NIDDM and NGT using the Tukey procedure.
§P < 0.001 for comparison between NIDDM and NGT using the Tukey procedure; differences between IGT and NGT were not significant.

Even with the hypertensive subjects ex-
cluded, the basal TT of PMN from nor-
motensive diabetic patients (9.6 ± 0.5
ms) was significantly higher than for
subjects with NGT (8.0 ± 0.2) or IGT
(8.4 ± 0.2, P < 0.05 for each compari-
son). Despite receiving antihypertensive
medications, diabetic patients with hy-

8 45

I

T ' T ~~1 T I I

20 40 60 80 100 120

Tims after Stimulation with fMLP (sec)

Figure 2—PMN transit times following stim-

ulation with 1 nMfMLP. The differences between

the NGT and NIDDM groups are significant at

100 and 120 s post-stimulation (P < 0.01). The

data for the IGT group are similar to those for

the NGT and not shown to simplify the figure.

pertension had higher BP than normo-
tensive ones (144 ± 4/88 ± 2 vs.
125 ± 2/78 ± 2 mmHg, P < 0.01). The
two diabetic subgroups did not differ sig-
nificantly, however, in age, FPG concen-
tration, or HbAlc level. Diabetic subjects
with hypertension had a higher albumin/
creatinine ratio than normotensive (NT)
ones (44 ± 12 vs. 16 ± 7 mg/g,
P < 0.05), but no significant correlation
was observed between this ratio and the
basal TT. No significant relations were

detected between TT and duration of di-
abetes, type of treatment, or presence of
retinopathy.

CONCLUSIONS— The present data,
obtained with the CTA system, clearly
indicate that PMN are abnormally rigid
in NIDDM. The CTA micropore filtration
system (23) represents a novel approach
to the measurement of PMN deformabil-
ity. Compared with other filtration tech-
niques, it has the advantage of providing

Table 2—Characteristics of PMN in the three groups

Subject groups

Leukocyte count (109/L)
PMN count (109/L)
PMN vol (fL)
Basal TT (ms)
Cytochalasin B TT (ms)
fMLP TT (ms)

NGT

6.0 ± 0.3
3.1 ±0.3

322 ± 3
8.0 ± 0.2
4.6 ±0.1

40.2 ± 2.8

IGT

5.8 ± 0.4
3.4 ± 0.3

334 ± 5
8.4 ± 0.2
4.8 ± 0.2

41.0 ±3.5

NIDDM

6.0 ± 0.3
3.2 ± 0.2

325 ± 3
10.2 ± 0.5t
5.3±0.1t

40.5 ± 2.0

p*

NS
NS
NS

<0.001
<0.001

NS

Data are means ± SE.
*P values are for comparison among the three groups by ANOVA.
tP < 0.001 for comparison between NIDDM and NGT using the Tukey procedure; differences between
IGT and NGT were not significant.
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Figure 3—Basal PMN transit time for NGT
and IGT subjects and for NIDDM patients di-
vided into NT and hypertensive (HT) subgroups.
Both the normotensive and hypertensive diabetic
patients have PMN that are significantly less
deformable than those from the NGT subjects
(P < 0.05 for NT, P < 0.001 for HT). In addi-
tion, PMN from HT diabetic patients are more
rigid than those with normal BP (P < 0.05).

information on the pore passage time of
individual cells, with > 1,000 PMN mea-
sured per test. Furthermore, it allows
rapid kinetic analysis of the mechanical
response to stimuli such as fMLP, which
is beyond the capability of other systems
because of the short time course of this
response.

Our findings are in general agree-
ment with two previous studies that
measured leukocyte deformability indi-
rectly using a pore-clogging technique
(16,17). However, in neither of these
studies was PMN separated from other
leukocyte types, and thus the cell types
responsible for the differences in pore
clogging could not be determined.
MacRury et al. (29), using PMN suspen-
sions, found no differences in PMN de-
formability between NIDDM patients
and control subjects but stressed the
need to consider leukocyte activation in
studies of their mechanical behavior.
Thus, in addition to measurements made
on the freshly prepared PMN suspen-
sion, we also examined PMN deformabil-
ity both after stimulation with fMLP and
after incubation with cytochalasin B.
Treatment with cytochalasin B aborts

and rapidly reverses acute increases in
PMN f- actin content caused by exposure
to chemotactic and other stimuli (24)
and should mitigate artifacts caused by
acute activation. Because the difference
in PMN TT persisted after treatment with
cytochalasin B, the decrease in basal
PMN deformability seen in NIDDM ap-
pears to represent a chronic phenome-
non and is unlikely to be caused by ac-
tivation during in vitro handling of the
cells.

The mechanism of decreased
PMN deformability in diabetes is un-
known. This could be caused by changes
in membrane lipid composition resulting
in altered membrane fluidity, because
decreased PMN membrane fluidity has
been described in streptozocin-induced
diabetes in rats (30). Alternatively, in-
creased glycation of the cell membrane
or intracellular proteins may cause stiff-
ening of cells, especially as the basal TT
correlated significantly with HbAlc. A
further possibility is the presence of a
state of chronic low-grade PMN activa-
tion that could increase basal cytoskeletal
f-actin leading to a reduction in PMN
deformability (31-33). Indeed, diabetic
patients show a decrease in PMN ly-
sozyme content (31) and increased
plasma PMN elastase concentration
(32,33) and superoxide production (34-
36), all of which suggest chronic PMN
activation.

The identical initial response to
stimulation exhibited by PMN in the
NIDDM and NGT groups (Table 2, Fig.
2) implies no difference in functional ca-
pacity between PMN isolated from the
two groups. Although previous reports
have suggested a chemotactic defect in
diabetes (37), a more recent study (38)
has shown that chemotaxis is suppressed
only in response to complement-derived
factors but not to bacterial products or
their analogues (e.g., fMLP). Our results
with fMLP stimulation are consistent
with this latter study. Presently, we are
unable to explain the slower recovery of
PMN deformability in NIDDM after stim-
ulation with fMLP. It is plausible that

such behavior reflects slower depolymer-
ization of f-actin to g-actin (24).

Abnormally rigid PMN may im-
pede or temporarily obstruct flow in cap-
illaries (14). This may not be particularly
damaging to the microcirculation, be-
cause shunting would occur around the
affected vessels and even rigid PMN are
expected to be eventually released. How-
ever, if increased PMN rigidity in diabe-
tes is associated with activation, the risk
for microvascular injury may be en-
hanced. Activated PMN have increased
surface expression of the adhesion recep-
tor CDllb/CD18 that promotes their ad-
hesion to endothelium (39). PMN adhe-
sion to endothelium is also promoted by
hyperglycemia (40). Adherent PMN can
degranulate in situ, releasing various po-
tent cytotoxic agents that include proteo-
lytic enzymes and oxygen radicals capa-
ble of significant local tissue destruction
(15). PMN proteases are active against
elastin, collagen, fibrinogen, and proteo-
glycans and can destroy vascular base-
ment membrane (41). Leukotriene B4,
oxygen radicals, and other cationic pro-
teins released from PMN can increase
vascular permeability either directly or
through activation of complement (38).
Thus, increased PMN rigidity coupled
with activation could contribute to the
development of diabetic microangiopa-
thy.

Hypertensive diabetic patients
had less deformable PMN than those
from patients with normal BP (Fig. 3).
Although rheological abnormalities, in-
cluding increased whole blood and
plasma viscosity and decreased erythro-
cyte deformability, have been reported in
hypertension (42-45), PMN mechanics
have not been studied. Evidence exists,
however, of increased leukocyte activa-
tion in patients with hypertension
(46,47) and in the spontaneously hyper-
tensive rat (48). The mechanism of this
abnormality is unknown, but it is
thought to contribute to hypertension
development and its complications either
directly by increasing capillary vascular
resistance (14) or indirectly by releasing
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proteolytic enzymes that act on the an-
giotensin system (49) or free radicals that
interfere with endothelium-derived re-
laxing factor (50). In addition, the de-
creased PMN deformability in diabetes
may contribute to the development of
hypertension that is commonly present
even in the absence of nephropathy. The
marked increase in PMN rigidity in hy-
pertensive diabetic patients may also ex-
plain, at least in part, the detrimental
effect of hypertension on the develop-
ment of diabetic complications such as
nephropathy and retinopathy (51,52).

In conclusion, PMN rigidity is in-
creased in diabetes and is correlated with
BP and HbAlc levels. Reduced PMN de-
formability and increased PMN activa-
tion may contribute to the pathogenesis
of diabetic microangiopathy. The mech-
anisms responsible for these changes in
PMN mechanics remain to be clarified.
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